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1 Introduction

Let H be the class of analytic functions in U = {z ∈ C : |z| < 1}, and H[a, n]
be the subclass of H consisting of functions of the form

f(z) = a+ anz
n + an+1z

n+1 + · · ·. (1)

Let A be the subclass of H consisting of functions of the form

f(z) = z + a2z
2 + a3z

3 + · · ·. (2)
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A function f ∈ A is said to be in the class S∗ of starlike functions in U, if it
satisfies the inequality Re

( zf ′(z)
f(z)

)
> 0, z ∈ U. Furthermore, a function f ∈ A

is said to be in the class C of convex functions in U, if it satisfies the inequality
Re

(
1 + zf ′′(z)

f ′(z)

)
> 0, z ∈ U.

Let f(z) and F (z) be analytic in U, then we say that the function f(z) is
subordinate to F (z) in U, if there exists an analytic function w(z) in U such
that |w(z)| ≤ |z|, and f(z) ≡ F (w(z)), denoted f ≺ F or f(z) ≺ F (z). If
F (z) is univalent in U, then the subordination is equivalent to f(0) = F (0)
and f(U) ⊂ F (U).

Let p, h ∈ H and let φ(r, s, t; z) : C3×U→ C. If p and φ(p(z), zp′(z), z2p′′(z); z)
are univalent and if p satisfies the second-order superordination

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z), (3)

then p is a solution of the differential superordination (1.2). (If f is subordi-
nate to F , then F is superordinate to f .) An analytic function q is called a
subordinant if q ≺ p for all p satisfying (1.2). A univalent subordinant Q that
satisfies q ≺ Q for all subordinants q of (1.2) is said to be the best subordinant.
Recently Miller and Mocanu [1] obtained conditions on h, q and φ for which
the following implication holds:

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z)⇒ q(z) ≺ p(z). (4)

Using the results of Miller and Mocanu [1], Bulboacǎ [2] considered certain
classes of first-order differential superordinations as well as superordination-
preserving integral operators [3]. Ali et al. [4] have used the results of Bulboacǎ
[2] and obtained sufficient conditions for certain normalized analytic functions
f(z) to satisfy

q(z) ≺ zf ′(z)

f(z)
≺ q2(z), (5)

where q1 and q2 are given univalent functions in U with q1(0) = 1 and q2(0) = 1.
Shanmugam et al. [5] obtained sufficient conditions for normalized analytic
functions f(z) to satisfy

q1(z) ≺ f(z)

zf ′(z)
≺ q2(z) and q1(z) ≺ z2f ′(z)

f 2(z)
≺ q2(z) (6)

where q1 and q2 are given univalent functions in U with q1(0) = 1 and q2(0) = 1,
while Obradović and Owa [6] obtained subordination results with the quantity
(f(z)/z)µ (see also [7]).

For 0 < α < 1, a function f(z) ∈ N(α) if and only if f(z) ∈ A and

Re

{
zf ′(z)

f(z)

(
z

f(z)

)α}
> 0, z ∈ U. (7)



78 Lifeng Guo and Gejun Bao

N(α) was introduced by M.Obradović [8] recently, and he called this class of
functions to be non-Bazilevič type. Tuneski and Darus [9] obtained Fekete-
Szegö inequality for the non-Bazilevic class of functions. Using this non-
Bazilevič class, Wang et al. [10] studied many subordination results for the
class N(α, λ,A,B) defined as

N(α, λ,A,B) =

{
f(z) ∈ A : (1+λ)

(
z

f(z)

)α

−λzf
′(z)

f(z)

(
z

f(z)

)α

≺ 1 +Az

1 + Bz
, z ∈ U

}
.

(8)

where 0 < α < 1, λ ∈ C,−1 ≤ B ≤ 1,A 6= B,A ∈ R.
The main object of the present sequel to the aforementioned works is to

apply a method based on the differential subordination in order to derive
several subordination results. Furthermore, we obtain the previous results of
Srivastava and Lashin [7], Singh [11], Shanmugam et al. [12] and Obradović
andOwa [6] as special cases of some of the results presented here.

