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Abstract

In this paper, we study inextensible flows of curves in Euclidean
space E*. Using the Frenet frame of the given curve, we present
partial differential equations. We give some characterizations for
curvatures of a curve in Euclidean space E°.
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1 Introduction

Construction of fluid flows constitutes an active research field with a high
industrial impact. Corresponding real-world measurements in concrete scenarios
complement numerical results from direct simulations of the Navier-Stokes
equation, particularly in the case of turbulent flows, and for the understanding of
the complex spatio-temporal evolution of instationary flow phenomena. More and
more advanced imaging devices (lasers, highspeed cameras, control logic, etc.)
are currently developed that allow to record fully timeresolved image sequences
of fluid flows at high resolutions. As a consequence, there is a need for advanced
algorithms for the analysis of such data, to provide the basis for a subsequent
pattern analysis, and with abundant applications across various areas, [7,10,11].

In this paper, we study inextensible flows of curves in Euclidean space
E®. Using the Frenet frame of the given curve, we present partial differential
equations. We give some characterizations for curvatures of a curve in Euclidean

space E°.
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2 Preliminaries
Assume that {T,N,B} be the Frenet frame field along « . Then, the Frenet
frame satisfies the following Frenet--Serret equations:

T'= &N,
N'= —&T + 7B, 2.1)
B'= —aN,

where « is the curvature of o and 7 its torsion and
9(T,T)=1,0(N,N)=1,9(B,B)=1,
g(T,N)=g(T,B)=g(N,B)=0.

The Bishop frame or parallel transport frame is an alternative approach to
defining a moving frame that is well defined even when the curve has vanishing
second derivative, [1]. The Bishop frame is expressed as

T =k,M, +k,M,,
M, =k, T, (2.2)
M, =k, T,

where

Here, we shall call the set {T,M,,M,} as Bishop trihedra, k; and k, as
Bishop curvatures and U(s) = arctan % , 7(s)=U (s) and x(s) = /k{ +kZ.

1
Bishop curvatures are defined by

k, = x(s)cosU(s),
k, = x(s)sinU(s).

Let o be a unit speed regular curve and (2.1) be its Frenet--Serret frame.
Let us express a relatively parallel adapted frame:

IT, = —¢B,
m, = —¢,B, 2.3)
B =gll, +¢&,I1,,

where
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We shall call this frame as Type-2 Bishop Frame. In order to investigate
this new frame's relation with Frenet--Serret frame, first we write

r=.& +&l. (2.4)

The relation matrix between Frenet--Serret and type-2 Bishop frames can
be expressed

T =sin A(s)IT, —cos A(s)IT,,
N = cos A(S)Hl +sin A(S)Hz,
B =B.

So by (2.4), we may express
g =—TCosA(S),
g, =—tsin A(s).

By this way, we conclude
A(s)=arctan 22,
&

The frame {I1,,IT,, B} is properly oriented, and r and A(s)= LS x(s)ds are polar

coordinates for the curve . We shall call the set {II,,II,,B,¢,,¢,} as type-2
Bishop invariants of the curve «, [17].

3  Inextensible Flows according to New Type-2 Bishop
Frame

Let a(u,t) is a one parameter family of smooth curves in E°.
The arclength of « is given by

tloa
s(u) = | |=—|du, 3.1
() j au‘ (3.1)
where
1
9a <a—“,a—“>2. (32)
ou ou ou

The operator ai is given in terms of u by
S
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where v = g_a and the arclength parameter is ds = vdu.
u
Any flow of & can be represented as {IT,, I1,, B}
% =b,I1, +b,II, +b,B, (3.3)

where b,,b,,b, e C*(E®).

Definition 3.1. The flow %—f in E*® are said to be inextensible if

0

ot

oo

—=0 (3.4)

Lemma 3.2. Let % =b,I1, +b,II, +b,B be a smooth flow of the curve

a according to new type-2 Bishop frame. The flow is inextensible if and only if
ov

ob . b
re (a—ul+b3v(91)smA—(a—uz+b3v<92)cosA, (3.5)

where b,,b,,b, € C*(E®).

Proof. Suppose that %—? be a smooth flow of the curve a . Using
definition of « , we have
o _ . ob,
— =<sin A(s)I, —cos A(s)IT,, (—= +b,ve 1T,
ot ou
b ob
+ (a—u2 +b,ve,)II, + (G_Ij_blvgl —-b,ve,)B >.

Making necessary calculations from above equation, we have (3.5), which
proves the lemma.

Lemma 3.3. Let aa_(tx be a smooth flow of the curve « according to new

type-2 Bishop frame. The flow is inextensible if and only if
ob . ob
(a—ul+b3Vgl)smA = (a—uz+bSVg2)cos A, (3.6)
where b,,b,,b, e C*(E®).

Proof. Using lemma 3.2, we easily have (3.6).
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We now restrict ourselves to arc length parametrized curves. That is, v=1
and the local coordinate u corresponds to the curve arc length s. We require the
following theorem.

Theorem 3.4.
o1 ob oA
atl =[p, —cos A(8_81+b381 +gcos A, +p,B,
(at; +b,e, - g;':‘sinA)sinA\]H1+p4B,

b .
E =[ps + (8_53 —b,s, —b,s,)sin AJIL,

ob,
+[Pg — (E_blgl b,&,)cos AT,
where P1:P2,P3:P4,Ps:Pe ECOO(E3)-

Proof. Using definition of « , we have

ﬂ——(bH +b,I1, +b,B).

ot

Using the (2.3) equations we have
oT
_—(_ b,e)IL, +( +b3 &), +( —b,& —b,&,)B.

