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Abstract

In this paper, we define the sequence spaces [V, A\, M, p, s]1 (¢, q),
[V, A\, M, p,slo(¢,q) and [V, A\, M, p, s]s (¢, q¢) and introduce some prop-
erties of these spaces.
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1 Introduction

Let ¢, c and ¢y be the linear spaces of bounded, convergent and null sequences
x = (x) with complex terms, respectively, normed by ||z|| = sup |z|.
k

Throughout the paper w denotes the set of all sequences of complex num-

bers.
Let o be a one to one mapping of the set N of positive integers into itself
such that o%(n) = o(c* 1(n)), k = 1,2,.... A continuous linear functional ¢

on /, is said to be an invariant mean or a o- mean if and only if
(i) ¢(z) > 0 when the sequence x = (z,,) has x,, > 0 for all n,
(ii) p(e) =1, where e = (1,1, 1, ...),
(iil) ¢ ({zom)}) = ¢ ({za}) for all z € (.
If = (2,), set Tx = (Tx,) = (To(n)). It can be shown that (see Schaefer

[7])-

Vo={z=(z,): lilrgntlm(x) = Le uniformly in n, L = 0 — limz} (1)

where
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1 k

- Tz,

t]m(fb)

The special case of (1), in which o(n) = n + 1 was given by Lorentz [?].
Subsequently invariant means have been studied by Ahmad and Mursaleen
[?], Mursaleen [?, 7], Raimi [?] and many others. The space

BVo ={x € ls i |ppn(z)| < 0o, uniformly in n}

was defined by Mursaleen [?], where

Grn () = thn () — tr1n()

assuming that tg,(z) =0, for k = —1.

Note that for any sequences x, y and scalar \, we have ¢p, (z+y) = dpn(z)+

An Orlicz function is a function M : [0, 00) — [0, 00), which is continuous,
non-decreasing and convex with M (0) =0, M (z) > 0 for z > 0 and M (x) —
00 as T — 00.

It is well known that if M is a convex function and M (0) = 0, then
M (Ax) < AM (z) for all A with 0 < A\ < 1.

An Orlicz function M is said to satisfy As—condition for all values of y,
if there exists a constant K > 0, such that M (2y) < KM(y) (y > 0).

Lindenstrauss and Tzafriri [?] used the idea of Orlicz function to construct
the sequence space

EM:{xGw:ZM(@) < oo for some p > 0}.
k=1
The space £, is a Banach spaces with the norm

ol = intfp > 0 3 a2y < 1y
k=1

and this space is called an Orlicz sequence space. For M (t) =7, 1 < p < oo,
the space ¢); coincides with the classical sequence space £,,.
Let A = (\,) be a non-decreasing sequence of positive numbers such that

/\n+1 S)\n+1a )‘1 =1
Ap > o0 asn —ooand I, =[n— A\, +1,n].
Let x € w and X,Y C w. Then we shall write

M(X,Y) =pex 2 ' xY ={a€w:azx €Y foral z € X}.
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The set X* = M (X, {;) is called Kothe-Toeplitz dual space or a-dual of
X. Let X be a sequence space. Then X is called:

(i) Solid (or normal) if (axr) € X whenever (x) € X, for all sequences
(ay,) of scalars with |ay| < 1.

(ii) Monotone provided X contains the canonical preimages of all its stepspaces.

(iii) Perfect if X = X*°.

It is well known that X is perfect = X is normal = X is monotone.

Let X be a complex linear space with zero element § and X = (X, q) be
a seminormed space with the seminorm ¢. By S (X) we denote the linear
space of all sequences = (x}) with (z;) € X and the usual coordinatewise
operations: ax = (axg) and z+y = (zx + yx), for each o € C where C denotes
the set of complex numbers.

The following inequality will be used throughout the paper. Let p = (py) be
a bounded sequence of strictly positive real numbers with 0 < p, < supp, = G,

k

D = max (1, QGfl), then
|ar + 0™ < D {|ap™ + [0k} (2)
where ag, b, € C. Also for any complex A,

APt < max (1, WG) . (3)

2 Main results

In this section we will define the sequence spaces [V, A, M,p, s (¢,q),
[V7 )‘7 M7p7 8]0 (¢7 Q) and [‘/7 >\7 M7p7 S]Oo (¢7 Q)

Definition 2.1 Let M be an Orlicz function, X be a seminormed space
with seminorm q and s > 0 a real number. Then we define

VA M,p, s (6.0) = { ve S ()t ko (M (g (25E)) [T =0 } |
for some L and p > 0

for some p > 0

VoA M. sk (10) = { re () b, e [ (a(#52))]" =0 } |

[V, A\, M, p,s|e (6,q) = { reS(X): sgpikgﬂk—s [M <q (@WT@)HM e }

for some p > 0
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Throughout the paper Z will denote any one of the notation 0,1 or oco.
If we take M(z) = x, then we write [V A p,s|z(4,q) instead of

[V7)‘7M7p7 S]Z (‘b? Q)
If we take s = 07 then [Vv >\7 M7p7 S]Z <¢7 q) - [‘/7 )‘7M7p]Z (¢7 Q)

Theorem 2.2 For any Orlicz function M, [V, X\, M,p, s|z (¢,q) are linear
space over the complex field C.