2 Some lemmas

To prove our main result, we will need the following lemmas:
Definition 2.1. [1] Denote by Σ the set of all functions f(z) that are

analytic and injective on Ū− E(f), where

E(f) =

{
ξ ∈ ∂U : lim

z→ξ
f(z) =∞

}
, (9)

and are such that f ′(ξ) 6= 0 for ξ ∈ ∂U− E(f).
Lemma 2.1. [5] Let q be univalent in U and let β, γ ∈ C with Re

(
1 +

zq′′(z)
q′(z)

)
> max

{
0,−Reβ

γ

}
. If p(z) is analytic in U and

βp(z) + γzp′(z) ≺ βq(z) + γzq′(z), (10)

then p(z) ≺ q(z) and q is the best dominant.
Lemma 2.2. [13] Let q be univalent in U and let θ, ρ be analytic in

a domain Ω containing q(U) with ρ(w) 6= 0 when w ∈ q(U). Set h(z) =
zq′(z)ρ(q(z)), F (z) = θ(q(z)) + h(z). Suppose that

(1) h(z) is starlike univalent in U;

(2) Re
( zF ′(z)
h(z)

)
> 0 for z ∈ U.

If

θ(p(z)) + zp′(z)ρ(F (z)) ≺ θ(q(z)) + zq′(z)ρ(q(z)), (11)

then p(z) ≺ q(z) and q(z) is the best dominant.
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Lemma 2.3. [1] Let q be convex univalent in U and let γ ∈ C with
Re(γ) > 0. If p(z) ∈ H[q(0), 1] ∩ Σ and p(z) + γzp′(z) is univalent in U, and

q(z) + γzq′(z) ≺ p(z) + γzp′(z), (12)

then q(z) ≺ p(z) and q is the best subordinant.
Lemma 2.4. [3] Let q be convex univalent in U, and let θ, ρ be analytic

in a domain Ω containing q(U). Suppose that
(1) zq′(z)ρ(q(z)) is starlike univalent in U;

(2) Re
( θ′(q(z)
ρ(q(z))

)
> 0 for z ∈ U.

If p(z) ∈ H[q(0), 1] ⊆ Σ, with p(U) ⊂ Ω and θ(p(z))+zp′(z)ρ(p(z)) is univalent
in U and

θ(q(z)) + zq′(z)ρ(q(z)) ≺ θ(p(z)) + zp′(z)ρ(p(z)), (13)

then q(z) ≺ p(z) and q is the best subordinant.

3 Subordination for analytic functions

By using Lemma 2.1, we first prove the following Theorem.
Theorem 3.1. Let q be univalent in U, 0 < α < 1 and γ ∈ C. Suppose q

satisfies

Re
{

1 +
zq′′(z)

q′(z)

}
> max

{
0,−Re

γ

α

}
. (14)

If f(z) ∈ A, g(z) ∈ S∗, and satisfies the subordination(
1 + γ

zg′(z)

g(z)

)(
g(z)

f(z)

)α

− γ zf
′(z)

f(z)

(
g(z)

f(z)

)α

≺ q(z) +
γ

α
zq′(z), (15)

then (
g(z)

f(z)

)α

≺ q(z) (16)

and q is the best dominant.
Proof. Let F (z) = ( g(z)

f(z)
)α, then F (z) = 1 + c1z + c2z

2 + · · · is analytic in
U. Then a computation shows that(

1 + γ
zg′(z)

g(z)

)(
g(z)

f(z)

)α

− γ zf
′(z)

f(z)

(
g(z)

f(z)

)α

= F (z) +
γ

α
zF ′(z). (17)

By the hypothesis (15), we obtain that

F (z) +
γ

α
zF ′(z) ≺ q(z) +

γ

α
zq′(z). (18)
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The assertion of Theorem 3.1 now follows by an application of Lemma 2.1 with
γ = γ

α
and β = 1.

Taking q(z) = (1 + Az)/(1 + Bz) in Theorem 3.1, we have the following
corollary.

