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Abstract

The notion of pseudo-annulets is introduced in Stone lat-
tices and characterized in terms of prime filters. Two opera-
tor a and 8 are introduced and obtained that their composition
Boa is a closure operator on the class of all filters of a Stone
lattice. A congruence 0 is introduced on a Stone lattice L and
proved that the quotient lattice L/0 is a Boolean algebra.
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1 Introduction

The theory of pseudo-complements was introduced and extensively studied
in semi-lattices and particularly in distributive lattices by Orrin Frink [4] and
Garret Birkhoff [2]. Later the problem of characterizing the class of Stone
lattices has been studied by several authors like Raymond Balbes [1], Orrin
Frink [4], George Gratzer [5] etc.

In this paper, the concept of pseudo-annulets is introduced in Stone lattices
and proved that the class AT(L) of all pseudo-annulets of a Stone lattice L
forms a complete Boolean algebra. An operations « is defined on the Stone
lattice L and proved that, for any filter ' of L, a(F) is an ideal in the lattice
AT(L). For any prime filter P of a Stone lattice, we define a set ¢(P) = {x €
L |z* ¢ P } and proved that a pseudo-annulet (a)™ is equal to the intersection
of all /(P) where a € P. A Glivenko type congruence relation € is introduced
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on a Stone lattice in terms of pseudo-annulets. Finally, it is proved that the
quotient lattice L ¢ is a Boolean algebra.

2 Preliminaries

The reader is refereed to [2] for the notions and notations. However, some
of the preliminary definitions and results are presented for the ready reference
of the reader. Throughout the rest of this note L stands for a Stone lattice
(L,V,N\,*,0,1), unless otherwise mentioned.

Definition 2.1 [2] For any element a of a distributive lattice L, the pseudo-
complement a* of a is an element satisfying the following property for all x € L:

aNr=0ad ANr=rv<z<a"

A distributive lattice L in which every element has a pseudo-complement is
called a pseudo-complemented distributive lattice.

Theorem 2.2 [2/ For any two elements a,b of a pseudo-complemented dis-
tributive lattice, we have the following:

(1) 0** =0

(2)ana* =0

(3) a < b implies b* < a*
(4) a < a™

(6) (aVb)*=a* ANb*

(7) (a A D)™ = a*™* A b*™

An element x of a pseudo-complemented lattice L is called dense if x* = 0 and
the set D(L) of all dense element of L forms a filter of L.

Theorem 2.3 [}/ Let F' be a filter and I an ideal of a distributive lattice L
such that F NI = (. Then there exists a prime filter P of L such that F C P
and PN 1T ={.

Definition 2.4 [2] A pseudo-complemented distributive lattice L is called a
Stone lattice if, for all x € L, it satisfies the property: x* V x** = 1.

Theorem 2.5 [2] The following conditions are equivalent in a pseudo-complemented
distributive lattice L.

(1) L is a Stone lattice

(2) Sp={a*|x € L} is a sublattice of L

(2) (xAy) =z"Vy"

(3) (wvy) =a vy
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A binary relation 6 on a Stone lattice L is a Glivenko type congruence if it
satisfies the following properties.

(i). (z,y) € 0 implies (x Ac,y Ac) €6, (xVe,yVe) €l forany c € L.
(ii). (z,y) € 0 if and only if 2* = y* for all x,y € L.

3 Main results

In this section, the concept of pseudo-annulets is introduced in a Stone
lattice. Some operations are introduced on Stone lattices and the lattice of
pseudo-annulets. A Glivenko type congruence is introduced on a Stone lattice
and proved that the quotient lattice is a Boolean algebra.

Definition 3.1 For any subset A of a Stone lattice L, define the set AT as
follows: At ={x e L|x*Na=0 forallac A}.

If A ={a}, then for brevity we denote ({a})* by (a)™. Then it can be easily
observed that (0)* = L and LT = (1)* = D.

Lemma 3.2 For any subset A of a Stone lattice L, A% is a filter of L.

