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Abstract

In consonant with the prime object of this paper as to ini-
tiate the concept of hyperquotient structure, necessarily and
essentially the notion of hyperquotient sets is the basic to be-
gin with subsequently what comes as the formations of norm
on this spaces with the assistance offered by the norm on hy-
pervector spaces.

In conclusion, an adequate condition for a normed hyper-

quotient space to be Banach space has been constituted by us.
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1 Introduction

After having instituted the notion of hyperstructure first by F. Marty [2] in
1934, the exposition of hypergroup was made by him in 1935 in the paper
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[3]. Since then, from various angles, such as [1, 4] etc, several researchers
have explored this domain. It is to be noted that exclusively the multiplica-
tion structure as a hyperstructure has been accepted by a lot of researchers
[5] in defining of hypervector space. In the paper [6] this concept has been
reshaped in keep with a panoramic-view through rethinking on all structures
of hypervector space as a hyperstructure followed by some strongly grounded
significant consequences and theorems. In practice, this papers [7, 8] enfold
more wide spread form of the concept aforementioned.

Primarily this paper is endowed with an exposition of the quotient of a hy-

pervector space. Next comes the foundation of hyperquotient space by weigh-
ing on all the structures as a hyperstructure. In the following feature a few
elucidation and proposition have been presented. Then, norms on the hyper-
quotient space have been placed and finally, an effective condition for a normed
hyperquotient space to a Banach space has been endeavored to be engrafted.

2 Preliminaries

We quote some definitions and statement of a proposition which will be needed
in the sequel.

Definition 2.1 [4] A hyperoperation over a non-empty set X is a mapping
from X×X into the set of all non-empty subsets of X. A non-empty set X
with exactly one hyperoperation ‘#’ is called a hypergroupoid. Let (X, #) be a
hypergroupoid. For every point x ∈ X and every non-empty subset A of X, we
define x #A =

⋃
a∈A{x # a}.

Definition 2.2 [4] A hypergroupoid (X, #) is called a hypergroup if
(i) x# (y # z) = (x # y) #z for all x, y, z ∈ X.
(ii) There exists 0 ∈ X such that for every a ∈ X, there is unique element
b ∈ X for which 0 ∈ a#b and 0 ∈ b#a. Here b is denoted by −a.
(iii) For all a, b, c ∈ X if a ∈ b#c, then b ∈ a#(−c).

Proposition 2.3 [4] (i) In a hypergroup (X, #), −(−a) = a for all a ∈ X.
(ii) 0 # a = {a}, for all a ∈ X, if (X, #) is a commutative hypergroup.
(iii) In a commutative hypergroup (X, #), 0 is unique.

Definition 2.4 [6] A hyperring is a non-empty set equipped with a hyperaddi-
tion ‘#’ and a multiplication ‘.’ such that (X, #) is a commutative hypergroup
and (X, .) is a semigroup and the multiplication is distributive across the hy-
peraddition both from the left and from the right and a.0 = 0.a = 0 for all
a ∈ X, where 0 is the zero element of the hyperring.
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Definition 2.5 [6] A hyperfield is a non-empty set X equipped with a hyper-
addition ‘#’ and a multiplication ‘.’ such that
(i) (X, #, .) is a hyperring.
(ii) There exists an element 1 ∈ X, called the identity element such that
a.1 = a for all a ∈ X.
(iii) For each non zero element a ∈ X, there exists an element a−1 such that
a.a−1=1.
(iv) a.b = b.a for all a, b ∈ X.

Definition 2.6 [7] Let (F, ⊕, .) be a hyperfield and (V, #) be an additive
commutative hypergroup. Then V is said to be a hypervector space over the
hyperfield F if there exists a hyperoperation ∗ : F × V → P ∗ (V ) such that
(i) a ∗ (α # β) ⊆ a ∗ α # a ∗ β for all a ∈ F and for all α, β ∈ V .
(ii) (a ⊕ b) ∗ α ⊆ a ∗ α # b ∗ α for all a, b ∈ F and for all α ∈ V .
(iii) (a . b) ∗ α = a ∗ (b ∗ α) for all a, b ∈ F and for all α ∈ V .
(iv) (−a) ∗ α = a ∗ (−α) for all a ∈ F and for all α ∈ V .
(v) α ∈ 1F ∗ α, θ ∈ 0 ∗ α and 0 ∗ θ = θ for all α ∈ V .
where 1F is the identity element of F , 0 is the zero element of F and θ is zero
vector of V and P ∗(V ) is the set of all non-empty subset of V .