Corollary 3.1. Let −1 ≤ B < A ≤ 1 and (15) hold. If f(z) ∈ A, g(z) ∈
S∗, and satisfies the subordination(

1 + γ
zg′(z)

g(z)

)(
g(z)

f(z)

)α

− γ zf
′(z)

f(z)

(
g(z)

f(z)

)α

≺ 1 + Az

1 + Bz
+
γ(A− B)z

α(1 + Bz)2
, (19)

then (
g(z)

f(z)

)α

≺ 1 + Az

1 + Bz
, (20)

and 1+Az
1+Bz

is the best dominant.
Taking g(z) = z, γ = −1 in Theorem 3.1, we have the following corollary.
Corollary 3.2. Let q be univalent in U and 0 < α < 1. Suppose q satisfies

Re
{

1 +
zq′′(z)

q′(z)

}
>

1

α
. (21)

If f(z) ∈ A and satisfies the subordination

zf ′(z)

f(z)

(
z

f(z)

)α

≺ q(z)− 1

α
zq′(z), (22)

then (
z

f(z)

)α

≺ q(z) (23)

and q is the best dominant.
Taking γ = 1 and g(z) = z in Theorem 3.1, we get the following corollary.
Corollary 3.3. Let q be univalent in U and 0 < α < 1. Suppose q satisfies

Re
{

1 +
zq′′(z)

q′(z)

}
> 0. (24)

If f(z) ∈ A and satisfies the subordination(
2− zf ′(z)

f(z)

)(
z

f(z)

)α

≺ q(z) +
1

α
zq′(z), (25)

then (
z

f(z)

)α

≺ q(z) (26)

and q is the best dominant.
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Theorem 3.2. Let q be univalent in U, γ(6= 0), ε, κ ∈ C, 0 ≤ β ≤ 1,
f(z) ∈ A and g(z) ∈ S∗. Suppose q satisfies

Re
{

1 +
zq′′(z)

q′(z)

}
> max

{
0,−Re

κ

γ

}
. (27)

Let

G(z) :=

(
(1− β)f(z) + βzf ′(z)

g(z)

)α(
κ+γα

(
zf ′(z) + βz2f ′′

(1− β)f(z) + βzf ′(z)
−zg

′(z)

g(z)

))
+ε.

If
G(z) ≺ κq(z) + ε+ γzq′(z), (28)

then (
(1− β)f(z) + βzf ′(z)

g(z)

)α

≺ q(z) (29)

and q(z) is the best dominant.
Proof. Define the function F (z) by

F (z) =

(
(1− β)f(z) + βzf ′(z)

g(z)

)α

. (30)

Then a computation shows that

α

(
zf ′(z) + βz2f ′′

(1− β)f(z) + βzf ′(z)
− zg′(z)

g(z)

)
=
zF ′(z)

F (z)
, (31)

and hence

αF (z)

(
zf ′(z) + βz2f ′′

(1− β)f(z) + βzf ′(z)
− zg′(z)

g(z)

)
= zF ′(z). (32)

By the hypothesis (28), we obtain that

κF (z) + ε+ γzF ′(z) ≺ κq(z) + ε+ γzq′(z). (33)

By setting θ(w) = κw + ε, ρ(w) = γ, it can be easily observed that θ(w) and
ρ(w) are analytic in C. Also, we let

h(z) = zq′(z)ρ(q(z)) = γzq′(z) and p(z) = θ(q(z))+h(z) = κq(z)+ε+γzq′(z).
(34)

From (27), we find that h(z) is starlike univalent in U, and that

Re

(
zp′(z)

h(z)

)
= Re

(
κ

γ
+ 1 +

zq′′(z)

q′(z)

)
> 0, (35)
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by the hypothesis (27). Thus, by applying Lemma 2.2, our proof of Theorem
3.2 is completed.

