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Abstract 

 

The spectral collocation or pseudospectral (PS) methods (Fourier 

transform methods) combined with temporal discretization techniques to 

numerically compute solutions of some partial differential equations (PDEs). In 

this paper, we solve the Korteweg-de Vries (KdV) equation using a Fourier 

spectral collocation method to discretize the space variable, leap frog and 

classical fourth-order Runge-Kutta scheme (RK4) for time dependence. Also, 

Boussinesq equation is solving by a Fourier spectral collocation method to 

discretize the space variable, finite difference and classical fourth-order Runge-

Kutta scheme (RK4) for time dependence. Our implementation employs the Fast 

Fourier Transform (FFT) algorithm. 

 

     Keywords: Fourier spectral method, Fast Fourier transform, Boussinesq 

equation, Korteweg-de Vries equation; leap frog, finite difference. 

1   Introduction 

Let us consider the equation  

                                             0t x xxxu u u u    ,                                         (1)  

The equation (1) is known as the Korteweg-de Vries (KdV) equation (with non–

linearity xuu , and dispersion xxxu ) with real constants ,  . The KdV equation is 

one of the popular soliton equations. More than a century later the KdV equation 
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has been found in many other applications such as magnetohydro dynamic waves 

in a cold plasma , longitudinal vibrations of an enharmonic discrete-mass string , 

ion-acoustic waves in a cold plasma, pressure waves in liquids-gas bubble mixture 

, rotating flow down a tube, and longitudinal dispersive waves in elastic rods . The 

exact solutions of (1) is 

                                    2

0

3 1
, sec ( )

2

c c
u x t h x ct x

 

 
    

 
,                             (2)   

where 0x is an arbitrary integration constant. 

We investigate the numerical solution of the KdV equation using the Fourier-Leap 

Frog methods, due to Fornberg and Whitham [2], and the Fourier based fourth-

order Runge-Kutta (RK4) method for better stability of the solution.  

Consider the equation  

                                       23( ) 0tt xx xx xxxxu u u u    ,                                           (3)                        

The equation (3) is known as the Boussinesq equation, where subscripts x and t 

denote differentiation, was introduced to describe the propagation of long waves 

in shallow water. The Boussinesq equation also arises in several other physical 

applications including one-dimensional nonlinear lattice waves, vibrations in a 

nonlinear string, and ion sound waves in a plasma. It is well known that The 

Boussinesq equation (3) has a bidirectional solitary wave solution 

                                    2 2

0( , ) 2 sec ( ( ))u x t b h b x x ct   .                                     (4) 

representing a solitary wave, where 21 4c b   is the propagation speed and b, 

0x  arbitrary constants determining the height and the position of the maximum 

height of the wave, respectively. From the form of c it is apparent that the solution 

can propagate in either direction (left or right). In the present work, we have 

applied to (3) two numerical methods to study soliton solutions and investigate 

their interactions upon collision: a combination of finite differences and a Fourier 

pseudospectral method  

 

2   Analysis the method for the Korteweg-de Vries (KdV) equation  

       

      Now, consider the standard KdV equation in the form   

                       0, [ , ],
2 2t x xxx

L Lu u u u x                                    (5) 

where u = u(x, t), subscripts x  and t denote differentiation, where L is a given 

number , usually large. We have changed the solution interval from [ , ]
2 2

L L  to 

[0,2π], with the change of variable 
2 x

x
L


  .  

Thus, the equation (5) becomes 
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                           32 2
( ) 0, [0,2 ],t x xxxu uu u x

L L

 
                                   (6) 

u(x, t) is transformed into Fourier space with respect to x, and derivatives (or other 

operators) with respect to x. Applying the inverse Fourier transform 

                                  1{( ) ( )}, 1,2, .
n

n

n

u
F ik F u n

x


 


                                   (7) 

using this with n = 1 and n = 3,  
1{ ( )}xu F ikF u ,   1 3{ ( )}xxxu F ik F u  . 

The equation (6) becomes 

                1 3 1 32 2
{ ( )} ( ) { ( )},tu uF ikF u F ik F u

L L

 
                                    (8)             

In practice, we need to discretize the equation (8). For any integer N > 0, we 

consider 

2
, 0,1, , 1.j

j
x j x j N

N


      

Let u (x, t) be the solution of the KdV equation (5). Then, we transform it into the 

discrete Fourier space as 

               

1

0

1
ˆ( , ) ( ) ( , ) , 1.