Definition 2.7 [6] A subset W of a hypervector space V over a hyperfield F
is called a hypersubspace of V if W is a hypervector space over F with the hy-
peroperations of addition and the scalar multiplication defined on V. Therefore
a subset W of a hypervector space V is a hypersubspace of V if and only if the
following four properties hold.
(i) α # β ⊆ W for all α, β ∈ W .
(ii) a ∗ α ⊆ W for all α ∈ W and for all a ∈ F .
(iii) W has a zero vector.
(iv) each vector of W has an additive inverse.

Definition 2.8 [7] Let (V,#, ∗, F ) be a hypervector space. A subset A =
{αλ}λ∈Λ of V is set to a linearly dependent set if there exists a finite sub-
set {α1, α2, . . ., αn} of A s.t θ ∈ λ1 ∗ α1 #λ2 ∗ α2 # · · · #λn ∗ αn for some
λ1, λ2, · · · , λn (not all zeros) ∈ F. Otherwise A is said to a linearly indepen-
dent set.

Definition 2.9 [6] Let V be a hypervector space over a hyperfield F. Then the
vector α ∈ V is said to be a linear combination of the vectors α1, α2, · · · , αn ∈
V if there exist a1, a2, · · · , an ∈ F such that α ∈ a1 ∗α1 # a2 ∗α2 # · · · # an ∗
αn.

Definition 2.10 [7] An independent subset A of V is called a basis of V
if for every α ∈ V , there are n (∈ N) elements λ1, λ2, · · · , λn ∈ F and
α1, α2, · · · , αn ∈ A such that α ∈ λ1 ∗ α1 #λ2 ∗ α2 # · · · #λn ∗ αn. The hy-
pervector space is said to be finite dimensional if it has a finite basis.
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Definition 2.11 [7] Let R be the set of all real number. The hyperfield defined
on R is called the real hyperfield.

Definition 2.12 [9] Let (V, #, ∗) be a hypervector space over the real hyper-
field R. A norm on V is a mapping ‖ · ‖ : V → R, where R is a usual real
space, such that for all a ∈ R and α, β ∈ V has the following properties
(i) ‖α‖ ≥ 0.
(ii) ‖α‖ = 0 if and only if α = θ.
(iii) sup ‖α#β‖ ≤ ‖α‖+ ‖β‖, where ‖α# β‖ = { ‖x‖, x ∈ α# β }.
(iv) sup ‖a ∗ α‖ ≤ |a| · ‖α‖, where ‖a ∗ α‖ = { ‖x‖, x ∈ a ∗ α }.

Definition 2.13 [9] A sequence {αn}n in a normed hypervector space V is
said to converge to a point α ∈ V if for any ε (> 0), there exists a positive
integer n0 such that inf ‖αn#(−α)‖ < ε for all n ≥ n0.

Definition 2.14 [9] A sequence {αn}n in a normed hypervector space V is
said to be a Cauchy sequence if for any ε (> 0), there exists a positive integer
n0 such that inf ‖αn#(−αm)‖ < ε for all m,n ≥ n0. The normed hypervector
space V is said to be complete if every cauchy sequence in V converges to some
point in V .

3 Hyperquotient spaces

In this section, we define quotient sets, hyperquotient spaces and also establish
a few theorems related to hyperquotient spaces.

Definition 3.1 Let M be hypersubspace of a hypervector space V over the
hyperfield F . Then the set {α#M : α ∈ V } is called the quotient set of V
with respect to M and it is denoted by V/M .

Theorem 3.2 Let M be a hypersubspace of a hypervector space V over the
hyperfield F and α#M ∈ V/M. If β ∈ α#M, α#M = β#M.

Proof: Since β ∈ α#M, β#M ⊆ α#M#M ⊆ α#M. So β#M ⊆ α#M.
Again β ∈ α#M, so β ∈ α#m for some m ∈M.
Therefore α ∈ β#(−m). So α#M ⊆ β#(−m)#M , that is, α#M ⊆ β#M.
Hence α#M = β#M .