Proof. Clearly 1 € A*. Let 2,y € AT. Then 2* As =0 and y* At = 0 for all
s,t € A. Now forany a € A, (zAy)*Na = (z*Vy* )ANa= (z"Na)V (y*Na) =
OVO =0 Hencex Ay € AT. Let x € AT and x < y. Then for any
ce Ly Ne<ax*Ac=0. Hence y € AT. Therefore A" is a filter of L.

Proposition 3.3 Let A and B be two subsets of a Stone lattice L. Then the
following conditions hold.

(1) AT = (a)"

acA
(2) ACB= B+ C A"
(3) AC A"
() A= A"
(5) For any two filters F,G of L,(FV G)" = FTNG*

Proof. (1). It is clear.

(2). Suppose A C B. Let z € BT. Then z* Ab = 0 for all b € B. Hence
z*Na =0 for all @ € A. Hence x € A™. Therefore it concludes BT C A*.
(3). Let z € A. Then x A x* = 0. Hence it yields z € AT. Therefore A C AT,
(4). By (3), we get ATT C AT, Also AT C (A")". Therefore A*T = A™.

(5). Clearly (FVG)t C FTNG*. Conversely, let x € FTNG*. Let c € FVG.
Then ¢ = f Agforsome f € F,ge G. Nowz* ANc=x*A(fAg)=0Ag=0.
Hence x € (F'V G)T. Therefore (FV G)* = F* N GT. Some properties of
pseudo-annulets can be observed in the following Lemma.



Annulets of Stone lattices 15

Lemma 3.4 For any a,b € L, we have the following:

(1) a € (a)t

(2) la) € (a)*

(3) (a)™" = (a)*

(4) < b implics (b)* C (a)*

(5) a € (b)" implies (a)* C (b)*

(6) (a)t =L if and only if a =0

(7) aNb=0 implies (a)* V (b)" =L

Proof. (1). It is clear.

(2). From (1), it is clear.

(3). It is clear by the above Proposition 3.3.

(4). Let a <b. Let z € (b)*. Then 2* Aa < z* Ab=0. Therefore z € (a)*.
(5). Suppose a € (b)". Then a* Ab=0. Let t € (a)*. Then t* Aa = 0. Hence
t* <a*. Thus t* Ab<a*Ab=0. Hence t € (b)*. Therefore (a)* C (b)".

(6). Suppose (a)* = L. Then we get 0 € (a)". Hence it yields that a = 1A\a =
0* A a = 0. Converse is clear.

(7). Let a,b € L be such that a Ab = 0. Suppose (a)" Vv (b)* # L. Then there
exists a maximal filter M such that (a)™ V ()" C M. Hence (a)™ C M and
(b))t € M. Now (a)™ C M implies a € (a)™ C M. Hence a* ¢ M. Similarly,
we can get b* ¢ M. Since M is a prime, we get 1 = (a A b)* = a* Vb* ¢ M,
which is a contradiction. Therefore (a)* Vv (b)) = L.

Let us denote the class of all pseudo-annulets of L by A™(L). Then in the
following, we prove that A (L) is a complete Boolean algebra.

Theorem 3.5 For any Stone lattice L, AT (L) is a Boolean algebra.

Proof. Let (a)™,(b)t € AT(L). We first prove the existence of infimum
and suprimum for (a)* and (b)* in AT(L). Clearly (a vV b)" C (a)™ N (b)".
Conversely let € (a)™ N (b)*. Then z* A (aVb) = (z* ANa) V (z* AN D) =
0V 0 = 1. Hence z € (aVb)*. Therefore (a)™ N (b))t = (a VvV b)*. Again,
clearly (a)* VvV (b)" C (aAb)T. Let z € (a Ab)T. Then (z* Aa) A (z* AN b) =
x* ANaAb=0. Hence by Lemma 3.4(7), we get (z* Aa)t V (z* Ab)T = L.
Thus x € L = (z* Aa)™ V (z* Ab)T. Hence x = r A s for some r € (z* Aa)™
and s € (z* Ab)*T. Now

re(z*ANa)t = rAz*Aa=0
= (rva)*Aa=0
= rvze(a)t
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Similarly, we can get sV x € (b)". Hence

r = xVx
= zV(rAs)
= (zVvr)A(zVs)e(a)t Vv (b)T

Hence (a Ab)™ C (a)™ Vv (b)". Therefore (a)™ V (b)) = (a A b)". Therefore
(AT(L), A, V) forms a distributive lattice with greatest element (0)™ and the
least element D. Moreover A1 (L) is a Boolean algebra where the complement
of each (z)*,z € L is precisely (z*)".