2 2

j

N
ikx

j

J

N N
u k t F u u x t e k

N






                                 (9) 

From this, using the inversion formula, we get 

           
2 1

1

2

ˆ ˆ( , ) ( ) ( , ) , 0 1.j

N
ikx

j

k N

u x t F u u k t e j N






                                 (10)              

where we denote the discrete Fourier transform and the inverse Fourier transform 

by F   and 
1F 
, respectively. Now, replacing F  and 

1F 
in (8) by their discrete 

counterparts, and discretizing (8) gives 

1 3 1 3
( , ) 2 2

( , ) { ( )} ( ) { ( )},0 1.
j

j

du x t
u x t F ikF u F ik F u j N

dt L L

 
          (11) 

0 1 1[ ( , ), ( , ), , ( , )] .T

Nu x t u x t u x t Letting U = 0 1 1[ ( , ), ( , ), , ( , )] .T

Nu x t u x t u x t 

The equation (11) can be written in the vector form 

                                                  U t = F (U)                                                          (12) 

where F defines the right hand side of (11). 

 

2.1    Fourier Leap-Frog Method for KdV Equation 

 

        A time integration known as a Leap-Frog method (a two step scheme) is 

given by  

 

where the superscripts denote the time level at which the term is evaluated. In this 

subsection, we use a Fourier collocation method and this scheme to solve the 

1 1 2n n nt   U U F
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system given in (12) numerically. Here, we follow the analysis of Fornberg and 

Whitham [10]. Using the Leap-Frog scheme to advance in time, we obtain 

U(t +Δt) =U(t -Δt)+2ΔtF(U(t))  

This is called the Fourier Leap-Frog (FLF) scheme for the KdV equation (5). FLF 

needs two levels of initial data. Usually, the first one is given by the initial 

condition u(x, 0) and the second level u(x, Δt)  can be obtained by using a  higher-

order one-step method, for example, a fourth –order Runge- Kutta method. Thus, 

the time discretization for (11) is given by 

1 3 1 32 2
( , ) ( , ) 2 ( , ) { ( )} 2 ( ) { ( )}.ju x t t u x t t t u x t F ikF u t F ik F u

L L

 
          (13) 

where we denote        3 3 32
( ) .k

L


   

In general, the Fourier-Leap Frog scheme defined in (13) is accurate for low 

enough wave numbers, but it loses accuracy rapidly for increasing wave numbers. 

 

2.2  Fourier Based RK4 Method for KdV Equation 

     

      Notice that the Fourier-Leap-Frog method is a second-order scheme and has 

some disadvantage in the way that the solution of the model problem is subject to 

a temporal oscillation with period 2Δt a commonly suggested alternative method 

is the Runge-Kutta methods. The classical fourth-order Runge-Kutta methods for 

the system (11) is given by 

                               

 
 

n nK = F(U ,t )
1

1 1n nK = F(U + ΔtK ,t + Δt)
2 12 2

1 1n nK = F(U + ΔtK ,t + Δt)
3 22 2

1n nK = F(U + ΔtK ,t +Δt)
4 32

Δtn+1 nU = U + K + 2K + 2K + K
1 2 3 46

                   (14)             

where the superscripts denote the time level at which the term is evaluated. 

 

2.3 Linear stability analysis 

 

For an analysis of stability we use the standard Fourier analysis to find the 

condition imposed on the time step Δt. For simplicity we let 1   and consider 

the KdV equation in the form 

                                                   0,t x xxxu u u                                              (15) 
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2.3.1 By using FLF scheme 

 

         We approximate this equation by 
1 1 3( , ) ( , ) 2 { ( )} 2 { ( )} 0.u x t t u x t t t F i F u tF i F u                           (16) 

We look a solution to (16) of the form 

( , ) t t i xu x t e   

Substitution in (16) gives 
( ) ( ) 32 2 0t t t i x t t t i x t t i x t t i xe e i t e i t e                   , 

i.e. 
1 32 2 0i t i t          

 
2 2 ( , , ) 1 0,if t        

where 

                                         
3( , , )f t t t         

The scheme is conditionally stable if and only if ( , , )f t   is real and less than 

one in magnitude.  Let us again assume for simplicity that the period is [0,2π] and 

that this interval is discretized with N equidistant mesh points, that is 

2x N   

The wave number   takes the values 

                                              0, 1, 2, , 2.N                                    

We want to find the largest value of t  such that 

( , , )f t    <1 

is true for all   .The most severe restriction on t  is imposed for the  ,which 

are largest in magnitude, i.e. for   max max, 2 .N x          Thus, we 

obtain 

3

max( , , ) ( ) ( )f t t t
x x

 
     

 
 

If we assume that  >0, then ( , , )f t    <1 when 

<1  
3( )t

x





 

So, the stability condition becomes 

3

t

x




<

3

1
0.0322515


  

 

2.3.2 By using RK4 method 

 

To do stability analysis of the RK4 scheme for the KdV equation, we could use 

the approach used in analyzing the stability of the Fourier Leap-Frog schemes as 

in the previous subsection. To do this, we substitute ( , ) t t i xu x t e   into (16). 
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After a very tedious and long derivation, we are led to the stability condition or 

after we numerically experiment with the scheme, we see that the appropriate time 

step is the one satisfying the condition 

3
0.062

t

x





 

