Int. J. Open Problems Comput. Math., Vol. 6, No. 1, March, 2013 ISSN 1998-6262; Copyright ©ICSRS Publication, 2013 www.i-csrs.org

Some New Sequence Spaces on Seminormed Spaces

R. Çolak, Ç. A. Bektaş and Y. Altın

Department of Mathematics, Firat University, Elazig, 23119, TURKEY. e-mail: rcolak@firat.edu.tr

Abstract

In this paper, we define the sequence spaces $[V, \lambda, M, p, s]_1(\phi, q)$, $[V, \lambda, M, p, s]_0(\phi, q)$ and $[V, \lambda, M, p, s]_{\infty}(\phi, q)$ and introduce some properties of these spaces.

Keywords : *Difference sequence spaces, Orlicz function, seminorm.* **2000 AMS:** *40A05, 40C05, 46A45.*

1 Introduction

Let ℓ_{∞} , c and c_0 be the linear spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by $||x||_{\infty} = \sup |x_k|$.

Throughout the paper w denotes the set of all sequences of complex numbers.

Let σ be a one to one mapping of the set \mathbb{N} of positive integers into itself such that $\sigma^k(n) = \sigma(\sigma^{k-1}(n)), \ k = 1, 2, \dots$ A continuous linear functional φ on ℓ_{∞} is said to be an invariant mean or a σ - mean if and only if

(i) $\varphi(x) \ge 0$ when the sequence $x = (x_n)$ has $x_n \ge 0$ for all n,

(ii) $\varphi(e) = 1$, where e = (1, 1, 1, ...),

(iii) $\varphi\left(\left\{x_{\sigma(n)}\right\}\right) = \varphi\left(\left\{x_n\right\}\right)$ for all $x \in \ell_{\infty}$.

If $x = (x_n)$, set $Tx = (Tx_n) = (x_{\sigma(n)})$. It can be shown that (see Schaefer [?]).

$$V\sigma = \{x = (x_n) : \lim_{k \to \infty} t_{kn}(x) = Le \text{ uniformly in } n, \ L = \sigma - \lim x\}$$
(1)

where

$$t_{kn}(x) = \frac{1}{k+1} \sum_{j=0}^{k} T^j x_n$$

The special case of (1), in which $\sigma(n) = n + 1$ was given by Lorentz [?].

Subsequently invariant means have been studied by Ahmad and Mursaleen [?], Mursaleen [?, ?], Raimi [?] and many others. The space

$$BV\sigma = \{x \in \ell_{\infty} :_k |\phi_{kn}(x)| < \infty, \text{ uniformly in } n\}$$

was defined by Mursaleen [?], where

$$\phi_{kn}(x) = t_{kn}(x) - t_{k-1,n}(x)$$

assuming that $t_{kn}(x) = 0$, for k = -1.

Note that for any sequences x, y and scalar λ , we have $\phi_{kn}(x+y) = \phi_{kn}(x) + \phi_{kn}(y)$ and $\phi_{kn}(\lambda x) = \lambda \phi_{kn}(x)$.

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$.

It is well known that if M is a convex function and M(0) = 0, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0 \leq \lambda \leq 1$.

An Orlicz function M is said to satisfy Δ_2 -condition for all values of y, if there exists a constant K > 0, such that $M(2y) \leq KM(y)$ (y > 0).

Lindenstrauss and Tzafriri [?] used the idea of Orlicz function to construct the sequence space

$$\ell_M = \{ x \in w : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) < \infty \text{ for some } \rho > 0 \}.$$

The space ℓ_M is a Banach spaces with the norm

$$||x|| = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M(\frac{|x_k|}{\rho}) \le 1\}$$

and this space is called an Orlicz sequence space. For $M(t) = t^p$, $1 \le p < \infty$, the space ℓ_M coincides with the classical sequence space ℓ_p .

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers such that

$$\lambda_{n+1} \le \lambda_n + 1, \ \lambda_1 = 1$$

 $\lambda_n \to \infty$ as $n \to \infty$ and $I_n = [n - \lambda_n + 1, n]$.

Let $x \in w$ and $X, Y \subset w$. Then we shall write

$$M(X,Y) =_{x \in X} x^{-1} * Y = \{ a \in w : ax \in Y \text{ for all } x \in X \}.$$

The set $X^{\alpha} = M(X, \ell_1)$ is called Köthe-Toeplitz dual space or α -dual of X. Let X be a sequence space. Then X is called:

(i) Solid (or normal) if $(\alpha_k x_k) \in X$ whenever $(x_k) \in X$, for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$.