For β = 1, ε = 0, κ = 1 and g(z) = z, we get the following corollary.
Corollary 3.4. Let q be univalent in U and f(z) ∈ A. Suppose q satisfies

Re
{

1 +
zq′′(z)

q′(z)

}
> max

{
0,−Re

1

γ

}
. (36)

If (
f ′(z)

)α(
1 +

γαzf ′′

f ′(z)

)
≺ q(z) + γzq′(z), (37)

then (
f ′(z)

)α ≺ q(z) (38)

and q(z) is the best dominant.
For β = 0, ε = 0, κ = 1 and g(z) = z, we get the following corollary.
Corollary 3.5. Let q be univalent in U, γ(6= 0) ∈ C and f(z) ∈ A.

Suppose q satisfies

Re
{

1 +
zq′′(z)

q′(z)

}
> max

{
0,−Re

1

γ

}
. (39)

If

(1− αγ)
(f(z)

z

)α
+ αγ

zf ′(z)

f(z)

(f(z)

z

)α ≺ q(z) + γzq′(z), (40)

then ((f(z)

z

)α ≺ q(z) (41)

and q(z) is the best dominant.

4 Superordination for analytic functions

Theorem 4.1. Let q be convex univalent in U, 0 < α < 1, γ ∈ C with
Re

(
γ
)
> 0. Suppose q satisfies

( g(z)
f(z)

)α ∈ H[q(0), 1] ∩ Σ. Let(
1 + γ

zg′(z)

g(z)

)(
g(z)

f(z)

)α

− γ zf
′(z)

f(z)

(
g(z)

f(z)

)α

(42)

be univalent in U. If

q(z) +
γ

α
zq′(z) ≺

(
1 + γ

zg′(z)

g(z)

)(
g(z)

f(z)

)α

− γ zf
′(z)

f(z)

(
g(z)

f(z)

)α

, (43)
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then

q(z) ≺
(
g(z)

f(z)

)α

(44)

and q is the best subordinant.
Proof. Let F (z) = ( g(z)

f(z)
)α. Then a computation shows that(

1 + γ
zg′(z)

g(z)

)(
g(z)

f(z)

)α

− γ zf
′(z)

f(z)

(
g(z)

f(z)

)α

= F (z) +
γ

α
zF ′(z). (45)

By the hypothesis (43), we obtain that

q(z) +
γ

α
zq′(z) ≺ F (z) +

γ

α
zF ′(z). (46)

Theorem 4.1 follows as an application of Lemma 2.3.
For γ = 1 and g(z) = z, we get the following corollary.
Corollary 4.1. Let q be convex univalent in U, 0 < α < 1. Suppose q

satisfies
(

z
f(z)

)α ∈ H[q(0), 1] ∩ Σ. Let(
2− zf ′(z)

f(z)

)(
z

f(z)

)α

(47)

be univalent in U. If

q(z) +
1

α
zq′(z) ≺

(
2− zf ′(z)

f(z)

)(
z

f(z)

)α

, (48)

then

q(z) ≺
(

z

f(z)

)α

(49)

and q is the best subordinant.
Theorem 4.2. Let q be convex univalent in U, γ(6= 0), ε, κ ∈ C and

0 ≤ β ≤ 1. Suppose q satisfies

Re

(
κ

γ
q′(z)

)
> 0. (50)

and (
(1− β)f(z) + βzf ′(z)

g(z)

)α

∈ H[q(0), 1] ∩ Σ, (51)

and

H(z) :=

(
(1− β)f(z) + βzf ′(z)

g(z)

)α(
κ+γα

(
zf ′(z) + βz2f ′′

(1− β)f(z) + βzf ′(z)
−zg

′(z)

g(z)

))
+ε,

(52)
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is univalent in U. If

κq(z) + ε+ γzq′(z) ≺ H(z), (53)

then

q(z) ≺
(

(1− β)f(z) + βzf ′(z)

g(z)

)α

(54)

and q is the best subordinant.
Proof. Define the function F (z) by

F (z) =

(
(1− β)f(z) + βzf ′(z)

g(z)

)α

. (55)

Then a computation shows that

α

(
zf ′(z) + βz2f ′′

(1− β)f(z) + βzf ′(z)
− zg′(z)

g(z)

)
=
zF ′(z)

F (z)
. (56)

and hence

αF (z)

(
zf ′(z) + βz2f ′′

(1− β)f(z) + βzf ′(z)
− zg′(z)

g(z)

)
= zF ′(z). (57)

By the hypothesis (53), we obtain that

κq(z) + ε+ γzq′(z) ≺ κF (z) + ε+ γzF ′(z). (58)

By setting θ(w) = κw + ε, ρ(w) = γ, it can be easily observed that θ(w)
and ρ(w) are analytic in C. Now,

Re

(
θ′(q(z))

ρ(q(z))

)
= Re

(
κ

γ
q′(z)

)
> 0, (59)

by the hypothesis (50). Thus, by applying Lemma 2.4, our proof of Theorem
4.2 is completed.