Corollary 3.3 Let M be a hypersubspace of a hypervector space V over the
hyperfield F and V/M be a quotient set. Then any two members of V/M are
either equal or disjoint.

Proof: Follows from theorem 3.2.
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Proposition 3.4 Let (V, #, ∗) be a hypervector space over the hyperfield F .
Then a ∗ (A#B) ⊆ a ∗ A#a ∗B for all a ∈ F and for all A,B ⊆ V .

Proof: Let α ∈ A and β ∈ B. Then a ∗ (α#β) ⊆ a ∗α#a ∗ β ⊆ a ∗A#a ∗B.
Therefore a ∗ (α#β) ⊆ a ∗ A#a ∗B for all α ∈ A and for all β ∈ B.
So

⋃
α∈A, β∈B a ∗ (α#β) ⊆ a ∗ A#a ∗B.

Hence a ∗ (A#B) ⊆ a ∗ A#a ∗B.

Result 3.5 Let ‘+’ and ‘�’ be two mapping define as
+ : V/M × V/M → P ∗(V/M) by (α#M) + (β#M) = {x#M : x ∈ α#β}
and � : F × V/M → P ∗(V/M) by a � (α#M) = {x#M : x ∈ a ∗ α}, where
α#M,β#M ∈ V/M and a ∈ F. Then these two mappings are well defined.

Proof: Let α1#M = α2#M and β1#M = β2#M. Then α1#m ⊆ α2#M
for all m ∈M . Therefore α1#m#(−m) ⊆ α2#M#(−m).
That is, α1 ∈ α1#m#(−m) ⊆ α2#M . Thus α1 ∈ α2#M .
Similarly, β1 ∈ β2#M .
Now let x#M ∈ (α1#M) + (β1#M), then without loss of generality we may
assume that x ∈ α1#β1. Then x ∈ (α2#M)#(β2#M) ⊆ (α2#β2)#M.
Therefore x ∈ y#m for some y ∈ α2#β2 andm ∈M · · · (1)
So x#M ⊆ (y#m)#M ⊆ y#M.
Again from (1) we have y ∈ x#(−m). Then y#M ⊆ (x#(−m))#M ⊆ x#M.
Therefore x#M = y#M ∈ (α2#M) + (β2#M), which implies (α1#M) +
(β1#M) ⊆ (α2#M) + (β2#M).
Similarly, (α2#M) + (β2#M) ⊆ (α1#M) + (β1#M).
Hence (α1#M) + (β1#M) = (α2#M) + (β2#M).
Therefore ′+′ is well defined.
Next let α#M = β#M ∈ V/M and a ∈ F.
Now a� (α#M) = {x#M : x ∈ a ∗α} and a� (β#M) = {x#M : x ∈ a ∗ β}.
Let x#M ∈ a� (α#M). Then without loss of generality we may assume that
x ∈ a ∗ α. So x ∈ a ∗ (β#M) [ as α#M = β#M, α ∈ β#M ].
Then x ∈ a ∗ β#a ∗M , by proposition 3.4.
Therefore x ∈ y#m, where y ∈ a∗β andm ∈ a∗M = M. · · · (2)
So x#M ⊆ y#M.
Again from (2) we have y ∈ x#(−m). So y#M ⊆ x#M.
Therefore x#M = y#M ∈ a � (β#M), which implies a � (α#M) ⊆ a �
(β#M). Similarly, a� (β#M) ⊆ a� (α#M).
Hence a� (α#M) = a� (β#M). Therefore ‘�’ is well defined.

Theorem 3.6 Let M be a hypersubspace of a hypervector space (V, #, ∗) over
the hyperfield (F, ⊕, .). Then the quotient set V/M forms a hypervector space
over the hyperfield (F, ⊕, .) with respect to the binary compositions ′+′ and
‘�’.
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Proof: We first show that (V/M , +) is a commutative hypergroup.
Since ‘#’ is commutative on V , ‘+’ is commutative on V/M .
Let α#M, β#M, γ#M ∈ V/M.
Now ((α#M) + (β#M)) + (γ#M)
= {x#M : x ∈ α#β}+ (γ#M)
=