The proof is a routine verification by using standard techniques and hence
is omitted.

Theorem 2.3 For any Orlicz function M and a bounded sequence p = (py)
of strictly positive real numbers, [V, X\, M, p,slo(¢,q) is a paranormed space
(not necessarily total paranormed) with

(o) =int {5 s sup (a1 (o (2= ) )| <1, 9> 0,n e n

where H = max(1, supp).
k

Proof. Clearly g (z) = g (—x). Since M (0) = 0, we get inf {p%} =0 for
x=0. Now let z,y € [V, X\, M, p, s|o (¢,q) and let us choose p; > 0 and py > 0

such that
ol o(552) =
o5 2

Let p = p1 + p2. Then we get the triangle inequality from the following
inequality and since ¢, is linear

(5] <o (5)]
il ((5)]

Finally let A be a given non-zero scalar, then the continuity of the scalar
multiplication follows from the following equality

o) = mf{ppzz sw {M (q (@))} <1, nEN}
= mf{(w.s)”f? Sup [M (q (%T@»] <1, nEN},

where s = R This completes the proof.
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Theorem 2.4 Let M, My, My be Orlicz functions, then
(i) If there is a positive constant B such that M(t) < B.t for allt > 0, then
[V, A, My, p,slz(¢,q) C [V, A, Mo M,p,slz(é,q),
(%) [V, A, My, p, 8]z (¢, N[V, A, My, p, 8|z (¢, q) C [V, A, Mi+Ma, p, s]z (¢, q)

where Z =0 or 1 or oo.

Proof. (i) We give the proof for Z = 0. Let 2 € [V, X\, M1, p, s]o (¢,q) so

that
L)
/\n kel, P

for some p > 0 and n — oo. Since M(t) < f.t for all t > 0, we have by
inequality (3).
1 1

— KM (w) <max (1,69) — k7 [u]™
)\TL kely, )\’I’L kely,

where u, = M, <q (%@)) and hence = € [V, \, M o My, p, s|o (4, q).
(ii) The proof is immediate using (2).

Theorem 2.5 For any Orlicz function M, if lim Aﬁ%f) > 0 for some p >
U—00

0, then [V, A\, M,p, sz (¢,q) € [V, \,p, 5]z (0,q).

Proof. If lim A?L(L% )p ) > 0 then there exists a number o > 0 such that
U—> 00

M(u/p) > a(u/p) for all uw > 0 and some p > 0. Let x € [V, A\, M, p, s|« (¢,q)
so that .
()
)‘nkeln P
Then

R [M(q(%T(@))]pkzmax(Lé)G) L e @)

)‘n kely )\n kely

Pk
< 00, Vn € N.

Hence x € [V, A, p, s]oo (0, Q).
The other cases can be proved similarly.

Theorem 2.6 Let M be an Orlicz function which satisfies Ay— condition,
4, q1, g2 be seminorms and s, sy, Sy be non-negative real numbers. Then
(Z) [‘/7 )‘7 M7p7 S]Z (¢7 QI)Q[‘/? )‘7 M7p7 S]Z (¢7 Q2) - [‘/7 )‘7 M7p7 S]Z (¢7 1+ 92)7
(i3) If there exists a constant L > 1 such that qo(x) < Lqi(z) for allz € X,
then [V, A, M,p, sz (¢, q1) C [V, A, M, p, s|z (6, q2),
(#it) If s1 < sq, then [V, \, M, p,s1]2 (¢,q) € [V, X\, M, p,s2]z (6, 0q),
(Z,U) [V7 )‘7 Ma p]Z (¢7 Q) - [Vv )‘7 Mvpa S]Z <¢7 Q)
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Proof is easy and thus omitted.

Theorem 2.7 Suppose that 0 < pr < tp < oo for each k € N. Then
(V. A\, M, p,s|z (6,q) C[V,\, M,t,s]z(¢,q) where Z =0 or 1 or cc.

Proof is easy.

Theorem 2.8 The sequence spaces [V, A\, M, p, slo (¢, q) and [V, X\, M, p, s]o (6, q)
are solid.

Proof. We give the proof for [V, A\, M, p, slo (¢, q). Let x € [V, X\, M, p, s|o (¢, q)
and (a,) be any sequence of scalars such that |a,| < 1 for n € N. Then we
have

e[ (] = s o (52
v (o ()

and the right hand side tends to 0 as n — co. Hence (a,x,,) € [V, A, M, p, s]o (¢, q).

Corollary 2.9 The sequence spaces [V, A\, M, p, slo (¢, q) and [V, X\, M, p, s|o (¢, q)
are monotone.

3 Open Problem

The aim of this paper is to introduce and study the new sequence spaces
[V, A, M, p, sl (6,q), [V,A, M, p,s]o(6,q) and [V, X, M,p, sl (¢,q). We also
examine some topological properties and establish some inclusion relations
between these spaces.

Is the sequence space [V, A, M, p, s]; (¢, ¢q) solid or monotone? Therefore it
is left as an open problem.
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