For β = 1, ε = 0, κ = 1 and g(z) = z, we get the following corollary.
Corollary 4.2. Let q be convex univalent in U, γ(6= 0) ∈ C. Suppose q

satisfies

Re

(
q′(z)

γ

)
> 0. (60)

and (
f ′(z)

)α ∈ H[q(0), 1] ∩ Σ, (61)

and (
f ′(z)

)α(
1 + γα

(
zf ′′

f ′(z)

))
, (62)
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is univalent in U. If

q(z) + γzq′(z) ≺
(
f ′(z)

)α(
1 + γα

(
zf ′′

f ′(z)

))
, (63)

then
q(z) ≺

(
f ′(z)

)α
(64)

and q is the best subordinant.
For β = 0, ε = 0, κ = 1 and g(z) = z, we get the following corollary.
Corollary 4.3. Let q be convex univalent in U, γ( 6= 0), ε, κ ∈ C and

0 ≤ β ≤ 1. Suppose q satisfies

Re

(
q′(z)

γ

)
> 0. (65)

and (
f(z)

z

)α

∈ H[q(0), 1] ∩ Σ, (66)

and

(1− γα)

(
f(z)

z

)α

+ γα
zf ′(z)

f(z)

(
f(z)

z

)α

, (67)

is univalent in U. If

q(z) + γzq′(z) ≺ (1− γα)

(
f(z)

z

)α

+ γα
zf ′(z)

f(z)

(
f(z)

z

)α

, (68)

then

q(z) ≺
(
f(z)

z

)α

(69)

and q is the best subordinant.

5 Sandwich results

Combining the results of differential subordination and superordination, we
state the following sandwich results.

Theorem 5.1. Let q1 be univalent and let q2 be convex univalent in U,
0 < α < 1 and γ ∈ C with Re(γ) > 0. Suppose q2 satisfies (14). If

( g(z)
f(z)

)α ∈
H[q1(0), 1] ∩ Σ,

(
1 + γ zg

′(z)
g(z)

)( g(z)
f(z)

)α − γ zf ′(z)
f(z)

( g(z)
f(z)

)α
is univalent in U, and

q1(z)+
γ

α
zq′1(z) ≺

(
1+γ

zg′(z)

g(z)

)(
g(z)

f(z)

)α

−γ zf
′(z)

f(z)

(
g(z)

f(z)

)α

≺ q2(z)+
γ

α
zq′2(z),

(70)



86 Lifeng Guo and Gejun Bao

then

q1(z) ≺
(
g(z)

f(z)

)α

≺ q2(z) (71)

and q1(z) and q2(z) are, respectively, the best subordinant and the best domi-
nant.

For γ = 1 and g(z) = z, we get the following corollary.
Corollary 5.1. Let q1 be univalent and let q2 be convex univalent in U,

0 < α < 1. Suppose q1 satisfies (4.1) and q2 satisfies (15). If
(
g(z)
f(z)

)α ∈
H[q1(0), 1] ∩ Σ,

(
2− zf ′(z)

f(z)

)(
z

f(z)

)α
is univalent in U, and

q1(z) +
1

α
zq′1(z) ≺

(
2− zf ′(z)

f(z)

)(
z

f(z)

)α

≺ q2(z) +
1

α
zq′2(z), (72)

then

q1(z) ≺
(

z

f(z)

)α

≺ q2(z) (73)

and q1(z) and q2(z) are, respectively, the best subordinant and the best domi-
nant.

