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Abstract

In this paper, we consider three point boundary value prob-
lem for fractional differential equations of order 1 < α < 2. We
establish new conditions for the existence and uniqueness of
solutions by using Banach fixed point theorem. We also gen-
erate other existence results using Scheafer and Krasnoselskii
fixed point theorems.
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1 Introduction

The theory of differential equations of fractional order arises in many scientific
disciplines, such as physics, chemistry, electrochemistry, control theory, image
and signal processing, biophysics. For more details, we refer the reader to
[3, 5, 9, 10, 12, 13, 14, 15, 17] and references therein. There has been a
significant progress in the investigation of these equations in recent years, (see
[4, 6, 7, 12, 16]). More recently, some basic theory for the initial boundary value
problems of fractional differential equations has been discussed in [1, 2, 11, 12].
Motivated by the classical problem (1.1)-(1.2) in [8], this paper deals with the
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existence of solution for three point boundary value problems for the following
problem

Dαx (t) + f (t, x (t)) = 0, t ∈ J, 1 < α < 2,
x (0)− β1x

′
(0) = 0, x (1)− β2x

′
(η) = 0, 0 < η < 1,

(1)

where Dα denote the fractional derivative of order α in the sense of Caputo,
J = [0, 1], β1, β2 are real constants with β1 + 1 6= β2, f is a continuous function
on J × R.

2 Preliminaries

In the following, we give the necessary notation and basic definitions which
will be used in this paper.
Definition 2.1: The Riemann-Liouville fractional integral operator of order
α ≥ 0, for a continuous function f on [0,∞[ is defined as

Jαf(t) = 1
Γ(α)

∫ t
0
(t− τ)α−1f(τ)dτ ; α > 0, t > 0,

J0f(t) = f(t),
(2)

where Γ(α) :=
∫∞

0
e−uuα−1du.

Definition 2.2: The fractional derivative of f ∈ Cn([0,∞[) in the Caputo’s
sense is defined as

Dαf(t) =

{
1

Γ(n−α)

∫ t
0
(t− τ)n−α−1f (n)(τ)dτ, n− 1 < α < n, n ∈ N∗,

dn

dtn
f(t), α = n.

(3)

Details on Caputo’s derivative can be found in [12, 15].
Let us now introduce C (J,R) the Banach space of all continuous functions
from J into R with the norm ‖ x ‖= supt∈J |x (t) |.
We give the following lemmas [11]:

Lemma 2.1 For α > 0, the general solution of the fractional differential
Dαx = 0 is given by

x(t) = c0 + c1t+ c2t
2 + ...cn−1t

n−1, (4)

where ci ∈ R, i = 0, 1, 2, ...n− 1, n = [α] + 1.

Lemma 2.2 Let α > 0, then

JαDαx(t) = x(t) + c0 + c1t+ c2t
2 + ...cn−1t

n−1, (5)

for some ci ∈ R, i = 0, 1, 2, ...n− 1, n = [α] + 1.
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We need also the following lemma:

Lemma 2.3 Let 1 < α < 2 . A solution of (1) is given by:

x (t) =
−1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, x (τ)) dτ +
β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

− β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ. (6)

To present our main results, we need to define the following integral oper-
ator F : C(J,R)→ C(J,R) as follows:

φx (t) =
−1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, x (τ)) dτ +
β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

− β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ. (7)

3 Main Results

For the forthcoming analysis, we need the following assumptions:

(A1): There exists a constant k > 0 such that
|f (t, x)− f (t, y) | ≤ k|x− y|, for each t ∈ J and all x, y ∈ R.

(A2): The function f : J × R→ R is continuous.

(A3): There exists a constant N > 0, such that |f (t, x) | ≤ N, for each
t ∈ J and all x ∈ R.

Our first result is given by:

Theorem 3.1 Assume that the hypothesis (A1) holds.

If

k
(| β1 + 1− β2 | + | β1 + 1 | +αη | β2β1 + β2 |)

Γ (α + 1) | β1 +−1β2 |
< 1, (8)

then the problem (1) has a unique solution on J.

Proof: We shall prove that φ is contraction mapping on C (J,R) .
Let x, y ∈ C (J,R) . Then, for each t ∈ J, we can write
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| φx (t)− φy (t) |=| −1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, x (τ))

+
β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

− β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ (9)

+
1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, x (τ)) dτ

− β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

+
β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ

+
β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ | .

Thanks to (A1), we obtain

|φ (x) (t)− φ (y) (t)| ≤ 1

Γ (α)

∫ t

0

(t− τ)α−1 | f (τ, x (τ))− f (τ, y (τ)) | dτ

+
| β1 + t |

| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 | f (τ, x (τ))− f (τ, y (τ)) | dτ

+
| β2β1 + β2t |

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 | f (τ, x (τ))− f (τ, y (τ)) | dτ

≤ k ‖ x− y ‖
Γ (α)

∫ t

0

(t− τ)α−1 dτ +
| β1 + 1 | k ‖ x− y ‖
| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 dτ

+
| β2β1 + β2 | k ‖ x− y ‖
| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 dτ

≤ k
(| β1 + 1− β2 | + | β1 + 1 | +αη | β2β1 + β2 |)

Γ (α + 1) | β1 + 1− β2 |
‖ x− y ‖ . (10)

Therefore,

‖ φ (x)− φ (y) ‖≤ k
(| β1 + 1− β2 | + | β1 + 1 | +αη | β2β1 + β2 |)

Γ (α + 1)
‖ x− y ‖ .

(11)
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Thanks to (8), we conclude that φ is a contraction mapping. Hence by
Banach fixed point theorem, there exists a unique fixed point x ∈ C (J,R) ,
which is a solution of (1).
The second result is the following.

Theorem 3.2 Suppose that the conditions (A2) and (A3) are satisfied.
Then the problem (1) has at least a solution on J.

Proof: We use Scheafer’s fixed point theorem to prove that φ has at least
a fixed point on C (J,R) :

Step1: The operator φ is continuous on C (J,R) : Let xn be a sequence
such that xn → x in C (J,R). Then, for each t ∈ J , we have:

|φ (xn) (t)− φ (x) (t)| =| −1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, xn (τ)) dτ

+
β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, xn (τ)) dτ

− β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, xn (τ)) dτ

+
1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, x (τ)) dτ (12)

− β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

+
β2 (β1 + 1)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ | .

Therefore,

|φ (xn) (t)− φ (x) (t)| ≤ 1

Γ (α)

∫ t

0

(t− τ)α−1 |f (τ, xn)− f (τ, x) |dτ

+
| β1 + 1 |

| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 |f (τ, xn)− f (τ, x) |dτ (13)

+
| β2β1 + β2 |

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 |f (τ, xn)− f (τ, x) |dτ.

Thanks to (A2), we obtain
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‖ φ (xn)− φ (x) ‖→ 0, n→∞. (14)

Step2: The operator φ maps bounded sets into bounded sets in C (J,R) :
So, let us take x ∈ Bµ = {x ∈ C (J,R) ; ‖ x ‖≤ µ, µ > 0}.
By (A3), we have:

| φx (t) |≤ 1

Γ (α)

∫ t

0

(t− τ)α−1 | f (τ, x (τ)) | dτ

+
| β1 + 1 |

| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 | f (τ, x (τ)) | dτ

+
| β2β1 + β2 |

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 | f (τ, x (τ)) | dτ

≤ N

Γ (α)

∫ t

0

(t− τ)α−1 dτ +
N | β1 + 1 |

| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 dτ (15)

+
N | β2β1 + β2 |

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ) dτ

≤ N

Γ (α + 1)
+

N | β1 + 1 |
Γ (α + 1) | β1 + 1− β2 |

+
αηN | β2β1 + β2 |

Γ (α + 1)
.

Thus,

‖ φ (x) ‖≤ N | β1 + 1− β2 | +N | β1 + 1 | +αηN | β2β1 + β2 |
Γ (α + 1) | β1 + 1− β2 |

. (16)

And consequently,

‖ φ (x) ‖<∞. (17)

Step3: The operator φ maps bounded sets into equicontinuous sets of
C (J,R) :

Let t1, t2 ∈ J ; t2 < t1, x ∈ Bµ. Then, we have

| φx (t1)− φx (t2) |=| −1

Γ (α)

∫ t1

0

(t1 − τ)α−1 f (τ, x (τ)) dτ

+
β1 + t1

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

− β2 (β1 + t1)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ (18)
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+
1

Γ (α)

∫ t2

0

(t2 − τ)α−1 f (τ, x (τ)) dτ

− β1 + t2
(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ))

+
β2 (β1 + t2)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ | .

Therefore,

| φx (t1)− φx (t2) |≤ 1

Γ (α)

∫ t2

0

(t1 − τ)α−1 − (t2 − τ)α−1 | f (τ, x (τ)) | dτ

+
t1 − t2

| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 | f (τ, x (τ)) | dτ (19)

+
| β2 | (t1 − t2)

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ) | f (τ, x (τ)) | dτ

+
1

Γ (α)

∫ t1

t2

(t1 − τ)α−1 | f (τ, x (τ)) | dτ.

Thus,

| φx (t1)− φx (t2) |≤ (N +Nαη | β2 |)
Γ (α + 1) | β1 + 1− β2 |

(t1 − t2)

+ 2N
Γ(α+1)

(t1 − t2)α + N
Γ(α+1)

(tα2 − tα1 ) .

(20)

As t2 → t1, the right-hand side of (20) tends to zero. Then, combining
the Steps 1,2,3 with Arzela-Ascoli theorem, we conclude that φ is completely
continuous.

Step4: The set

Ω = {x ∈ C (J,R) , x = λφ (x) , 0 < λ < 1} (21)

is bounded:
Let x ∈ Ω, then x = λφ (x) , for some 0 < λ < 1. Hence, for t ∈ J, we have:

x (t) = λ[
−1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, x (τ))+
β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ
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− β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ ]. (22)

Thanks to (A3), we can write

1

λ
|x (t) | ≤ 1

Γ (α)

∫ t

0

(t− τ)α−1 | f (τ, x (τ)) | dτ

+ |β1+1|
|β1+1−β2|Γ(α)

∫ 1

0
(1− τ)α−1 | f (τ, x) | dτ

+
| β2β1 + β2 |

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 | f (τ, x (τ)) | dτ. (23)

Therefore,

‖ x ‖≤ λ
N (| β1 + 1− β2 | + | β1 + 1 | +αη | β2β1 + β2 |)

Γ (α + 1) | β1 + 1− β2 |
. (24)

Hence,

‖ φ (x) ‖<∞. (25)

This shows that the set Ω is bounded.
As consequence of Schaefer’s fixed point theorem, we deduce that φ has at
least a fixed point, which is a solution of (1).
Now, we use Krasnselskii theorem [11] to prove the following result:

Theorem 3.3 Assume that the hypotheses (A1)-(A2)-(A3) hold, such that

k < Γ (α + 1) . (26)

If there exists σ ∈ R such that

N (| β1 + 1 | +αη | β2β1 + β2 |)
| β1 + 1− β2 | Γ (α + 1)

≤ σ, (27)

then the problem (1) has at least a solution on J.

Proof: Suppose that (27) holds and let us take

φx (t) := H1x (t) +H2x (t) , (28)

where

H1x (t) :=
−1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, x (τ)) dτ (29)
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and

H2x (t) :=
β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

− β2(β1+t)
(β1+1−β2)Γ(α−1)

∫ η
0

(η − τ)α−2 f (τ, x (τ)) dτ.

(30)

(1*): We shall prove that H1 is a contraction mapping: Let x, y ∈ C (J,R).
Then, for each t ∈ J, we can write

| H1x (t)−H1y (t) |=| − 1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, x (τ)) dτ

+
1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, y (τ)) dτ (31)

≤ 1

Γ (α)

∫ t

0

(t− τ)α−1 | f (τ, x (τ))− f (τ, y (τ)) | dτ.

By (A1), we get

‖ H1 (x)−H1 (y) ‖≤ k

Γ (α + 1)
‖ x− y ‖ . (32)

Using the condition (26) we conclude that H1 is a contraction mapping.
(2*): We shall prove that H2 is continuous:

Let xn be sequence such that xn → x in C (J,R). Then for each t ∈ J,

| H2xn(t)−H2x(t) |=| β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, xn (τ)) |

− β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−1 f (τ, xn (τ)) dτ

− β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

+
β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−1 f (τ, x (τ)) dτ |

≤ | β1 + 1 |
| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 | f (τ, xn (τ))− f (τ, x (τ)) | dτ (33)

| β2β1 + β2 |
| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 | f (τ, xn (τ))− f (τ, x (τ)) | dτ
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≤ | β1 + 1 | +αη | β2β1 + β2 |
| β1 + 1− β2 | Γ (α + 1)