We now introduce two operation a and § in the following.
Definition 3.6 For any filter F' of L, define
a(F) ={(x)" | z € F}
Definition 3.7 For any ideal I of AT(L), define
pI) ={ze L] (x)" eI}

We first prove some basic properties of the above operations a and f3.

Lemma 3.8 For any Stone lattice L, we have the following:

(1). For any filter F' of L,a(F) is an ideal in A*(L)
(2). for any ideal I of AT(L),B(I) is a filter in L

(8). a and [ are isotones

Proof. (1). Let F be filter of L. Since 1 € F, we get (1)T € a(F). Let
()", (y)T € a(F). Then (x)* = (a)™ and (y)* = (b)" for some a,b € F.
Hence (z)* VvV (y)* = (a)" V (b)" = (a Ab)" € a(F), because of a Ab € F.
Again, let ()" € a(F) and (r)™ € (A)T(L). Then it yields (z)* = (a)* for
some a € F. Now we get that ()™ N (r)" = ()" N (r)" = (aVr)T € a(F),
because of a V r € F. Therefore o(F) is an ideal in A" (L).

(2). Let I be an ideal of AT(L). Since (1)* is the smallest element of AT (L)
and 7 is an ideal of AT (L), we get (1)* € I. Hence 1 € 5(I). Let z,y € 5(1).
Then we get (z)", (y)* € I. Since [ is an ideal, we get (xAy)" = (z)TV(y)* €
I. Hence x Ay € 5(I). Again, let x € B(I) and r € L. Then we get (z)* € [
and (r)" € AT(L). Since [ is an ideal, we get (z Vr)t = (x)* N (r)" € I.
Hence xz V r € 5(I). Therefore it concludes that ([) is a filter of L.

(3). Suppose F,G are two filters of L such that F' C G. Let (2)T € a(F).
Then we get (z)* = (a)™ for some a € F C G. Hence it yields (z)" € a(G).
Therefore a(F') C a(G). Similarly, we can get 5(F) C 5(G).

In the following, we prove that the operation o « is a closure operator.
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Theorem 3.9 Let L be a Stone lattice and F a filter of L. Then the map
F — Boa(F) is a closure operator. That is:

(7). F C PBoalF)

(17). Boa[Boa(F)]|=poaF)
(1i1). FCG = foalF)C BoalG) forany two filters F,G of L

Proof. (i). Let z € F. Then we get that (x)* € a(F). Since a(F) is an ideal
in AT(L), it yields that 2 € 8 o a(F). Therefore F' C 3o a(F).

(7). Since So«(F) is a filter in L, from the condition (i) of this Theorem, we
get that foa(F) C foa] foa(F)]. Conversely, let x € foa[ foa(F)].
Then (z)" € a| foa(F) ]. Then (z)" = (y)* for some y € 5o «(F). Hence
Boal|foa(F)]C poa(F). Therefore foa| foa(F) | = Foa(F).

(i77). Suppose F' C G. Let (z)* € a(F). Then (z)™ = (y)* for some y € F.
So (x)* = (y)* for some y € G. Now y € G implies (y)* € a(G). Hence
(x)* € a(G). Therefore z € o a(G). Hence fo a(F) C foa(G).

Definition 3.10 For any prime filter M of L, define
((P)={xelL|x*¢ P}

Proposition 3.11 For any prime filter P of L, {(P) is a filter of L such that
P C{(P).