(ii) Monotone provided X contains the canonical preimages of all its stepspaces. (iii) Perfect if $X = X^{\alpha\alpha}$.

It is well known that X is perfect \Rightarrow X is normal \Rightarrow X is monotone.

Let X be a complex linear space with zero element θ and X = (X, q) be a seminormed space with the seminorm q. By S(X) we denote the linear space of all sequences $x = (x_k)$ with $(x_k) \in X$ and the usual coordinatewise operations: $\alpha x = (\alpha x_k)$ and $x + y = (x_k + y_k)$, for each $\alpha \in \mathbb{C}$ where \mathbb{C} denotes the set of complex numbers.

The following inequality will be used throughout the paper. Let $p = (p_k)$ be a bounded sequence of strictly positive real numbers with $0 < p_k \leq \sup p_k = G$,

 $D = \max(1, 2^{G-1})$, then

$$|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^{p_k}\}$$
(2)

where $a_k, b_k \in \mathbb{C}$. Also for any complex λ ,

$$\left|\lambda\right|^{p_k} \le \max\left(1, \left|\lambda\right|^G\right). \tag{3}$$

2 Main results

In this section we will define the sequence spaces $[V, \lambda, M, p, s]_1(\phi, q)$, $[V, \lambda, M, p, s]_0(\phi, q)$ and $[V, \lambda, M, p, s]_{\infty}(\phi, q)$.

Definition 2.1 Let M be an Orlicz function, X be a seminormed space with seminorm q and $s \ge 0$ a real number. Then we define

$$[V,\lambda,M,p,s]_{1}(\phi,q) = \left\{ \begin{array}{c} x \in S\left(X\right) : \lim_{n \to \infty} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} k^{-s} \left[M\left(q\left(\frac{\phi_{kn}(x) - L}{\rho}\right)\right) \right]^{p_{k}} = 0 \\ \text{for some } L \text{ and } \rho > 0 \end{array} \right\}.$$

$$[V,\lambda,M,p,s]_{0}(\phi,q) = \left\{ \begin{array}{c} x \in S\left(X\right) : \lim_{n \to \infty} \frac{1}{\lambda_{n}} k^{-s} \left[M\left(q\left(\frac{\phi_{kn}(x)}{\rho}\right)\right) \right]^{p_{k}} = 0 \\ \text{for some } \rho > 0 \end{array} \right\},$$

$$[V,\lambda,M,p,s]_{\infty}(\phi,q) = \left\{ \begin{array}{c} x \in S\left(X\right) : \sup_{n} \frac{1}{\lambda_{n}} k^{-s} \left[M\left(q\left(\frac{\phi_{kn}(x)}{\rho}\right)\right) \right]^{p_{k}} < \infty \\ & \text{for some } \rho > 0 \end{array} \right\}.$$

Throughout the paper Z will denote any one of the notation 0, 1 or ∞ .

If we take M(x) = x, then we write $[V, \lambda, p, s]_Z(\phi, q)$ instead of $[V, \lambda, M, p, s]_Z(\phi, q)$.

If we take s = 0, then $[V, \lambda, M, p, s]_Z(\phi, q) = [V, \lambda, M, p]_Z(\phi, q)$.

Theorem 2.2 For any Orlicz function M, $[V, \lambda, M, p, s]_Z(\phi, q)$ are linear space over the complex field \mathbb{C} .

The proof is a routine verification by using standard techniques and hence is omitted.

Theorem 2.3 For any Orlicz function M and a bounded sequence $p = (p_k)$ of strictly positive real numbers, $[V, \lambda, M, p, s]_0(\phi, q)$ is a paranormed space (not necessarily total paranormed) with

$$g(x) = \inf\left\{\rho^{\frac{p_n}{H}} : \sup_k \left[M\left(q\left(\frac{\phi_{kn}(x)}{\rho}\right)\right)\right] \le 1, \ \rho > 0, \ n \in \mathbb{N}\right\}$$

where $H = \max(1, \sup_{k} p_k)$.

Proof. Clearly g(x) = g(-x). Since M(0) = 0, we get $\inf \{\rho^{\frac{p_n}{H}}\} = 0$ for $x = \theta$. Now let $x, y \in [V, \lambda, M, p, s]_0(\phi, q)$ and let us choose $\rho_1 > 0$ and $\rho_2 > 0$ such that

$$\sup_{k} \left[M\left(q\left(\frac{\phi_{kn}(x)}{\rho_{1}}\right)\right) \right] \leq 1$$
$$\sup_{k} \left[M\left(q\left(\frac{\phi_{kn}(y)}{\rho_{2}}\right)\right) \right] \leq 1.$$

and

Let $\rho = \rho_1 + \rho_2$. Then we get the triangle inequality from the following inequality and since ϕ_{kn} is linear

$$\sup_{k} \left[M\left(q\left(\frac{\phi_{kn}\left(x+y\right)}{\rho}\right)\right) \right] \leq \frac{\rho_{1}}{\rho} \sup_{k} \left[M\left(q\left(\frac{\phi_{kn}\left(x\right)}{\rho_{1}}\right)\right) \right] + \frac{\rho_{2}}{\rho} \sup_{k} \left[M\left(q\left(\frac{\phi_{kn}\left(y\right)}{\rho_{2}}\right)\right) \right] \leq 1.$$