The right-hand side of the system of ODES in time given in (12) F (U) is      
3

1 1 32 2
( , ) { ( )} { ( )}, 0 1.ju x t F ikF u F i k F u j N

L L

 
    

       
 

jF(U )  

 

2.4 Numerical Results and Examples 

 

In order to show how good the numerical solutions are in comparison with the 

exact ones, we will use the 2L  and L error norms defined by 

                        

1 2
2

2 2
1

,
N

exact num exact num

i i

i

L u u x u u


 
     

  
     

                      max .exact num exact num

i i
i

L u u u u 
                                         (17) 

To implement the performance of the method, three test problems will be 

considered: the motion of a single solitary wave, the interaction of two positive 

solitary waves, the interaction of three positive solitary waves and other solutions. 

 

2.4.1 The motion of a single solitary wave  

         

         Consider the KdV equation (5) with  = 6,   = 1 and L = 40. 

6 0, [ 2, 2].t x xxxu uu u x L L      

The simplest exact solution is 
2( , ) 2sec ( 4 ).u x t h x t  

and initial condition  
2( ,0) 2sec ( ).u x h x  

Example 1 

 

     In this example we compute the numerical solutions u(x, 1) using the Fourier 

Leap-Frog scheme. The numerical solution at t = 0, 0.5, 1, 1.5 and 2 in Figure 3.1 

with N = 128. It is clear from Figure 1 that the proposed method performs the 

motion of propagation of a solitary wave satisfactorily, which moved to the right 

with the preserved amplitude. In Figure 2, we plot the exact solution and 

Numerical solution at t = 1 with N = 128, Figure 3 show the error at each 

collection point at t = 1 with N =128, Table 1 displays the values of error norms 

obtained at N = 64, N = 128 and N = 256.  
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Fig. 1: Fourier spectral solution of the KdV equation using FLF scheme with N = 

128 at t = 0, 0.5, 1, 1.5 and 2. 

 

N t  
2L × 310  L × 310  

64 0.0078739 213.5352 87.9812 

128 0.000984 6.0557 4.5391 

256 0.000123 0.9342 0.6951 

 

Table 1: Error norms of FLF scheme of the KdV equation at t = 1 with N = 64,128 

and 256. 

-20 -15 -10 -5 0 5 10 15 20

0
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x

u
(x

,t
)

Numerical

Exact

 
Fig. 2: Fourier spectral solution of the KdV equation using FLF scheme with N = 

128 at   t = 1 
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Fig. 3: The error (error = exact – numerical) distributions in FLF scheme for the 

KdV equation with N = 128 at t = 1. 

 

 

Example 2 

 

       Now, we solve the same problem using the RK4 scheme to march the 

solution in time and the Fourier spectral method to take care of the spatial domain. 

Figure 4 shows simulation of the solution computed using N = 128. In Figure 5, 

we plot the exact solution and Numerical solution at t = 1 with N = 128, Figure 6 

show the error at each collection point at t = 1 with N =128. Table 2 displays error 

norms obtained at N = 64, N = 128 and N = 256. From these results we can see 

that by carefully choosing the time steps, RK4 is more accurate than the Fourier 

Leap-frog, but Fourier Leapfrog is easier than RK4. 

 
Fig. 4: Numerical simulation of Fourier spectral solution of the KdV equation 

using RK4 scheme with N = 128. 
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N Δt 
2L × 310  L × 310  

64 0.0152 159.58 69.0868 

128 0.0019 2.7825 3.67 

256 0.000248 0.4993 0.6354 

 

Table 2: Error norms of Fourier spectral solution of the KdV equation using RK4 

scheme at t = 1 with N = 64,128 and 256. 
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Exact

 
Fig. 5: Fourier spectral solution of the KdV equation using RK4 scheme at t = 1 

with      N = 128. 
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Fig. 6: The error distributions in Fourier spectral solution of the KdV equation 

using RK4 scheme at t = 1 with N = 128. 
 

