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Abstract

In consonant with the prime object of this paper as to ini-
tiate the concept of hyperquotient structure, mecessarily and
essentially the notion of hyperquotient sets is the basic to be-
gin with subsequently what comes as the formations of norm
on this spaces with the assistance offered by the norm on hy-
pervector spaces.

In conclusion, an adequate condition for a normed hyper-

quotient space to be Banach space has been constituted by us.
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1 Introduction

After having instituted the notion of hyperstructure first by F. Marty [2] in
1934, the exposition of hypergroup was made by him in 1935 in the paper
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[3]. Since then, from various angles, such as [1, 4] etc, several researchers
have explored this domain. It is to be noted that exclusively the multiplica-
tion structure as a hyperstructure has been accepted by a lot of researchers
[5] in defining of hypervector space. In the paper [6] this concept has been
reshaped in keep with a panoramic-view through rethinking on all structures
of hypervector space as a hyperstructure followed by some strongly grounded
significant consequences and theorems. In practice, this papers [7, 8] enfold
more wide spread form of the concept aforementioned.

Primarily this paper is endowed with an exposition of the quotient of a hy-

pervector space. Next comes the foundation of hyperquotient space by weigh-
ing on all the structures as a hyperstructure. In the following feature a few
elucidation and proposition have been presented. Then, norms on the hyper-
quotient space have been placed and finally, an effective condition for a normed
hyperquotient space to a Banach space has been endeavored to be engrafted.

2 Preliminaries

We quote some definitions and statement of a proposition which will be needed
in the sequel.

Definition 2.1 [/ A hyperoperation over a non-empty set X is a mapping
from XxX into the set of all non-empty subsets of X. A non-empty set X
with exactly one hyperoperation ‘# " is called a hypergroupoid. Let (X, #) be a
hypergroupoid. For every point x € X and every non-empty subset A of X, we

define v #A = J,ca{z # a}.

Definition 2.2 [/] A hypergroupoid (X, #) is called a hypergroup if

(1) z# (y # 2) = (v # y) #2z for all z,y,z € X.

(13) There exists 0 € X such that for every a € X, there is unique element
b€ X for which 0 € a#b and 0 € b#a. Here b is denoted by —a.

(1ii) For all a,b,c € X if a € b#c, then b € a#(—c).

Proposition 2.3 [/ (i) In a hypergroup (X, #), —(—a) = a for alla € X.
(17) 0 # a = {a}, for alla € X, if (X, #) is a commutative hypergroup.
(731) In a commutative hypergroup (X, #), 0 is unique.

Definition 2.4 [6/ A hyperring is a non-empty set equipped with a hyperaddi-
tion ‘# " and a multiplication *.” such that (X, #) is a commutative hypergroup
and (X, .) is a semigroup and the multiplication is distributive across the hy-
peraddition both from the left and from the right and a.0 = 0.a = 0 for all
a € X, where 0 is the zero element of the hyperring.
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Definition 2.5 [6] A hyperfield is a non-empty set X equipped with a hyper-
addition ‘#° and a multiplication *.” such that

(1) (X, #, .) is a hyperring.

(i1) There exists an element 1 € X, called the identity element such that
a.l=a foralla e X.

(i17) For each non zero element a € X, there exists an element a™' such that
a.a”t=1.

() a.b ="b.a for all a,b € X.

Definition 2.6 [7] Let (F, @, .) be a hyperfield and (V, #) be an additive
commutative hypergroup. Then V is said to be a hypervector space over the
hyperfield F if there exists a hyperoperation x : F x V. — P* (V') such that
() ax(a# ) Caxa # axf foralla € F and for alla, B € V.

(17) (a ®b)xaCaxa#bxa foralla,b € F and for alla € V.

(17i) (a.b)xa = ax* (b*xa) for all a,b € F and for alla € V.

() (—a)xa = a*(—a) foralla € F and for alla € V.

(v)a€lp*xa,0 € 0xaand0x0 =0 foralla € V.

where 1p s the identity element of F', 0 is the zero element of F and 6 is zero
vector of V- and P*('V') is the set of all non-empty subset of V.