⋃
x∈α#β{y#M : y ∈ x#γ}

= {y#M : y ∈ α#β#γ}
=

⋃
z∈β#γ{y#M : y ∈ α#z}

= (α#M) + {z#M : z ∈ β#γ}
= (α#M) + ((β#M) + (γ#M)).
This implies that ‘+’ is associative on V/M, that is, the first condition of
hypergroup is satisfied.
Since θ ∈ V, θ#M ∈ V/M. So M ∈ V/M.
Let α#M ∈ V/M. Then α ∈ V. Therefore there exists a unique element
−α ∈ V such that θ ∈ α#(−α). Therefore M = θ#M ∈ (α#M) + (−α#M).
If possible, let there be another element β#M ∈ V/M such that
M ∈ (α#M) + (β#M), that is, M = x#M for some x ∈ α#β.
Again M = x#M . So x ∈M. Therefore there exists m ∈M such that
m ∈ α#β, that is, β ∈ m#− α. So β ∈ −α#M . Therefore β#M = −α#M
(by theorem 3.2), which is a contradiction. Thus for every α#M ∈ V/M, there
is a unique element −α#M ∈ V/M such that M ∈ (α#M) + (−α#M).
So the second condition of hypergroup is satisfied.
Next let α#M, β#M, γ#M ∈ V/M such that α#M ∈ (β#M) + (γ#M) =
{x#M : x ∈ β#γ}. Then there exists x ∈ β#γ such that α#M = x#M.
Since x ∈ β#γ, we have β ∈ x#(−γ). So β#M ∈ (x#M) + (−γ#M) =
(α#M)+(−γ#M). Therefore the last condition of the hypergroup is satisfied.
Hence (V/M , +) is a commutative hypergroup.
We now verify the remaining five conditions of hypervector space.
Let a ∈ F and α#M, β#M ∈ V/M.
Now a� ((α#M) + (β#M))
= a� {x#M : x ∈ α#β}
=

⋃
x∈α#β{y#M : y ∈ a ∗ x}

= {y#M : y ∈ a ∗ (α#β)}
⊆ {y#M : y ∈ a ∗ α#a ∗ β}, as a ∗ (α#β) ⊆ a ∗ α#b ∗ β
= {y#M : y ∈ α1#β1, α1 ∈ a ∗ α, β1 ∈ a ∗ β}
=

⋃
α1∈a∗α,β1∈a∗β{y#M : y ∈ α1#β1}

=
⋃
α1∈a∗α,β1∈a∗β{(α1#M) + (β1#M)}

= {α1#M : α1 ∈ a ∗ α}+ {β1#M : β1 ∈ a ∗ β}
= a� (α#M) + a� (β#M).
Therefore a� ((α#M) + (β#M)) ⊆ a� (α#M) + a� (β#M).
Thus the first condition is satisfied.
Next let a, b ∈ F and α#M ∈ V/M.
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Now (a⊕ b)� (α#M)
=

⋃
c∈a⊕b c� (α#M)

=
⋃
c∈a⊕b{x#M : x ∈ c ∗ α}

= {x#M : x ∈ (a⊕ b) ∗ α}
⊆ {x#M : x ∈ a ∗ α#b ∗ α}
= {x#M : x ∈ α1#β1, α1 ∈ a ∗ α, β1 ∈ b ∗ α}
=

⋃
α1∈a∗α,β1∈b∗α{x#M : x ∈ α1#β1}

=
⋃
α1∈a∗α,β1∈b∗α{(α1#M) + (β1#M)}

= {α1#M : α1 ∈ a ∗ α}+ {β1#M : β1 ∈ b ∗ α}
= a� (α#M) + b� (α#M).
Therefore (a⊕ b)� (α#M) ⊆ a� (α#M) + b� (α#M).
Thus the second condition is satisfied.
Next let a, b ∈ F and α#M ∈ V/M.
Now (a.b)� (α#M)
= {x#M : x ∈ (a.b) ∗ α}
= {x#M : x ∈ a ∗ (b ∗ α)}
= {x#M : x ∈ a ∗ α1, α1 ∈ b ∗ α}
=

⋃
α1∈b∗α{x#M : x ∈ a ∗ α1}

=
⋃
α1∈b∗α a� (α1#M)