Thus it is easy to obtain that

o, _ [p, —cos A(aa—IZlerag1 +%cos A)ll, +p,B,
(Gbs +b,e, - f;':‘sinA)sinA\]H1+p4B,
88 b

— =[ps +( 883 —b,& —b,e,)sin AJI,
+[pg - (8_83 —b,& —b,e,)cos A,
where p,,p,, PP, Ps, P € C* (E).

Then, we obtain the theorem.

Theorem 3.5. Let Oa be inextensible according to new type-2 Bishop

frame. Then, the following partial differential equation holds:
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cb )
P, +Ps = _[(a_ss_blgl —b,¢&,)sinA],

where p,,b,,b,,b, are smooth functions of time and arc length.

Proof. Assume that aa_(tx is inextensible in three dimensional Euclidean

space E°.
Then we can easily see that

0 0O 8 ob OA

——1II, =p,& I, +[p,& —CoOSA(— +b,g, +—cos A)]IIT

as at p2 1 [pZ 2 as [pl (as 3“1 as )]] 2
OA

0 ob
+ [g p, —&,[p, —cos A(a_sl +b.e + gcos A)]IB.

On the other hand, we have

0 0 ,
EG_H 81[p5+( —b.g, —b,&;)sin AL

ob de
- gl[pG - (6_83 - blgl - ngZ) COS IA\]HZ _El B.

Thus, we obtain the theorem.

In the light of Theorem 3.5, we express the following corollary without
proof:

Corollary 3.6.
0 ob oA
&, +—[p, —cos A(—2 +b,g, +—cos A
P28, +— [P, ( o TPsft )]l

db
=—&[ps — (6_53 ~b,s, —b,s,)cos A,

where p,,p,,Ps.P.,Ps,Ps. 0y, b,,b; are smooth functions of time and arc length.

Corollary 3.7.
o€ ob OA
——1 = [—p2 gz[pl—cosA(a—Sl+b3gl+gcosA)]],

where p;,p,,Ps,P.,Ps, pG,bl, b2, b3 are smooth functions of time and arc length.

Theorem 3.8. Let 68—? be inextensible according to new type-2 Bishop

frame. Then, the following partial differential equation holds:
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os 0 oA . .
8t2 _[%— 1[p3+( +b €27 o ——sin A)sin A]],

where p,,p,,Ps,P.,Ps,Ps. 0y, 0,0, are smooth functlons of time and arc length.

Proof. Assume that aa_(tx is inextensible in three dimensional Euclidean

space E°.
We can write
8 8 ob OA . )
88 5"[ =[p,& + [p3+( 2 +b36‘2 - s sin A)sin AJ[ 1,

e, +[ 72 p4 gl[p3+( by, - aa':sinA)sinA]]B

On the other hand, we have

0 0 oe .
agnz :_EZ 2[p5+( _b &1~ b,&;)sin AL

ob
—&,[Ps — (a—;’—blel —b,e,)cos AT

Thus, we obtain the theorem. Hence the proof is completed.

In the light of Theorem 3.8, we express the following corollary without
proof:

Corollary 3.9.
oA . :
(P& + [p3+( +Dbse, - 2 —-sinA)sin A]]

82[p5+( —b,g —b,e,)sin A,

where p,,p,,Ps,P.4,Ps, pe,bl, bz, b, are smooth functions of time and arc length.

Corollary 3.10.
P, +Ps = [( —b,&,—b,&,)cos A,

where p;,P,,Ps,P.,Ps.Ps, by, b,, b, are smooth functions of time and arc length.

Theorem 3.11. Let aa—(: be inextensible according to new type-2 Bishop

frame. Then, the following partial differential equation holds:
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&P, +&p, = —elps + ( —b,& —b,ég,)sin A]

ob
+&,[Pg — (8_53 —b,&, —b,é,)cos Al

where p,,p,,Ps,P.,Ps,Ps. 0y, 0,,b; are smooth functions of time and arc length.

Proof. Assume that aa—(: is inextensible in three dimensional Euclidean

space E°.
Using Theorem 3. 4 we have

0 0 ob, .

a_a —_[ Ps (88 —b,& —b,e,)sin AJI,
0 8b

+E[ 6 (a—;—blgl—bzgz)cosA]l'I2
—[&,[ps + ( —bg —b,e,)sinA]

6b
+6,[Ps — (6_33 —b,&, —b,s;) cos AIB.

On the other hand, we have

20g- [651 2[p3+( 2 by, - aaAsinA)sinA]]Hl
S

ot os
0 b oA
+ [a &, +&[p, —COS A(a_sl +b,e + ~ cos A)]]I,

+[&p, +£,p,]B.
Thus, we obtain the theorem.

In the light of Theorem 3.11, we express the following corollary without
proof:

Corollary 3.12.

0 ob . oe, oA . i
g[ps+(a—:—b1€1—b2€2)5|nA]:[ 2[p3+( +b352 s ——sin A)sin Al

where p,,ps,b,,b,,b, are smooth functions of time and arc length.

Corollary 3.13.
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0 ob,
P~ (o
where p,p,,b,,b,,b, are smooth functions of time and arc length.

0 ob oA
—b,& —b,e,)cos Al = [E &, +&[p, —cos A(a_sl +b,e + ~ cos A)1l,

4 Open Problem

In this work, we study inextensible flows of curves in Euclidean space E*. We
have given some explicit characterizations of curves. Additionally, problems such
as; investigation inextensible flows of curves or extending such kind curves to
higher dimensional Heisenberg group can be presented as further researches.
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