Definition 2.7 [6] A subset W of a hypervector space V over a hyperfield F
18 called a hypersubspace of V if W is a hypervector space over F with the hy-
peroperations of addition and the scalar multiplication defined on V. Therefore
a subset W of a hypervector space V is a hypersubspace of V if and only if the
following four properties hold.

() a# BCW foralla,p e W.

(i) axa C W for alla € W and for all a € F.

(1ii) W has a zero vector.

(iv) each vector of W has an additive inverse.

Definition 2.8 [7] Let (V,#,%, F) be a hypervector space. A subset A =
{ar}rea of V is set to a linearly dependent set if there exists a finite sub-
set {ag, o, .. an} of A st € A\ xay# X x ot -+ # N\, x a, for some
A1, A2, -+, Ap (not all zeros) € F. Otherwise A is said to a linearly indepen-
dent set.

Definition 2.9 [6] Let V be a hypervector space over a hyperfield F. Then the
vector a € V' is said to be a linear combination of the vectors aq,awg, - ,ap €
V' if there exist ay,as, -+ ,a, € F such that a € ayxay # agxag # -+ # a, %
Q.

Definition 2.10 [7/ An independent subset A of V is called a basis of V
if for every a € V, there are n (€ N) elements A\, Ao, -+ ;A\, € F and
i,y - 0 € A such that o € A\ s ag # Xg x g # -+ # N\, x . The hy-
pervector space is said to be finite dimensional if it has a finite basis.
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Definition 2.11 [7] Let R be the set of all real number. The hyperfield defined
on R is called the real hyperfield.

Definition 2.12 [9] Let (V, #, %) be a hypervector space over the real hyper-
field R. A norm on V' is a mapping || - || : V — R, where R is a usual real
space, such that for all a € R and o, B € V' has the following properties

(i) [l = 0.

(1) ||| = 0 if and only if a = 0.

sl < loll + 191, wiere ot 51 = ([l = € 0%5).

w)sup llaxal| < laf - ||al, where |lax of = {{lz], = € axa}.

Definition 2.13 [9]/ A sequence {ay,}, in a normed hypervector space V is
said to converge to a point o € V if for any e (> 0), there exists a positive
integer ng such that inf ||c, #(—a)|| < € for all n > nyg.

Definition 2.14 [9] A sequence {ay,}, in a normed hypervector space V is
said to be a Cauchy sequence if for any e (> 0), there exists a positive integer
no such that inf ||, #(—am)|| < € for all m,n > ng. The normed hypervector
space V is said to be complete if every cauchy sequence in V' converges to some
point in V.

3 Hyperquotient spaces

In this section, we define quotient sets, hyperquotient spaces and also establish
a few theorems related to hyperquotient spaces.

Definition 3.1 Let M be hypersubspace of a hypervector space V over the
hyperfield F'. Then the set {a#M : « € V} is called the quotient set of V
with respect to M and it is denoted by V /M.

Theorem 3.2 Let M be a hypersubspace of a hypervector space V' over the
hyperfield F' and a#M € V/M. If € a#M, a#M = [#M.

Proof: Since g € a#M, f#M C a#FM#M C a#M. So f#HM C a#M.
Again f € a#M, so € a#m for some m € M.

Therefore av € f#(—m). So a#M C [f#(—m)#M, that is, a#M C #M.
Hence a#M = B#M.

Corollary 3.3 Let M be a hypersubspace of a hypervector space V' over the
hyperfield F' and V/M be a quotient set. Then any two members of V/M are
either equal or disjoint.

Proof: Follows from theorem 3.2.
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Proposition 3.4 Let (V, #, %) be a hypervector space over the hyperfield F.
Then a * (A#B) C ax A#ax B for alla € F and for all A;,B C V.

Proof: Let « € Aand § € B. Then ax (a#8) C axa#axf C a*x A#ax B.
Therefore a * (a#3) C a x A#a * B for all « € A and for all § € B.

S0 Uaea, gen @ * (a#8) C ax Affa* B.
Hence a x (A#B) C a x A#a x B.