‖ f (., xn)− f (., x) ‖

Since f is a continuous function, we have

‖ H2 (xn)−H2 (x) ‖→ 0, n→∞. (34)

(3*): Now, we prove that H2 maps bounded sets into bounded sets of
C (J,R) : Let x ∈ Bσ. It is clear that

| H2x (t) |=| β1 + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

− β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−1 f (τ, x (τ)) dτ | . (35)

Therefore,

| H2x (t) |≤ | β1 + 1 |
| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ) | f (τ, x (τ)) | dτ

+
| β2β1 + β2 |

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 | f (τ, x (τ)) | dτ (36)

Tanks to (A3), we can write:

‖ H2 (x) ‖≤ N | β1 + 1 |
| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 dτ (37)

+
N | β2β1 + β2 |

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 dτ

Thus,

‖ H2 (x) ‖≤ N | β1 + 1 | +αηN | β2β1 + β2 |
| β1 + 1− β2 | Γ (α + 1)

. (38)

Consequently,

‖ H2 (x) ‖<∞. (39)

(4*): The operator H2 maps bounded sets into equicontinuous sets of
C (J,R) :

Let t1, t2 ∈ J ; t1 < t2, x ∈ Bσ. Then, we have

| H2x (t2)−H2x (t1) |=| β1 + t2
(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ
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− β2 (β1 + t2)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ (40)

− β1 + t1
(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

+
β2 (β1 + t1)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ | .

This implies that,

| H2x (t2)−H2x (t1) |≤ t2 − t1
| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 | f (τ, x (τ)) | dτ

+
| β2 | t2 − t1

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 | f (τ, x (τ)) | dτ. (41)

Hence, we have

| H2x (t2)−H2x (t1) |≤ N

| β1 + 1− β2 | Γ (α + 1)
(t2 − t1)+

αηN | β2 |
| β1 + 1− β2 | Γ (α + 1)

(t2 − t1) .

(42)
As t1 → t2 the right-hand side of (42) tends to zero. Then, as a consequence

of steps (2∗, 3∗, 4∗), we can conclude that H2 is continuous and compact.
(5*): Now, we shall prove that for any x, y ∈ Bσ, then H1 (x)+H2(y) ∈ Bσ.

So, let us take x, y ∈ Bσ. We have:

| H1x (t) +H2y (t) |=| − 1

Γ (α)

∫ t

0

(t− τ)α−1 f (τ, x (τ)) dτ

+
β + t

(β1 + 1− β2) Γ (α)

∫ 1

0

(1− τ)α−1 f (τ, x (τ)) dτ

− β2 (β1 + t)

(β1 + 1− β2) Γ (α− 1)

∫ η

0

(η − τ)α−2 f (τ, x (τ)) dτ |

≤ 1

Γ (α)

∫ t

0

(t− τ)α−1 | f (τ, x (τ)) | dτ (43)

+
| β1 + 1 |

| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 | f (τ, x (τ)) | dτ

+
| β2β1 + β2 |

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 | f (τ, x (τ)) | dτ.
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By (A3), we have

‖ H1 (x) +H2 (y) ‖≤ N | β1 + 1 |
| β1 + 1− β2 | Γ (α)

∫ 1

0

(1− τ)α−1 dτ (44)

+
N | β2β1 + β2 |

| β1 + 1− β2 | Γ (α− 1)

∫ η

0

(η − τ)α−2 dτ.

Consequently,

‖ H1 (x) +H2 (y) ‖≤ N (| β1 + 1 | +αη | β2β1 + β2 |)
| β1 + 1− β2 | Γ (α + 1)

. (45)

Using the condition (27), we conclude that H1 (x) + H2(y) ∈ Bσ. As a con-
sequence of Krasnoselskii’s fixed point theorem we deduce that φ has a fixed
point which is a solution of (1).

4 Open Problems

At the end, we pose the following open problems:
Open Problem 1: Using Riemann-Liouville fractional differential operator
of order α, under what conditions do Theorems 6, 7 and Theorem 8 hold for
1 < α < 2?
Open Problem 2: Is it possible to generalize the above results for (1), where
the derivative Dα is taken in the sense of Riemann-Liouville, n < α < n+1, n ∈
N, and using Riemann-Liouville fractional initial conditions?
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