= a� {α1#M : α1 ∈ b ∗ α}
= a� (b� (α1#M)).
Therefore (a.b)� (α#M) = a� (b� (α#M)).
Thus the third condition is satisfied.
Next let a ∈ F and α#M ∈ V/M.
Now (−a)� (α#M)
= {x#M : x ∈ (−a) ∗ α}
= {x#M : x ∈ a ∗ (−α)}, as (−a) ∗ α = a ∗ (−α)
= a� (−α#M)
= a� (−(α#M)).
Therefore the fourth condition is satisfied.
Next let α#M ∈ V/M .
Now 1F � (α#M) = {x#M : x ∈ 1F ∗ α}.
Since α ∈ 1F ∗ α, α#M ∈ 1F � (α#M).
Next 0� (α#M) = {x#M : x ∈ 0 ∗ α}.
Since θ ∈ 0 ∗ α, M = θ#M ∈ 0� (α#M).
Next 0�M = 0� (θ#M) = {x#M : x ∈ 0 ∗ θ}.
Since θ = 0 ∗ θ, 0�M = θ#M = M.
Thus the last conditions are satisfied.
Hence (V/M, +, �) is a hypervector space over the hyperfield (F, ⊕, .).

Definition 3.7 Let M be a hypersubspace of a hypervector space V over the
hyperfield F , then the hypervector space (V/M, +, �) is called hyperquotient
space over the hyperfield F .
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Theorem 3.8 Let M be a proper hypersubspace of a finite dimensional hyper-
vector space V over the hyperfield F and S = {α1, α2, · · · , αn} be a basis of V.
Then the set {α#M : α ∈ S} is linearly dependent subset of the hyperquotient
space V/M.

Proof: Let m( 6= θ) ∈ M. Since S is a basis of V and M is a proper hy-
persubspace of V , then there exist c1, c2, · · · , cn ∈ F , not all zeros such that
m ∈ c1 ∗ α1#c2 ∗ α2# · · ·#cn ∗ αn.
Then m#M ∈ {x#M : x ∈ c1 ∗ α1#c2 ∗ α2# · · ·#cn ∗ αn}.
Therefore M ∈ {x#M : x ∈ x1#x2# · · ·#xn, x1 ∈ c1 ∗ α1, x2 ∈ c2 ∗
α2, · · · , xn ∈ cn ∗ αn}. This implies
M ∈

⋃
x1∈c1∗α1,x2∈c2∗α2,··· ,xn∈cn∗αn

{x#M : x ∈ x1#x2# · · ·#xn}.
So M ∈

⋃
x1∈c1∗α1,x2∈c2∗α2,··· ,xn∈cn∗αn

{(x1#M) + (x2#M) + · · ·+ (xn#M)}.
So M ∈ {x1#M : x1 ∈ c1 ∗ α1} + {x2#M : x2 ∈ c2 ∗ α2} + · · · + {xn#M :
xn ∈ cn ∗ αn}.
Thus M ∈ c1�(α1#M)+c2�(α2#M)+ · · ·+cn�(αn#M) for some non-zeros
ci, i = 1, 2, · · · , n. Hence the set {α#M : α ∈ S} is linearly dependent subset
of the hyperquotient space V/M.

Theorem 3.9 Let M be a proper hypersubspace of a finite dimensional hyper-
vector space V over the hyperfield F and S = {α1, α2, · · · , αn} be a basis of V.
Then the set {α#M : α ∈ S} generates the hyperquotient space V/M.

Proof: Obvious.

4 Normed hyperquotient spaces

In this section, we establish a few results related to normed hypervector space
and define norm on a hyperquotient space.

Definition 4.1 Let (V,#, ∗, ‖ · ‖) be a normed hypervector space over a real
hyperfield R. Then we define
sup ‖A‖ = supα∈A ‖α‖ for all A ⊆ V,
sup ‖a ∗ A‖ = supα∈A sup ‖a ∗ α‖ for all a ∈ R and for all A ⊆ V,
sup ‖A#B‖ = supα∈A,β∈B sup ‖α#β‖ for all A ⊆ V and for all B ⊆ V,
inf ‖A‖ = infα∈A ‖α‖ for all A ⊆ V,
inf ‖a ∗ A‖ = infα∈A inf ‖a ∗ α‖ for all a ∈ R and for all A ⊆ V ,
and inf ‖A#B‖ = infα∈A,β∈B inf ‖α#β‖ for all A ⊆ V and for all B ⊆ V.