Result 3.5 Let ‘“+’ and ‘©’ be two mapping define as

+ : V/M x V/M — P*(V/M) by (a#M) + (B#M) = {a#M : z € a#8}
and © : F x V/M — P*(V/M) by a ® (a#M) = {a#M : x € a*a}, where
aFtM, B#M € V/M and a € F. Then these two mappings are well defined.

Proof: Let ay#M = as#M and S1#M = [o#M. Then oy #m C as#M
for all m € M. Therefore ay#m#(—m) C as#M#(—m).

That is, ay € cy#m#(—m) C au#M. Thus ag € as#M.

Similarly, g, € BoF#M.

Now let z# M € (an#M) + (61#M ), then without loss of generality we may
assume that z € ay#0;. Then & € (a#M)H#(LottEM) C (cia#Pe)# M.
Therefore x € y#m for some y € ap# o andm € M e (1)
So oM C (ym)#M C yfM.

Again from (1) we have y € x#(—m). Then y#M C (x#(—m))#M C x#M.
Therefore x#M = y#M € (#M) + (Bo# M), which implies (an#M) +
(B1#M) C (ao#t M) + (Bo#M).

Similarly, (co#M) + (Bo#M) C (cr#M) + (5r#M).

Hence (an#M) + (B1#M) = (qo# M) + (B2#M).

Therefore '+’ is well defined.

Next let a#M = #M € V/M and a € F.

Now a ® (a#M) = {a#M :z € axa} and a © (B#M) = {z#M : x € ax [}.
Let 2#M € a ® (a#M). Then without loss of generality we may assume that
rEaxa. Sox €ax (SH#M) [as a#M = #M, o € fH#M].

Then x € a * B#a x M, by proposition 3.4.

Therefore x € y#m, where y € axf and m € axM = M. e (2)
So x#M C y#M.

Again from (2) we have y € x#(—m). So y#M C x#M.

Therefore s#M = y#M € a © (B#M), which implies a ® (a#M) C a ®
(B#M). Similarly, a © (B#M) C a © (a#M).

Hence a ©® (a#M) = a ® (8#M). Therefore ‘@’ is well defined.

Theorem 3.6 Let M be a hypersubspace of a hypervector space (V, #, *) over
the hyperfield (F, @, .). Then the quotient set V/M forms a hypervector space
over the hyperfield (F, &, .) with respect to the binary compositions '+' and
(@ 7.
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Proof: We first show that (V/M , +) is a commutative hypergroup.

Since ‘#’ is commutative on V', ‘+’ is commutative on V/M.

Let a#M, B#M, v#M € V/M.

Now ((a#tM) + (B#M)) + (v#M)

= {o#M < 5 € oaftB} + (#M)

= Uxea#ﬁ{y#M Ly € 74}

= {y#M :y € a#B#}

Uy [y#M - y € oz}

= (a#M) + {z#M : z € f#~}

— (M) + ((B#M) + (7#M)).

This implies that ‘+’ is associative on V/M, that is, the first condition of
hypergroup is satisfied.

Since 0 € V, 0#M € V/M. So M € V/M.

Let a#M € V/M. Then a € V. Therefore there exists a unique element
—a € V such that 0 € a#(—«). Therefore M = #M € (a#M) + (—a#M).
If possible, let there be another element S# M € V/M such that

M € (a#M) + (6#M), that is, M = x# M for some x € a#[.

Again M = x#M. So x € M. Therefore there exists m € M such that

m € a#p, that is, 8 € m# — a. So § € —a# M. Therefore f#M = —a#M
(by theorem 3.2), which is a contradiction. Thus for every a#M € V/M, there
is a unique element —a#M € V/M such that M € (a#M) + (—a#M).

So the second condition of hypergroup is satisfied.

Next let a#tM, B#M, v#M € V/M such that a#M € (B#M) + (v#M) =
{z#M : x € P#~}. Then there exists © € f#~ such that a#M = x#M.
Since x € [#7, we have § € x#(—7). So f#M € (x#M) + (—y#M) =
(a#M )+ (—v#M). Therefore the last condition of the hypergroup is satisfied.
Hence (V/M , 4) is a commutative hypergroup.