Finally let λ be a given non-zero scalar, then the continuity of the scalar multiplication follows from the following equality

$$g(\lambda x) = \inf \left\{ \rho^{\frac{p_n}{H}} : \sup_k \left[M\left(q\left(\frac{\phi_{kn}(\lambda x)}{\rho}\right)\right) \right] \le 1, \ n \in \mathbb{N} \right\} \\ = \inf \left\{ (|\lambda| . s)^{\frac{p_n}{H}} : \sup_k \left[M\left(q\left(\frac{\phi_{kn}(x)}{s}\right)\right) \right] \le 1, \ n \in \mathbb{N} \right\},$$

where $s = \frac{\rho}{|\lambda|}$. This completes the proof.

Some New Sequence Spaces on Seminormed Spaces

Theorem 2.4 Let M, M_1 , M_2 be Orlicz functions, then

(i) If there is a positive constant β such that $M(t) \leq \beta .t$ for all $t \geq 0$, then $[V, \lambda, M_1, p, s]_Z(\phi, q) \subseteq [V, \lambda, M \circ M_1, p, s]_Z(\phi, q)$,

(*ii*) $[V, \lambda, M_1, p, s]_Z(\phi, q) \cap [V, \lambda, M_2, p, s]_Z(\phi, q) \subseteq [V, \lambda, M_1 + M_2, p, s]_Z(\phi, q)$ where Z = 0 or 1 or ∞ .

Proof. (i) We give the proof for Z = 0. Let $x \in [V, \lambda, M_1, p, s]_0(\phi, q)$ so that

$$\frac{1}{\lambda_n} k^{-s} \left[M\left(q\left(\frac{\phi_{kn}(x)}{\rho}\right) \right) \right]^{p_k} \to 0$$

for some $\rho > 0$ and $n \to \infty$. Since $M(t) \leq \beta t$ for all $t \geq 0$, we have by inequality (3).

$$\frac{1}{\lambda_n} k^{-s} \left[M\left(u_k\right) \right]^{p_k} \le \max\left(1, \beta^G\right) \frac{1}{\lambda_n} k^{-s} \left[u_k\right]^{p_k}$$

where $u_k = M_1\left(q\left(\frac{\phi_{kn}(x)}{\rho}\right)\right)$ and hence $x \in [V, \lambda, M \circ M_1, p, s]_0(\phi, q)$. (ii) The proof is immediate using (2).

Theorem 2.5 For any Orlicz function M, if $\lim_{u\to\infty} \frac{M(u/\rho)}{(u/\rho)} > 0$ for some $\rho > 0$, then $[V, \lambda, M, p, s]_Z(\phi, q) \subseteq [V, \lambda, p, s]_Z(\phi, q)$.

Proof. If $\lim_{u\to\infty} \frac{M(u/\rho)}{(u/\rho)} > 0$ then there exists a number $\alpha > 0$ such that $M(u/\rho) \ge \alpha(u/\rho)$ for all u > 0 and some $\rho > 0$. Let $x \in [V, \lambda, M, p, s]_{\infty}(\phi, q)$ so that

$$\frac{1}{\lambda_n} k^{-s} \left[M\left(q\left(\frac{\phi_{kn}(x)}{\rho}\right)\right) \right]^{p_k} < \infty, \, \forall n \in \mathbb{N}.$$

Then

$$\frac{1}{\lambda_n} k^{-s} \left[M\left(q\left(\frac{\phi_{kn}(x)}{\rho}\right)\right) \right]^{p_k} \ge \max\left(1, \left(\frac{\alpha}{\rho}\right)^G\right) \cdot \frac{1}{\lambda_n} k^{-s} \left[q\left(\phi_{kn}(x)\right)\right]^{p_k} + \frac{1}{\lambda_n} k^{-s} \left[q\left(\phi_{kn$$

Hence $x \in [V, \lambda, p, s]_{\infty} (\phi, q)$.

The other cases can be proved similarly.

