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Abstract

In this paper, we establish three inequalities for differentiable s-
geometrically and geometrically convex functions which are connected
with the famous Hermite-Hadamard inequality holding for convex func-
tions. Some applications to special means of positive real numbers are
given.
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1 Introduction

In this section we will present definitions and some results used in this paper.

Definition 1.1 Let I be an interval in R. Then f: 1 — R, 0 # I C R is said
to be convex if

fllz+Q=t)y) <tf(z)+(1-1)f(y). (1)
forallz,y € I andt € [0,1].

Definition 1.2 [1] Let s € (0,1]. A function f : I C Ry = [0,00) — Ry is
said to be s—convex in the second sense if

flz+(1-t)y) <tf(x)+ (1 -1 f(y) (2)
for all z,y € I and t € [0,1].
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It can be easily checked for s = 1, s-convexity reduces to the ordinary
convexity of functions defined on [0, co).

Recently, In [2], the concept of geometrically and s-geometrically convex
functions was introduced as follows.

Definition 1.3 /2] A function f : I C Ry = (0,00) — Ry is said to be a
geometrically convex function if

f 'y <[f @V [f )] (3)
forallz,y € I and t € [0,1].

Definition 1.4 [2] A function f: I C Ry — R, is said to be a s-geometrically
convex function if

F ety < [f @) [f )" (4)

for some s € (0,1], where x,y € I and t € [0,1].

If s =1, the s-geometrically convex function becomes a geometrically con-
vex function on R.

Example 1.5 Let f(x) = 2°/s, x € (0,1], 0 < s < 1, ¢ > 1, and then the
function

|f (@)|" = 2D ()
is monotonically decreasing on (0,1]. Fort € [0, 1], we have

(s=Dq—1)<0, (s=1g((1-1)"=(1-1) <0 (6)
Hence, |f' (x)|? is s-geometrically convez on (0,1] for 0 < s < 1.
In [4], the following Lemma and its related Hermite-Hadamard type in-

equalities for convex functions were obtained.

Lemma 1.6 [4] Let f : I° C R — R be a differentiable mapping on I°,
a,b € I° with a <b. If f' € Lla,b], then the following equality holds:

f(a)2 b_a/ [ac; b_“/0 (1—=2t) f' (ta+ (1 —t)b)dt. (7)

Theorem 1.7 [/ Let f : I° C R — R be a differentiable mapping on I°,
a,b € I° with a < b. If |f'| is convex on [a,b], then the following inequality

holds:
L@HI0 1

< o=a)(f ()] +|f ®))
2 b—a -

8

(8)
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Theorem 1.8 [}/ Let f : I° C R — R be a differentiable mapping on I°,
a,b € I° with a < b, and let p > 1. If the mapping |f’|p/(p_1) is conver on
[a,b] , then the following inequality holds:

b
L IO [ )
_ba [IF@POY g e (p=1)/p
- 2(p—|—1)1/p 2 .

The goal of this paper is to establish some inequalities of Hermite-Hadamard
type for geometrically and s-geometrically convex functions.

2 On some inequalities for s-geometrically con-
vexity

Theorem 2.1 Let f : I C R, — R, be a differentiable mapping on I°,
a,b € I° with a < b, and f' € Lla,b]. If |f'| is s-geometrically convex and
monotonically decreasing on [a,b] for s € (0,1], then the following inequality
holds:

e S T L

<226 (@) (@) (10)

where

}1 a=1 ;11 a=1
g1 (@) =3 2012 9 na at1 0 P (@) =4 201/2-201amna a1 (11)

(In)? (In @)?

a(u,v) = [f (@ |f G, uv>0,

Gi (5591 (), g2 (@) = |f B)] [g1 (a (5,5)) + g2 (a (s,5))] . [f (a)] < 1.
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Proof: Since |f'| is s-geometrically convex and monotonically decreasing
on [a, b], from Lemma 1.6, we have

IN

IA

IN

’f a)+ f (b /f ) do
b_ 1

’ 2a/0 (1—2t)f’(ta—|—(1—t)b)dt‘
b—a

. /0|1—2t||f’(ta+(1—t)b)|dt
b;“ {/0 (1—2t)|f (a%“)|dt+/é 2t—1)|f (atb“)|dt}

1

b;a{AQG—%nmewawlwm

41[<%—1Mf«m“uwwwtfm}.

2

fOo<pu<1,0<a,s<1, then

T T (12)

If |/ (a)] <1, by (12), we get that

[ a=enlr @l 1 @0 e [ ey @l 1 e

2

Az“—%ﬂfwwwﬂ@ﬁkmﬁ+[<m—nuwwﬁu%w”*wt

2
1

z s |4 (@) * ' _ cogs | [ (@) !
[ o or| G as [ e-niror|[Z0]
7 O o1 (05, 5)) + g2 1 (5,5))] (13)

Thus, immediately gives the required inequality (10).