Proposition 4.2 Let (V,#, ∗, ‖ · ‖) be a normed hypervector space over a real
hyperfield R, A ⊆ V and a ∈ R. Then sup ‖a ∗ A‖ ≤ |a| sup ‖A‖.
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Proof: Let α ∈ A. Then sup ‖a ∗ α‖ ≤ |a| · ‖α‖ ≤ |a| sup ‖A‖.
Therefore sup ‖a ∗ α‖ ≤ |a| sup ‖A‖ for all α ∈ A
Thus supα∈A sup ‖a ∗ α‖ ≤ |a| sup ‖A‖.
Hence sup ‖a ∗ A‖ ≤ |a| sup ‖A‖.

Proposition 4.3 Let (V,#, ∗, ‖ · ‖) be a normed hypervector space over a real
hyperfield R and A,B ⊆ V . Then sup ‖A#B‖ ≤ sup ‖A‖+ sup ‖B‖.

Proof: Let α ∈ A and β ∈ B.
Then sup ‖α#β‖ ≤ ‖α‖+ ‖β‖ ≤ sup ‖A‖+ sup ‖B‖ for all α ∈ A and β ∈ B.
Therefore supα∈A,β∈B sup ‖α#β‖ ≤ sup ‖A‖+ sup ‖B‖.
Hence sup ‖A#B‖ ≤ sup ‖A‖+ sup ‖B‖.

Theorem 4.4 Let V/M be a hyperquotient space over a real hyperfield R,
where M is a closed hypersubspace of V . Define ‖ · ‖q : V/M → R by
‖α#M‖q = inf{sup ‖α#m‖ : m ∈ M}. Then (V/M, +, �, ‖ · ‖q) is normed
hyperquotient space.

Proof: It is obvious that ‖α#M‖q ≥ 0 for all α ∈ V.
Now ‖θ#M‖q = inf{sup ‖θ#m‖ : m ∈M} = 0, as θ ∈M.
That is ‖α#M‖q = 0 if α#M = M .
Conversely, let ‖α#M‖q = 0. Then there exists a sequence {mk} in M such
that sup ‖α#mk‖ → 0, as k →∞. So inf ‖α#mk‖ → 0, as k →∞.
That is inf ‖mk#− (−α)‖ → 0, as k →∞. Therefore mk → −α, as k →∞.
Since M is a closed hypersubspace of V , −α ∈ M. Then α ∈ M . Therefore
α#M = M.
Thus ‖α#M‖q = 0 implies that α#M = M.
Further, for α, β ∈ V, we have
sup ‖(α#M) + (β#M)‖q
= sup ‖{x#M : x ∈ α#β}‖q
= sup{‖x#M‖q : x ∈ α#β}
= supx∈α#β ‖x#M‖q
= supx∈α#β inf{sup ‖x#m‖ : m ∈M}
≤ infm∈M supx∈α#β sup ‖x#m‖
= infm∈M sup ‖α#β#m‖
≤ infm∈M sup ‖α#β#m#m#(−m)‖, as θ ∈ m#(−m)
≤ infm∈M sup ‖(α#m)#(β#m)#(−1 ∗m)‖, as −m ∈ −1 ∗m
≤ infm∈M [ sup ‖α#m‖+ sup ‖β#m‖+ sup ‖ − 1 ∗m‖ ]
= infm∈M sup ‖α#m‖+ infm∈M sup ‖β#m‖+ infm∈M ‖m‖
= infm∈M sup ‖α#m‖+ infm∈M sup ‖β#m‖+ 0, as θ ∈M
= ‖α#M‖q + ‖β#M‖q.
Thus sup ‖(α#M) + (β#M)‖q ≤ ‖α#M‖q + ‖β#M‖q.
Further, for a ∈ R and α#M ∈ V/M, we have
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sup ‖a� (α#M)‖q
= sup ‖{x#M : x ∈ a ∗ α}‖q
= supx∈a∗α ‖x#M‖q
= supx∈a∗α inf{sup ‖x#m‖ : m ∈M}
≤ infm∈M supx∈a∗α{sup ‖x#m‖}
= infm∈M sup ‖(a ∗ α)#m‖
≤ infm∈M sup ‖a ∗ (α#m#(−m))#m‖
≤ infm∈M sup ‖a ∗ (α#m)#a ∗ (−m)#m‖, by proposition 3.4
≤ infm∈M [ sup ‖a ∗ (α#m)‖+ sup ‖a ∗ (−m)‖+ ‖m‖ ], by proposition 4.3
≤ infm∈M [|a| sup ‖α#m‖+ |a|.‖m‖+ ‖m‖], by proposition 4.2
= infm∈M |a|sup‖α#m‖+ infm∈M |a|.‖m‖+ infm∈M ‖m‖
= |a| infm∈M sup ‖α#m‖+ 0 + 0
= |a|‖α#M‖q.
Hence (V/M, +, �, ‖ · ‖q) is normed hyperquotient space.