Theorem 2.6 Let M be an Orlicz function which satisfies Δ_2 -condition, q, q_1, q_2 be seminorms and s, s_1, s_2 be non-negative real numbers. Then

(i) $[V, \lambda, M, p, s]_Z(\phi, q_1) \cap [V, \lambda, M, p, s]_Z(\phi, q_2) \subseteq [V, \lambda, M, p, s]_Z(\phi, q_1 + q_2),$ (ii) If there exists a constant L > 1 such that $q_2(x) \leq Lq_1(x)$ for all $x \in X$, then $[V, \lambda, M, p, s]_Z(\phi, q_1) \subseteq [V, \lambda, M, p, s]_Z(\phi, q_2),$

(iii) If $s_1 \leq s_2$, then $[V, \lambda, M, p, s_1]_Z(\phi, q) \subseteq [V, \lambda, M, p, s_2]_Z(\phi, q)$, (iv) $[V, \lambda, M, p]_Z(\phi, q) \subseteq [V, \lambda, M, p, s]_Z(\phi, q)$. Proof is easy and thus omitted.

Theorem 2.7 Suppose that $0 < p_k \leq t_k < \infty$ for each $k \in \mathbb{N}$. Then $[V, \lambda, M, p, s]_Z(\phi, q) \subseteq [V, \lambda, M, t, s]_Z(\phi, q)$ where Z = 0 or 1 or ∞ .

Proof is easy.

Theorem 2.8 The sequence spaces $[V, \lambda, M, p, s]_0(\phi, q)$ and $[V, \lambda, M, p, s]_{\infty}(\phi, q)$ are solid.

Proof. We give the proof for $[V, \lambda, M, p, s]_0(\phi, q)$. Let $x \in [V, \lambda, M, p, s]_0(\phi, q)$ and (α_n) be any sequence of scalars such that $|\alpha_n| \leq 1$ for $n \in \mathbb{N}$. Then we have

$$\lambda_n^{-1}{}_{k\in I_n}k^{-s}\left[M\left(q\left(\frac{\phi_{kn}(\alpha_n x)}{\rho}\right)\right)\right]^{p_k} = \lambda_n^{-1}{}_{k\in I_n}k^{-s}\left[M\left(q\left(\frac{\alpha_n\phi_{kn}(x)}{\rho}\right)\right)\right]^{p_k}$$
$$\leq \lambda_n^{-1}{}_{k\in I_n}k^{-s}\left[M\left(q\left(\frac{\phi_{kn}(x)}{\rho}\right)\right)\right]^{p_k}$$

and the right hand side tends to 0 as $n \to \infty$. Hence $(\alpha_n x_n) \in [V, \lambda, M, p, s]_0 (\phi, q)$.

Corollary 2.9 The sequence spaces $[V, \lambda, M, p, s]_0(\phi, q)$ and $[V, \lambda, M, p, s]_{\infty}(\phi, q)$ are monotone.

3 Open Problem

The aim of this paper is to introduce and study the new sequence spaces $[V, \lambda, M, p, s]_1(\phi, q)$, $[V, \lambda, M, p, s]_0(\phi, q)$ and $[V, \lambda, M, p, s]_{\infty}(\phi, q)$. We also examine some topological properties and establish some inclusion relations between these spaces.

Is the sequence space $[V, \lambda, M, p, s]_1(\phi, q)$ solid or monotone? Therefore it is left as an open problem.

References

- Z. U. Ahmad and M. Mursaleen, An application of Banach limits, Proc. Amer. Math. Soc., 103, (1988), 244-246.
- [2] S. Banach, Theorie des Operations Linearies, Warszawa, 1932.
- [3] B. Choudhary and S. D. Parashar, A sequence space defined by Orlicz function, Approx Theory Appl. 18(4), (2002), 70-75.

- [4] P. K. Kamthan and M. Gupta, Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics, 65, Marcel Dekker Inc., New York, 1981.
- [5] M. A. Krasnoselskii and Y. B. Rutickii, *Convex Function and Orlicz spaces*, Groningen, Netherlands, 1961.
- [6] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- [7] G. G. Lorentz, A contribution the theory of divergent series, Acta Mat., 80(1948), 167-190.
- [8] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math., Oxford 34(2) (1983), 77-86.
- M. Mursaleen, Matrix transformations between some new sequence spaces, Houston J. Math., 9(1983), 505-509.
- [10] R. A. Raimi, Invariant means and invariant matrix method of summability, Duke Math. J., (1963), 81-94.
- [11] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36(1972), 104-110.
- [12] V. Karakaya and H. Dutta, On some vector valued generalized difference modular sequence spaces, Filomat 25(3) (2011), 15-27.