Theorem 5.2. Let q1 be convex univalent and let q2 be convex univalent in
U, γ(6= 0), ε, κ ∈ C, 0 ≤ β ≤ 1, and q1 satisfies (50), q2 satisfies (27). Suppose(

(1− β)f(z) + βzf ′(z)

g(z)

)α

∈ H[q(0), 1] ∩ Σ. (74)

Let(
(1− β)f(z) + βzf ′(z)

g(z)

)α(
κ+ γα

(
zf ′(z) + βz2f ′′

(1− β)f(z) + βzf ′(z)
− zg′(z)

g(z)

))
+ ε,

(75)
is univalent in U. If

κq1(z) + ε+ γzq′1(z)

≺
(

(1−β)f(z)+βzf ′(z)
g(z)

)α(
κ+ γα

(
zf ′(z)+βz2f ′′

(1−β)f(z)+βzf ′(z) −
zg′(z)
g(z)

))
+ ε

≺ κq2(z) + ε+ γzq′2(z) (76)

then

q1(z) ≺
(

(1− β)f(z) + βzf ′(z)

g(z)

)α

≺ q2(z) (77)

and q1(z) and q2(z) are, respectively, the best subordinant and the best domi-
nant.

For β = 1, ε = 0, κ = 1 and g(z) = z, we get the following corollary.
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Corollary 5.2. Let q1 be convex univalent and let q2 be convex univalent
in U, γ( 6= 0) ∈ C, 0 ≤ β ≤ 1, and q1 satisfies (50), q2 satisfies (27). Suppose(

f ′(z)
)α ∈ H[q(0), 1] ∩ Σ. (78)

Let (
f ′(z)

)α(
1 + γα

(
zf ′′

f ′(z)

))
, (79)

is univalent in U. If

κq1(z) + ε+ γzq′1(z) ≺
(
f ′(z)

)α(
1 + γα

(
zf ′′

f ′(z)

))
≺ κq2(z) + ε+ γzq′2(z)(80)

then

q1(z) ≺
(
f ′(z)

)α ≺ q2(z) (81)

and q1(z) and q2(z) are, respectively, the best subordinant and the best domi-
nant.

For β = 0, ε = 0, κ = 1 and g(z) = z, we get the following corollary.

Corollary 5.3. Let q1 be convex univalent and let q2 be convex univalent
in U, γ(6= 0) ∈ C and q1 satisfies (50), q2 satisfies (27). Suppose

(
f(z)

z

)α

∈ H[q(0), 1] ∩ Σ. (82)

Let

(1− γα)

(
f(z)

z

)α

+ γα
zf ′(z)

f(z)

(
f(z)

z

)α

, (83)

is univalent in U. If

q1(z) + γzq′1(z) ≺ (1− γα)

(
f(z)
z

)α

+ γα zf
′(z)

f(z)

(
f(z)
z

)α

≺ q2(z) + γzq′2(z)(84)

then

q1(z) ≺
(
f(z)

z

)α

≺ q2(z) (85)

and q1(z) and q2(z) are, respectively, the best subordinant and the best domi-
nant.
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6 Open Problem

Let H be the class of analytic functions in U = {z ∈ C : |z| < 1}, and H[a, p]
be the subclass of H consisting of functions of the form

f(z) = a+ apz
p + ap+1z

p+1 + · · ·. (86)

Let A(p) be the subclass of H consisting of functions of the form

f(z) = zp + ap+1z
p+1 + ap+2z

p+2 + · · ·. (87)

A function f ∈ A(p) is said to be in the class S∗(p) of p-valent starlike

functions in U, if it satisfies the inequality Re
( zf ′(z)
pf(z)

)
> 0, z ∈ U.

Let f(z) ∈ A(p) and g(z ∈ S∗(p). We can consider sufficient conditions on
h, q1, q2 and φ for which the following implication holds:

q1(z) ≺
(
g(z)

f(z)

)α

≺ q2(z), (88)

or

q1(z) ≺
(

(1− β)f(z) + βzf ′(z)

g(z)

)α

≺ q2(z), (89)

where 0 < α < 1 and 0 ≤ β ≤ 1.
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