 

2.4.2 The interaction of two positive solitary waves 

 

         Consider the KdV equation (5) with  = 6,   =1, and L = 40. The initial 

data is                  
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t = - 0.4 
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                                       2( ,0) ( 1)sec ( )u x n n h x                                             (18) 

results in n solitons solution  that propagate with different velocities. The initial 

for n = 2 is 

                                             2( ,0) 6 ( )u x sech x                                                 (19) 

The exact solution can be expressed as [11] 

 

2

3 4cosh(2 8 ) cosh(4 64 )
( , ) 12

[3cosh( 28 ) cosh(3 36 )]

x t x t
u x t

x t x t

   


  
 

 

Example 3 

 

       We solve equation (5) with initial solution (19) using the FLF scheme to 

march the solution in time and the Fourier spectral method to take care of the 

spatial domain. We plot the exact solution and the numerical solutions at t = -0.4,-

0.1, 0, 0.1, and 0.4 at N = 256 and 0.000123t   in Figure 7.  
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      (c) 

 

-20 -15 -10 -5 0 5 10 15 20

0

1

2

3

4

5

6

7

8

x

u
(x

,t
)

Numerical 
Exact t = - 0.1 



 

 

 

 Hany N. HASSAN et al.                                                                                154 

                                                                               

  

-20 -15 -10 -5 0 5 10 15 20

0

1

2

3

4

5

6

7

8

x

u
(x

,t
)

Numerical
Exact t = 0.1 

 

 

 

 

 

 

 

 

 

  

 

 

 

      (d)                                                                    (e) 

 

Fig. 7: Fourier spectral solution for interaction of two waves of the KdV equation 

using FLF scheme with initial condition (19) and N =256. 

 

 

 

Example 4 

 

      We solve example 3 using the RK4 scheme to march the solution in time and 

the Fourier spectral method to take care of the spatial domain. Figure 8 show 

simulation of the solution computed. We plot the exact solution and the numerical 

solutions at t = -0.4,-0.1, 0, 0.1, and 0.4 with N = 256 and 0.000237t    in 

Figure 9.  

 

 
Fig. 8: Numerical simulation of Fourier spectral of interaction of two waves of the 

KdV equation using RK4 scheme with initial condition (19) and N =256. 
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       (a)                                                                    (b) 
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                               (d)                                                                    (e) 
 

Fig. 9: Fourier spectral solution for interaction of two waves of the KdV equation 

using RK4 scheme with initial condition (19) and N =256. 
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In next method, we can study the interaction of n solitary waves by using the 

initial condition given by the linear sum of n separate solitary waves of various 

amplitudes 

                          2 1 2

1

( ,0) 0.5 sec 0.5
n

i i i

i

u x c h c x x


  .                                    (20) 

Interaction of two positive solitary waves can be studied by using the initial 

condition given by the linear sum of two separate solitary waves of various 

amplitudes 

                       1 2( ,0) ( ,0) ( ,0)u x u x u x   

 

                      2 2( ,0) 2sec ( ) 0.5sec (0.5( 4 ))u x h x h x                                    (21) 

 

Example 5 

 

      The calculation is carried out with the time step ∆t = 0.000984 and N = 256 

over the region -40 ≤ x ≤ 40, we solve using the FLF scheme to march the solution 

in time and the Fourier spectral method to take care of the spatial domain. We plot 

the numerical solutions at t = 0, 2.5, 3.8, 4.3 and 6.5 with N = 256, in Figure 10, 

respectively. The initial function was placed on the left side of the region with the 

larger wave to the left of the smaller one as seen in the Figure 10, both waves 

move to the right with velocities dependent upon their magnitudes. The shapes of 

the two solitary waves is graphed during the interaction at t = 3.8 and after the 

interaction at time t = 6.5, which is seen to have separated the larger wave from 

the smaller one. According to the figure, the larger wave catches up the smaller 

wave at about t = 2.5, the overlapping process continues until the time t = 5, then 

two solitary waves emerge from the interaction and resume their former shapes 

and amplitudes.  
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Fig. 10:  Fourier spectral solution for interaction of two waves of the KdV 

equation using FLF scheme with initial condition (21) and N = 256. 
 

 

 

Example 6 

 

     We solve example 5 using the RK4 scheme to march the solution in time and 

the Fourier spectral method to take care of the spatial domain. The calculation is 

carried out with the time step ∆t = 0.0019 and N = 256 over the    

region 40 40x   , Figure 11 shows simulation of the solution computed. We 

plot the numerical solutions at t = 0, 2.5, 3.8, 4.3 and 6.5 with N = 256, in Figure 

12, respectively. 
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Figure 11: Numerical simulation of Fourier spectral of interaction of two waves of 

the KdV equation using RK4 scheme with initial condition (21) and N =256. 

 

 

 

 

 

 

 

 

                                    

   

 

 

 

      (a)                                                                   (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      (c)                                                                    (d) 

 

 

-40 -30 -20 -10 0 10 20 30 40
-0.5

0

0.5

1

1.5

2

x

u
(x

,t
)

t = 2.5 

-40 -30 -20 -10 0 10 20 30 40
-0.5

0

0.5

1

1.5

2

x

u
(x

,t
)

t = 4.3  



 

 

 

 Hany N. HASSAN et al.                                                                                159 

                                                                               

  

-40 -30 -20 -10 0 10 20 30 40
-0.5

0

0.5

1

1.5

2

x

u
(x

,t
)

t = 5 

 

 

   

 

 

                                            

 

 

                             

    

 

 

 

       (e)                                                                    (f) 

Fig. 12: Fourier spectral solution for interaction of two waves of the KdV 

equation using RK4 scheme with initial condition (21) and N =256. 