Definition 4.5 A sequence {αn#M}n in a normed hyperquotient space V/M
is said to converge to a point α#M ∈ V/M if for any ε (> 0), there exists a
positive integer n0 such that inf ‖(αn#M) + (−α#M)‖q < ε, for all n ≥ n0,
where M is a closed hypersubspace of V.

Definition 4.6 A sequence {αn#M}n in a normed hyperquotient space V/M
is said to be a Cauchy sequence if for any ε (> 0), there exists a positive integer
n0 such that inf ‖(αn#M) + (−αm#M)‖q < ε for all m,n ≥ n0, where M is a
closed hypersubspace of V.
The normed hyperquotient space V/M is said to be complete if every cauchy
sequence in V/M converges to some point in V/M .

Theorem 4.7 If V be a Banach space and M be a closed hypersubspace of V ,
then the hyperquotient space V/M with the norm as defined in theorem 4.4, is
a Banach space.

Proof: It is enough to show that V/M is complete. Let {αn#M}n be a
Cauchy sequence in V/M. Then for any given ε (> 0), there exists a positive
integer n0 such that inf ‖(αn#M) + (−αm#M)‖q < ε

2
, for all m,n ≥ n0.

Then inf ‖{x#M : x ∈ αn#− αm}‖q < ε
2
.

That is, infx∈αn#−αm ‖x#M‖q < ε
2
.

Therefore infx∈αn#−αm infp∈M sup ‖x#p‖ < ε
2
.

Thus there exists x ∈ αn#− αm such that infp∈M sup ‖x#p‖ ≤ ε
2
< ε.

Now x ∈ αn#− αm. Then inf ‖αn#− αm‖ ≤ ‖x‖.
That is, inf ‖αn#− αm‖ ≤ sup ‖x#p#− p‖ for any p ∈M. Therefore
inf ‖αn#− αm‖ ≤ infp∈M sup ‖x#p#− p‖ ≤ infp∈M(sup ‖x#p‖+ ‖ − p‖).
So inf ‖αn#− αm‖ ≤ infp∈M sup ‖x#p‖, as infp∈M ‖ − p‖ = 0.
since infp∈M sup ‖x#p‖ < ε, inf ‖αn#− αm‖ < ε, for all m,n ≥ n0.
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Therefore the sequence {αn}n is a Cauchy sequence in V .
Again since V is a Banach space, the sequence {αn} is convergent and converges
to some point α(say) in V.
We now show that {αn#M}n converges to α#M .
inf ‖(αn#M) + (−α#M)‖q
= infx∈αn#−α ‖x#M‖q
= infx∈αn#−α infp∈M sup ‖x#p‖
≤ infx∈αn#−α sup ‖x#θ‖
= infx∈αn#−α ‖x‖
= inf ‖αn#− α‖.
Therefore inf ‖(αn#M) + (−α#M)‖q ≤ inf ‖αn#− α‖.
Since αn converges to α, αn#M converges to α#M.
Hence the normed hyperquotient space V/M is a Banach space.

5 Open Problem

In this paper [6], we have considered hypervector space having all the struc-
tures as hyper structure over a hyperfield. So, is the most general form for
a hypervector space. With respect to this structure, here we have considered
hyperquotient space and then a suitable norm is defined on this space and
this normed linear space is shown to be a Banach space under a few sufficient
conditions. Now one can further define operator on this Banach space and
study properties of operator on this space.
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