We now verify the remaining five conditions of hypervector space.

Let a € F and a#M, p#M € V/M.

Now a © ((a#M) + (B#M))

=a @ {z#M : x € a#p}

= Useansly#M : y € axz}

= {y#M : y € ax(a#p)}

C{y#M :y caxa#axf}, as ax (a#p) Caxa#bx

={y#M : yc au#pr, a1 €ax*xa,pBy €axf}

= Ualeam,@lea*@{y#M Ly € an#pi}

= Ualeam,ﬁlea*ﬁ{(al#M) + (Bi#M)}

={a#M : ay €axa}l+ {Li#M : [ €axf}

=a® (a#M)+a© (B#M).

Therefore a © ((a#M) + (B#M)) C a ® (a#M) +a © (BH#M).

Thus the first condition is satisfied.

Next let a,b € F and a#M € V/M.
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Now (a & b) ® (a#M)

= UcEa@b cO (Q#M)

= Uccoapl@#M : x € cxa}

={a#M: x€(a®db)xa}

C{a#M : x €axa#bxa}

={x#M : x € 1#p1,1 Eaxa, [ €bxa}

= Ualea*a,ﬁleb*a{x#M D x € aq#bi}

= Ualea*a,ﬁleb*a{(al#M) + (ﬁl#M)}
={a#M: ay €axa}+{/#M: p €bxa}
=a® (a#M) +b0O (a#M).

Therefore (a @ b) © (a#M) Ca® (a#M) +b© (a#M).
Thus the second condition is satisfied.

Next let a,b € F and a#M € V/M.

Now (a.b) ® (a#M)

={a#M : x € (a.b) x a}

={a#M: zc€ax(bxa)}

={a#M: x€a*xa,a €bxa}

= Unjepsatl@#M © v € ax oy}

= Ualeb*a a® (q#M)

=a@{#M: a; €bxa}

— a0 (bO (a1 #M)).

Therefore (a.b) ® (a#M) =a ® (b ® (a#M)).
Thus the third condition is satisfied.

Next let a € F' and a#M € V/M.

Now (—a) ® (a#M)

={a#M: z € (—a)xa}

={z#M: z€ax(—a)}, as (—a) xa=ax*(—a)
=a® (—a#M)

= a O (—(aftM)).

Therefore the fourth condition is satisfied.

Next let a#M € V/M.

Now 1p @ (a#M) = {x#M : x € 1p x a}.

Since a € 1p * o, a#M € 1p © (a#M).

Next 0 ® (a#M) = {z#M : z € 0xa}.

Since § € 0% o, M = 0#M € 0 © (a#M).

Next 00 M =00 (0#M) = {z#M : z € 0x0}.
Since 6 =060, 00 M = 60#M = M.

Thus the last conditions are satisfied.

Hence (V/M, +, ®) is a hypervector space over the hyperfield (F, &, .).

Definition 3.7 Let M be a hypersubspace of a hypervector space V' over the
hyperfield F, then the hypervector space (V/M, +, ®) is called hyperquotient
space over the hyperfield F.
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Theorem 3.8 Let M be a proper hypersubspace of a finite dimensional hyper-
vector space V' over the hyperfield F' and S = {aq, g, -+, } be a basis of V.
Then the set {a#M : o € S} is linearly dependent subset of the hyperquotient
space V /M.

Proof: Let m(# ) € M. Since S is a basis of V and M is a proper hy-
persubspace of V', then there exist ¢, co, -+, ¢, € F, not all zeros such that
m € 1 % QFCy * Qo - - - #Cpy % Q.

Then m#M € {x#M : x € c1 * agFtca * aoFt -+ - #cp * ay ).