Proof. Assume that P is a prime filter of L. Clearly 1 € ¢(P). Let x,y € {(P).
Then 2* ¢ P and y* ¢ P. Since P is a prime filter, we get (xAy)* = z*Vy* ¢ P.
Hence it yield that x Ay € ¢(P). Let x € ¢(P) and r € L. Then we get z* ¢ P.
Hence (z VvV r)* ¢ P, otherwise * € P. Thus x Vr € {(P). Therefore ¢(P) is a
filter of L. Let x € P. Then z* ¢ P, otherwise we get 0 = 2z A z* € P. Hence
x € ((P). Therefore P C {(P).

Let us denote the class of all prime filters of L by p and p, ={P € g | a €
P}. Then we have the following:

Theorem 3.12 For anya € L, (a)t = () {(P)
Pe@a

Proof. Let [y = () ¢(P). Let z € (a)* and P € g,. Then z* Aa = 0.
Pcgp,
If x* € P, then 0 = 2* Aa € P, which is a contradiction. Hence we get

z* ¢ P. Thus x € ((P). This is true for all P € p,. Hence it yields that
(a)™ C Fy. Conversely, let x € Fy. Then z € {(P) for all P € gp,. Suppose
x* Na # 0. Then there exists a maximal filter My of L such that z* Aa € M,.
Hence z* € My and a € M,. Since M, is a prime filter and a € M, by
our assumption x € ¢(My), which implies that x* ¢ My, which is a contradic-
tion. Hence 2*Aa = 0. Thus z € (a)™. Hence Fy C (a)™. Therefore (a)t = Fy.
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Corollary 3.13 Let P € p. Ifa € P, then (a)t C {(P).
We now introduce a congruence on L in terms of pseudo-annulets.

Proposition 3.14 For any x,y € L, define a relation 8 on L as follows:

(v,9) €0 if and only if (x)* = (y)*
Then 6 is a congruence on L.

Proof. Clearly 6 is an equivalence relation on L. Let (a,b) € 6. Then we
get (a)t = (b)". Now for any c € L, (aAe)T = (a)T U ()T = (b)T U (¢)t =
(bAe)t. Also (aVbh)T = (a)" Nn(e)t = (b)" N (c)t = (bVe)t. Hence
(anc,bNc),(aVe,bVe)ed. Therefore 0 is a congruence on L.

It is a well known fact that the quotient algebra L,y = {0(x) | « € L}, where
0(zx) is a congruence class of x with respect to 6, is a distributive lattice with
respect to the operations given by

O(z)NO(y) =0(x Ay) and 8(z) V O(y) =0(z Vy)
The bounds of the above lattice Ly are given in the following lemma.

Theorem 3.15 Let 0 be the congruence defined above on L. Then L is a
Boolean algebra.

Proof. Clearly {0} is the smallest congruence class of L. We now show
that D is the unit congruence class of L. Let x,y € D. Then 2" = y*. Let
t € (£)T. Then t* Az = 0. Hence t* < z* = y*. Thus t* Ay < y* Ay = 0.
Therefore ¢t € (y)*. Thus (x)™ C (y)*. Similarly, we can get (y)* C (z)*.
Therefore (z,y) € 6. Thus D is a congruence class of L. Now, let @ € D and
x € L. Since D is a filter, we get aVx € D. Hence §(z)V0(a) =6(xVa) = D.
Therefore D is the unit congruence class of Lj. Let x € L. Then clearly
O(z)NO(z*) = 6(xz AN z*) = 6(0) = {0}. Also §(z) VO(z*) = 0(xV z*) = D,
because of x V x* € D. Therefore L 4 is a Boolean algebra.

4 Open Problem

(1). For any two filters F, G of a Stone lattice, it can be easily observed that
FtvGt C (FNG)T. It is under investigation that whether the equality
exists or not for any two filter of a Stone lattice.

(2). The operation o« is a closure operation on the class of all filters of a

Stone lattice. Still some investigation has to be carried to derive some
set of equivalent conditions for the existence of equality F' = o a(F).
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