 

 

2.4.3 The interaction of three positive solitary waves 
 

         Consider the KdV equation (5) with  = 6,   =1, and L = 40 

6 0, [ 20,20],t x xxxu uu u x      

The initial for n =3 in (18) is 

                                           2( ,0) 12sec ( )u x h x                                                 (22) 

Example 7 

 

      We solve (5) with initial condition (22).The calculation is carried out with the 

time step ∆t = 0.000123 and N = 256 over the region -20 ≤ x ≤ 20, we solve using 

the FLF scheme to march the solution in time and the Fourier spectral method to 

take care of the spatial domain. We plot the numerical solutions at t = - 0.3, - 0.1, 

- 0.05,0, 0.05 and 0.3 with N =256, in Figure 13, respectively. 

 

Example 8 

    

     We solve example 7 using the RK4 scheme to march the solution in time and 

the Fourier spectral method to take care of the spatial domain. The calculation is 

carried out with the time step ∆t = 0.000237 and N = 256 over the region -20 ≤ x ≤ 

20, we plot the numerical solutions at t = - 0.3, - 0.1, - 0.05,0, 0.05, and 0.3 with N 

=256, in Figure 14, respectively.  
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Fig. 13: Fourier spectral solution for interaction of three waves of the KdV 

equation using FLF scheme with initial condition (22) and N =256. 
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Fig. 14: Fourier spectral solution for interaction of three waves of the KdV 

equation using RK4 scheme with initial condition (22) and N = 256. 
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In this interaction of three positive solitary waves is studied by using the initial 

condition given by the linear sum of three separate solitary waves of various 

amplitudes from (20) 

1 2 3( ,0) ( ,0) ( ,0) ( ,0)u x u x u x u x    

2 2 1 2 2( ,0) 2sec ( 45) sec (0.5(2) ( 30)) 0.5sec (0.5( 15))u x h x h x h x             (23)        

                                                                                                                      

 

Example 9 

     

     We solve (5) using initial condition (23).The calculation is carried out with the 

time step ∆t = 0.00527 and N = 256 over the region -70 ≤ x ≤ 70, we solve using 

the FLF scheme to march the solution in time and the Fourier spectral method to 

take care of the spatial domain. Figure 15 shows the numerical solution at t = 0, 5, 

8, 10, 12, 18.As can be seen the three pulses travel with time to the right. But the 

taller soliton moves faster, hence the three occasionally merge and then split apart 

again.  

 

Example 10 

      We solve example 9 using the RK4 scheme to march the solution in time and 

the Fourier spectral method to take care of the spatial domain. The calculation is 

carried out with the time step ∆t = 0.01 and N = 256 over the region 70 70x   , 

we solve using the RK4 scheme to march the solution in time and the Fourier 

spectral method to take care of the spatial domain. Figure 16 and 17 shows 

simulation and plane view of the solution computed.  
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Fig. 15: Fourier spectral solution for interaction of three waves of the KdV 

equation using FLF scheme with initial condition (22) and N = 256. 

 
 

Fig. 16: Numerical simulation of Fourier spectral of interaction of three waves of 

the KdV equation using RK4 scheme with initial condition (22) and N =256. 
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Fig. 17: Plan view of Fourier spectral of interaction of three waves of the KdV 

equation using RK4 scheme with initial condition (22) and N = 256. 

 

 

2.4.4 Other solutions 

 

        Now suppose that the initial condition is such that is does not just produce 

one or more solitons. Let us choose as initial condition [11] 

 

                                                2( ,0) 4sec ( )u x h x                                             (24) 

 

with  = 6,   = 1 , L = 40,Δt = 0.0019 and N = 128 using the RK4 scheme to 

march the solution in time and the Fourier spectral method to take care of the 

spatial domain. Four is not of the form n (n + 1).The peak moving to the right. In 

addition, there are waves moving to the left. These will disperse and lose their 

form with time. 
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Fig. 18: Numerical simulation of Fourier spectral solution of the KdV equation 

using RK4 scheme with initial condition (24) and N = 128. 
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Fig. 19: Fourier spectral solution of the KdV equation using RK4 scheme with 

initial condition (24) and N =128. 
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3  Analysis the method for the Boussinesq equation 

     3.1 Fourier based RK4 method for Boussinesq equation 

 

            Consider the Boussinesq equation (3) in the following form: 

                     26 6 ,tt xx xx x xxxxu u uu u u              [ , ]x a z                                 (25)         