Therefore M € {a#M : x € m#Hxo# - H#Hx,, 1 € 1 % 1, Tg € g *
Qg+, Tp € €y * ap ). This implies

M e Ux1€c1*a1,x2602*a2,~~,xnecn*an{x#M DL€ TifFTH #xN}

So M € Uzlecl*al,xQGCQ*ag,m,xnecn*an{(xl#M) + (@t M) + - + (z# M)}
So M € {xq#M : x1 €cyxan}+ {xo#M: x5 € coxag}+ -+ {x,#M :
T € Cp * Qb

Thus M € c; O (a#M)+c2® (a#EM) +- - -+, © (o, # M) for some non-zeros
¢i, 1 =1,2,-+- n. Hence the set {a#M : « € S} is linearly dependent subset
of the hyperquotient space V/M.

Theorem 3.9 Let M be a proper hypersubspace of a finite dimensional hyper-
vector space V' over the hyperfield F' and S = {aq, g, -+ , i, } be a basis of V.
Then the set {a#M : a € S} generates the hyperquotient space V /M.

Proof: Obvious.

4 Normed hyperquotient spaces

In this section, we establish a few results related to normed hypervector space
and define norm on a hyperquotient space.

Definition 4.1 Let (V,#,x,| - ||) be a normed hypervector space over a real
hyperfield R. Then we define

sup || Al = sup,e [l for all ACV,

sup ||a * A|| = sup,esup ||a * | for all a € R and for all ACV,

sup || A # B|| = sup,ea pep sup [|a# B for all A CV and for all B CV,

inf ||A|| = infaea ||| for all ACV,

inf ||a * A|| = inf,ca inf ||a * «f| for all a € R and for all ACV,

and inf ||A# B|| = infyea gep inf ||a#8|| for all A CV and for all B C V.

Proposition 4.2 Let (V,#,,||-||) be a normed hypervector space over a real
hyperfield R, A CV and a € R. Then sup ||a * A|| < |a|sup || A]|.
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Proof: Let a € A. Then sup ||a * | < |a| - ||| < |a]sup [|A]].
Therefore sup ||a * af| < |a|sup ||A]| for all « € A

Thus sup,c4 sup |la * a < |a|sup ||A]|.

Hence sup ||a x Al| < |a|sup ||A]|.

Proposition 4.3 Let (V,#,,||-||) be a normed hypervector space over a real
hyperfield R and A, B C V. Then sup ||A#B|| < sup || A|| + sup || B]].

Proof: Let a € Aand § € B.

Then sup [la##f5|| < [lal| + [|5]] < sup [|A[| +sup || B]| for all @ € A and § € B.
Therefore sup,e 4 gep sup ||a#3|| < sup [ A + sup || B]|.

Hence sup ||A#B]| < sup ||A|| + sup || B]].

Theorem 4.4 Let V/M be a hyperquotient space over a real hyperfield R,
where M is a closed hypersubspace of V. Define || - ||, - V/M — R by
|la#M]||, = inf{sup [[a#m| : m € M}. Then (V/M, +, ®, || - ||,) is normed
hyperquotient space.

Proof: It is obvious that ||a#M||, > 0 for all a € V.

Now [|[0#M ||, = inf{sup ||0#m| : m e M} =0, as § € M.

That is [|a#M]|, = 0 if a#tM = M.

Conversely, let ||la#M]||, = 0. Then there exists a sequence {my} in M such
that sup ||a#my|| — 0, as k — oo. So inf ||a#myg|| — 0, as k — oc.

That is inf ||mp# — (—a)|| — 0, as k — oo. Therefore my — —a, as k — oc.
Since M is a closed hypersubspace of V', —a € M. Then o € M. Therefore
aFM = M.

Thus ||a#M]||, = 0 implies that a#M = M.

Further, for a, 8 € V, we have

sup | (M) + (B,

~ sup | {z#M : z € a# B}l

= sup{||z#M]||,: = € a#S}

= SUPgeaxs HLL‘#MHq

= SUD,cqyp inf{sup |[z#m]| - m € M}

< infyenr SUP,eapp SUP [|27Em||

= infnenr sup [t Bgm|

< infenr sup [la#S#EmgEmat(—m)|, as 6 € mt(—m)

< infypepy sup | (ctbm) 4 (BHm)#(—1 + )|, as —m € —1 m

< infyem[sup [la#Fm|| + sup || B#m|| +sup || — 1+ m]|]

= infienr sup [|agEm|| + infens sup || B#m|| + infoenr [[m]