We solve this equation by combination of RK4 method with respect to t and a 

Fourier pseudospectral method with respect to x. To prepare the equation for 

numerical solution we introduce the auxiliary variable tv u . This reduces the 

second-order equation in time to the first order system 

                                    
26 6

t

t xx xx x xxxx

u v

v u uu u u



   
                                             (26)        

We need two initial conditions. The initial conditions we use to numerically solve 

equation (25) can thus be extracted from the above relation (6) for t = 0 at u(x, t) 

and ( , )tu x t        

              2 2

1( ,0) 2 sec ( ( ))u x b h b x x   

                                                                                                                                 

             3 2

1 1( ,0) ( ,0) 4 sec ( ( )) tanh( ( ))tv x u x b c h b x x b x x                           (27) 

                   

We have changed the solution interval from [a, z] to [0,2π], with the change of 

variable. 

 
2

x x a
L


   

where L = z – a, thus the equation (4) become  

             2 2 2 4

22 2 2 2
6 6

t

t xx xx x xxxx

u v

v u uu u u
L L L L

   



       
          
       

         (28) 

u(x, t) is transformed into Fourier space with respect to x, and derivatives (or other 

operators) with respect to x. Applying the inverse Fourier transform using  

                                                1{ ( )}xu F ikF u  

                                               1 2{ ( )}xxu F k F u   

                                             1 4{ ( )}xxxxu F k F u  

The equation (28) becomes 
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2 2

1 2 1 2

2 4
2

1 1 4

2 2
{ ( )} 6 { ( )}

2 2
6 { ( )} { ( )} ,

t

t

u v

v F k F u uF k F u
L L

F ikF u F k F u
L L

 

 

 

 



   
      
   

   
          

   

              (29)  

In practice, we need to discretize the equation (26). For any integer N > 0, we 

consider 

2
, 0,1, , 1.jx j x j N

N


      

Let u (x, t), v(x, t) be the solution equation (29). Then, we transform it into the 

Discrete Fourier space as 
1

0

1
ˆ( , ) ( ) ( , ) , 1

2 2

j

N
ikx

j

J

N N
u k t F u u x t e k

N






       

1

0

1
ˆ( , ) ( ) ( , ) , 1.

2 2

j

N
ikx

j

J

N N
v k t F v v x t e k

N






       

from this, using the inversion formula, we get 
2 1

1

2

ˆ ˆ( , ) ( ) ( , ) , 0 1j

N
ikx

j

k N

u x t F u u k t e j N






      

2 1
1

2

ˆ ˆ( , ) ( ) ( , ) , 0 1j

N
ikx

j

k N

v x t F v v k t e j N






      

replacing F  and 1F  in (29) by their discrete counterparts, and discretizing (29) 

gives 

( , )
( , )

j

j

du x t
v x t

dt
       

2 2

1 2 1 2

2 4
2

1 1 4

( , ) 2 2
{ ( )} 6 ( , ) { ( )}

2 2
6 { ( )} { ( )}

j

j

dv x t
F k F u u x t F k F u

dt L L

F ikF u F k F u
L L

 

 

 

 

   
      
   

   
          

   

                    (30)  

  

Letting      U = 0 1 1[ ( , ), ( , ), , ( , )]T

Nu x t u x t u x t , 

                 V = 0 1 1[ ( , ), ( , ), , ( , )]T

Nv x t v x t v x t , 

                
 
 
 

U
w =

V
,   

 
 
 

t

t

t

U
w =

V
. 

The system of equations (30) can be written in the vector form 

                                                  tw  = F (U, V)                                                     (31) 

where F defines the right hand side of (30). 
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  3.2 Combination of finite differences and a Fourier pseudospectral  method                  

The numerical scheme used is based on a combination of finite differences and a 

Fourier pseudospectral method.  

After we have changed the solution interval from [a, z] to [0,2π] and u(x, t) is 

transformed into Fourier space with respect to x, and derivatives (or other 

operators) with respect to x, equation (25) become 
2 2

1 2 1 2

2 4
2

1 1 4

2 2
{ ( )} 6 { ( )}

2 2
6 { ( )} { ( )} .

ttu F k F u uF k F u
L L

F ikF u F k F u
L L

 

 

 

 

   
       
   

   
         

   

                                     (32) 

In practice, we need to discretize the equation (32). For any integer N > 0, Let u 

(x, t) be the solution equation (32). Then, we transform it into the Discrete Fourier 

space using the inversion formula, we get 
2 22

1 2 1 2

2

2 4
2

1 1 4

( , ) 2 2
{ ( )} 6 ( , ) { ( )}

2 2
6 { ( )} { ( )} .

j

j

d u x t
F k F u u x t F k F u

dt L L

F ikF u F k F u
L L

 

 

 

 

   
       
   

   
         

   

                (33) 

 0 1 1[ ( , ), ( , ), , ( , )] .T

Nu x t u x t u x t Letting  U = 

The equation (33) can be written in the vector form 

                                                               ttU  = F (U)                                           (34) 

where F defines the right hand side of (33). 

The time derivative in equation (34) is discretized using a finite difference 

approximation, in terms of central differences 
1 1

2

2

( )

n n nu u u

t

  



F (U)  

or    

    

2 2

2 1 2

2 4
2

1 2 1 1 4

2 2
( , ) 2 ( , ) ( , ) ( ) { ( )} 6

2 2
( , ) { ( )} 6 { ( )} { ( )} .j

u x t t u x t u x t t t F k F u
L L

u x t F k F u F ikF u F k F u
L L

 

 



  

   
           

   

   
            

    

                                                                                                                                       

(35) 

 

we need two level initial conditions u (x,-Δt) ,u (x,0). The initial condition  u (x, 0) 

given in (27), from the central difference of  ( , )tu x t  
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1 1

( , )
2

n n

t

u u
u x t

t

 



 

where Δt is time step, we have the approximation 
1 1 2 ( , )n n

tu u tu x t     

we can get u (x,-Δt) 

            ( , ) ( , ) 2 ( ,0)tu x t u x t tu x       

                           3 2

1 1( , ) 2 4 sec ( ( )) tanh( ( ))u x t t b c h b x x b x x        . 

then we substitute u (x,-Δt) and u (x,0) in (34) to get u (x, Δt) 
2 22

1 2

2 4
2

1 2 1 1 4

( ) 2 2
( , ) ( ,0) ( ,0) { ( )} 6

2

2 2
( ,0) { ( )} 6 { ( )} { ( )} .

t

j

t
u x t u x t u x F k F u

L L

u x F k F u F ikF u F k F u
L L

 

 



  

    
         

   

   
            

    

     (36)                                                                                  

So we substitute u (x,0) and u (x, Δt) in (34) to get u (x, 2Δt)  and so on until we 

get u( x , t) at time t . Various values of N (128 to 1024) and time step Δt = 0.0001 

to 0.02. 

 

   3.3 Numerical results and examples 

       

      In order to show how good the numerical solutions are in comparison with the 

exact ones, we will use 2L  and L error norms.  

1 2
2

2 2
1

max .

N
exact num exact num

i i

i

exact num exact num

i i
i

L u u x u u

L u u u u



 

 
     

  

   


 

To implement the performance of the method, test problems will be considered: 

the motion of a single solitary wave in right direction, the motion of a single 

solitary wave in left direction. Several tests have been made for the wave solution 

of the Boussinesq verifying that for various values of N (128 to 1024) and time 

step ∆t = 0.0001 to 0.02 using Combination of finite differences and a Fourier 

pseudospectral method. As b increases, the stability of the wave propagating in 

time breaks down and for values of b close to 0.5 the wave blows up. For 

stability, we have found that the maximum value of b is 0.4. 

We take the Boussinesq equation of form (25) with periodic boundary condition  

( , ) ( , ) 0u a t u z t   
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Example 11 

   

    We solve the equation (25) with the initial conditions (27) ,with b = 0.2, 
1x  0, 

21 4c b   and Δx = 1, with Δt = 0.001 .It is clear from Figure 1 that the 

proposed method performs the motion of propagation of a solitary wave 

satisfactorily, which moved to the right with the preserved amplitude.  

 

t 
2L × 310  L × 310  

10 3.3286 1.2964 

20 6.4411 2.3372 

30 9.5471 3.3493 

40 12.6338 4.3381 

 

Table 3: Error norms of Fourier spectral solution of the Boussinesq equation using 

RK4 scheme at t =10, 20, 30 and 40 with N = 128. 

 

N 
2L × 310  L × 310  Amplitude 

128 12.6338 4.3381 0.0792055 

256 6.3224 2.1867 0.0795634 

512 3.1624 1.0945 0.0797424 

 

Table 4: Error norms of Fourier spectral solution of the Boussinesq equation using 

RK4 scheme with N = 128, 256 and 512. 
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Fig. 20 Numerical simulation of Fourier spectral solution of the Boussinesq 

equation using RK4 scheme with 
21 4c b   and N = 128. 
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Fig. 21. Plan view of Fourier spectral solution of the Boussinesq equation using 