= inf,,en sup ||a#m|| + infenr sup || S#m|| + 0, as 0 € M

— lla M|, + || 3#M]),

Thus sup (M) + (FM) ], < M, + |34,

Further, for a € R and a#M € V/M, we have
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sup la ® (ot M),

—sup [{+4M < 2 € ax o},

= SUD,cana |[2#M |l

— Sup,core inf{sup || : m € M}

<inf,,en SUDeqra {SUP ||z#m||}

~ infnepy sup | (0 % 0) |

< inficn sup o * (o (—m)) 4]

< infeprsup ||a * (a#tm)#a x (—m)#m||, by proposition 3.4
< infpmen| sup [|a * (a##m)|| +sup [la * (=m)|[ + [|m]| ], by proposition 4.3
< infen(|a sup [[a#m] + |al.||m|| + ||m]|], by proposition 4.2
= infnpr afsupllattiml] + infmerr . 7] + infmeny ]

= |a| inf,,epr sup |la#Em| +0+0

~ lalllo#M]],.

Hence (V/M, +, ®, || - ||,) is normed hyperquotient space.

Definition 4.5 A sequence {a,#M}, in a normed hyperquotient space V /M
is said to converge to a point a#M € V/M if for any € (> 0), there exists a
positive integer ng such that inf ||(a,#M) + (—a#M)||, < €, for all n > ny,
where M is a closed hypersubspace of V.

Definition 4.6 A sequence {a,#M}, in a normed hyperquotient space V /M
is said to be a Cauchy sequence if for any € (> 0), there exists a positive integer
no such that inf ||(a,#M) + (—an#M)||, < € for all m,n > ny, where M is a
closed hypersubspace of V.

The normed hyperquotient space V/M is said to be complete if every cauchy
sequence in V/M converges to some point in V/M.

Theorem 4.7 IfV be a Banach space and M be a closed hypersubspace of V,
then the hyperquotient space V//M with the norm as defined in theorem 4.4, is
a Banach space.

Proof: It is enough to show that V/M is complete. Let {a,#M?}, be a
Cauchy sequence in V/M. Then for any given € (> 0), there exists a positive
integer ng such that inf ||(a,#M) + (—am#M)||, < §, for all m,n > ny.
Then inf |[{z#M : € an# — am}lly < 5.

That is, inf,ea, #—a., [|[TF#M |, < 5.

Therefore inf,cq, #—q,, infperr sup ||z#p| < 5.

Thus there exists € a,# — au, such that infpeps sup [|[a#p|| < § <e.

Now z € ap# — ayp,. Then inf ||a,# — aml| < ||z

That is, inf ||a,# — || < sup ||z#p# — p|| for any p € M. Therefore

inf [0yt — ] < infyeny sup |a#pdt — pl| < infpenr(sup |20 + | - o1l)

So inf ||a,# — au|| < infpeprsup ||x#p||, as infyepr || — p|| = 0.

since infpeps sup ||z#p|| < €, inf ||a,# — an|| <€, for all m,n > n.
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Therefore the sequence {a,,}, is a Cauchy sequence in V.
Again since V' is a Banach space, the sequence {«,, } is convergent and converges
to some point a(say) in V.

We now show that {a,,#M}, converges to a#M.

inf || (M) + (—ase M),

= infrea,p—a |lT# M|l

inf,ea, o inf,enr sup ||z#p||

inf,ca, 2 sup ||z#6||

infcan o |lo]

= inf ||, # — ¢||.

Therefore inf ||(c,#M) + (—a#M)||, < inf ||, # — ]|

Since «,, converges to «, o, #M converges to a#M.

Hence the normed hyperquotient space V/M is a Banach space.

IA Il

5 Open Problem

In this paper [6], we have considered hypervector space having all the struc-
tures as hyper structure over a hyperfield. So, is the most general form for
a hypervector space. With respect to this structure, here we have considered
hyperquotient space and then a suitable norm is defined on this space and
this normed linear space is shown to be a Banach space under a few sufficient
conditions. Now one can further define operator on this Banach space and
study properties of operator on this space.
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