RK4 scheme with 21 4c b   and N = 128. 
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Fig. 22.  Fourier spectral solution of the Boussinesq equation using RK4 scheme 

at t = 40 with 21 4c b   and N = 128. 
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Fig. 23. The error distributions in Fourier spectral solution of the Boussinesq 

equation using RK4 scheme at t = 40 with 
21 4c b   and N = 128. 
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Fig. 24. Fourier spectral solution of the Boussinesq equation using a finite 

difference scheme at t = 0, 10, 20, 30 and 40 with 21 4c b   and N = 128. 
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Fig.25. Fourier spectral solution of the Boussinesq equation using a finite 

difference scheme at t = 40 with 
21 4c b   and N = 128. 
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Fig. 26.The error distributions of Fourier spectral solution of the Boussinesq 

equation using a finite difference scheme at t = 40 with 21 4c b   and 

 N = 128. 
 

t  
2L × 310  L × 310  

10 3.3500 1.3185 

20 6.4407 2.3477 

30 9.5468 3.3693 

40 12.6671 4.3895 

 

Table 5. Error norms of Fourier spectral solution of the Boussinesq equation using 

a finite difference scheme at t = 0, 10, 20, 30 and 40 with N = 128. 
 

N 
2L × 310  L × 310  Amplitude 

128 12.6671 4.3895 0.0792055 

256 6.3558 2.2006 0.0795644 

512 3.1957 1.1056 0.0797412 

1024 1.6148 0.5583 0.0798291 

 

Table 6. Error norms for the single soliton of Fourier spectral solution of the 

Boussinesq equation using a finite difference scheme with  

N = 128,256, 512 and 1024. 

 

Now, we solve the same problem with b = 0.2, 1x = 0, 
21 4c b   and  Δx = 1 

with Δt = 0.001 . It is clear from Figure 27 that the proposed method performs the 

motion of propagation of a solitary wave satisfactorily, which moved to the left 

with the preserved amplitude.  
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Fig. 27. Numerical simulation of Fourier spectral solution of the Boussinesq 

equation using RK4 scheme with 21 4c b   and N = 128. 
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Fig. 28. Plan view of Fourier spectral solution of the Boussinesq equation using 

RK4 scheme with 
21 4c b   and N = 128. 
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Fig.29. Fourier spectral solution of the Boussinesq equation using RK4 scheme at 

t = 40 with 21 4c b   and N = 128. 
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Fig.30.  The error distributions of Fourier spectral solution of the Boussinesq    

equation using RK4 scheme at t = 40 with 
21 4c b   and N = 128. 
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Fig. 31. Fourier spectral solution of the Boussinesq equation using a finite 

difference scheme at  21 4c b    , t = 0, 10, 20, 30 and 40 with N = 128. 
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Fig.32. Fourier spectral solution of the Boussinesq equation using a finite 

difference scheme at 
21 4c b   , t = 40 with N = 128. 
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Fig. 33. The error distributions in Fourier spectral solution of the Boussinesq 

equation using a finite difference scheme with 21 4c b    at t = 40 with  

N = 128. 

 

4  Conclusions 

       

     In Our study, we applied Fourier spectral collocation methods to solve partial 

differential equations of the form ( )tu F u  particularly the Korteweg-de Vries 

equation (KdV) , and the form ( )ttu F u  particularly the Boussinesq equation. 

A finite differences or a fourth-order Runge-Kutta method is used to march our 

solution in time, with the help of the fast Fourier transform algorithm our methods 

cost only (number of operations)  2logO N N , provided that N is a power of 2. 

We applied the leap-frog scheme combined with the Fourier spectral collocation, 

called the Fourier Leap-Frog method, to find numerical solution of the KdV 

equation, with α = 6, and β = 1. Also we applied the fourth-order Runge-Kutta 

(RK4) method combined with the Fourier spectral collocation to the same 

problem. We presented stability conditions for these schemes, and we found out 

that the Fourier Leap-Frog method is less stable and far less accurate compared to 

the classical RK4 scheme. Even though it is quite costly to use, RK4 is easy to 

implement and needs only one level of initial data, whereas two levels of the 

initial data are needed in the Fourier Leap-Frog methods.  

We then applied the finite difference scheme combined with the Fourier spectral 

collocation to find numerical solution of the Bossinesq equation. Also we applied 

the fourth-order Runge-Kutta (RK4) method combined with the Fourier spectral 

collocation to the same problem. In order to show how good the numerical 

solutions are in comparison with the exact ones, we will use 2L  and L error 
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norms.  It is apparently seen that Fourier spectral collocation method is powerful 

and efficient technique in finding numerical solutions for wide classes of 

nonlinear partial differential equations.  

5  Open Problem 

           The work presented in this paper transform some types of partial 

differential equations like the Korteweg-de Vries equation (KdV) , Boussinesq 

equation  to simple ordinary differential equations using Fourier spectral method, 

can be solved by simple techniques ( Leap frog, finite difference, Runge Kutta, 

…), the question here what the results of using other spectral methods to solve 

these equations instead of Fourier spectral method. The other question, in this 

paper we applied the used method to solve solitons, what happened when we 

solve equations by non solitons spectral methods.  
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