Theorem 2.2 Let f : I C R, — R, be a differentiable mapping on I°,
a,b € I° with a < b, and f' € L[a,b]. If |f'|* is s-geometrically conver and
monotonically decreasing on [a,b] for 1/p+1/q =1 and s € (0,1], then the
following inequality holds:

f(a) +

b—a

2 b—a/f

2 (p le)1/pG 2(5,¢; 95 (@) (14)
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where
i ={ b 4] (15)
Ga (5,¢:95 (@) = | O] [gs (@ (sq,59))] 7, | (a)] < 1. (16)

Proof: Since |f’|? is s-geometrically convex and monotonically decreasing
on [a, b], from Lemma 1.6 and Hélder inequality, we have

‘fm);f(b) _bi@/abf(:v)da:

b_ 1
2‘1/0 11— 20| |f (ta+ (1 —1)b)| dt

< b;“ (/01]1—2t]pdt>; (/01\f’(m+(1—zf)b)|qczt>é

’ q

(17)

<

Using the properties of |f’|?, we obtain that

(/01 f (ta+ (1 1) b)yth>; < (/01 7 () ‘th>;
: (Alvwwvfuwmﬂkwdgé,@&

If |f' (a)| <1, by (12), we get that

(/’V%@W”V%wwkﬁdﬁq < (/’V%MPWV%MW“”dQQ
0 0

- (uwmfﬂé F (o) ﬁ)q

7 (b)
= | B g5 (@ (50, 50))]7 - (19)

Further, since

1

1 1 1
1
/ ]1—2t|pdt:/2(1—2t)pdt+/ (2t—1)”dt:2/2(1—2t)pdt:—
0 0 5 0

2

i
+
—_

a combination of (17)-(20) immediately gives the proof of inequality (14).

Corollary 2.3 Let f: 1 C (0,00) — (0,00) be differentiable on 1°, a,b € I
with a < b, and f' € L([a,b]). If |f'|* is s-geometrically convex and monoton-
ically decreasing on [a,b] for s € (0,1], then
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i) When p = q =2, one has

’f(a)-;f b—/f f

i) If we take s = 1 in (14), we have for geometrically convez, one has

'f(@;f b_a/f

where g3, Gy are same with (15), (16).

G2 ( ) 27 93 (a))

T G (g s ()
2(p+1)r

Theorem 2.4 Let f : I C R, — R, be a differentiable mapping on I°,
a,b € I° with a < b, and f' € L[a,b]. If |f'|* is s-geometrically conver and
monotonically decreasing on |a,b] for ¢ > 1 and s € (0,1], then the following
inequality holds:

fl@+fo 1 "
5 —b_a/af(x)dx

<! ; - G) K Gs (s, q;91 (), g2 ()
(21)

where g1 (a), g2 («) is the same as in (11), and

GS (57 q; 1 (O./) ) 92 ((]1))
= 1/ O [l (@ (s, 50)]7 + [g2 (a (s, 50)] 7|, 1F (@)] <1

Proof: Since |f’| © is s-geometrically convex and monotonically decresing
on [a,b], from Lemma 1.6 and well known power mean inequality, we have

‘f a) + £ (b b—a/f

< b; "(ta+ (1—1)b)|di
< b;a /02(1—2t)|f’(ta+(1—t)b)ldt+/é(2t—1)|f’(w+(1_t)b)|dt]
< 2" </02(1—2t)dt> q[/02<1—2t>|f’<ta+<1—’f)b)'th]q

* </1 (2t - 1)dt> q [/1 (2t — 1)|f’(ta+(1—t)b)|"dt] ]

2
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1

SR

ﬁl 2t —1)|f (a'b" )| dt]

2

< ) “/ (1= 20) @) |7 () dt] %

| [ =i @ i e dt] ] 22)

2

Q=

+

If |f (a)] <1, by (12), we get that

1

/0 = 20) [ (@) | (0) 1 ae

[N

= / (L—2t) |f/ (@)™ £ ®) 7 dt = |f (0)]* g1 (e (54, 59)) ,
[ @ — 1)1 @) |7 )" db (23)

2

< [ e DIF @ O d = 17 0 g (0 (s0.50)

2

By combining of (22)-(23) immediately gives the required inequality (21).

Corollary 2.5 Let f : I C (0,00) — (0,00) be differentiable on I°, a,b € 1
with a < b, and f" € L([a,b]). If | f'|? is s-geometrically convex and monoton-
ically decreasing on [a,b] for ¢ > 1, and s € (0,1], then

i) If we take ¢ =1 in (21), we obtain that

L0 IO L [ i

ii) If we take s =1 in (21), for geometrically convex, we obtain that

‘f(a);f b—a/f

where g1 (@), g2 (), (u,v), Gs (s,q; 1 () , g2 () are same with above.

< 265 (5,101 () 2 ()

cb-a (Z)l_; G3 (L g g1 (), g2 ()
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3 Applications to some special means

Let
a+b b—a
A(a,b) = La,b . — b
() = “27 Llab) == (a#D),
pptl _ gptl 1/p
L = R -1

be the arithmetic, logarithmic, generalized logarithmic means for a,b > 0
respectively.

Proposition 3.1 Let 0 <a<b<1,0<s<1. Then
A (a®,0%) — [Ls (a,b)]"] (24)

s(s—1)
(b - CI,)2Sb L <a/5(571)’ bs(571)>

A () - a2y ()

Proof: The proof is obvious from Theorem 2.1 applied f (z) = z°/s, © €
(0,1], 0 < s < 1. Then \f’(a)\ =a* ' >0t =|f (b)] > 1 and

'f a)+f (b /f

=A@ D)~ (L @b, (29)

and
(26)
| (O) g1 (@ (5, 8)) + g2 (@ (s, 5))]

o\ s(—1) a\5(s—1) a\S6=1) | ra\s(s=1) 1 7qys(s—1)
bs<s—1>4 () —m () =29+ (1) () 2
b
[as(s—n + bs(s—l) 1 as(s—l) . bs(s—l) ]

bs(s—l) as(s—l) N bs(s—l)
= lnasgl B lnbsgl JRICE oD - B I gD —Inp e
_ b5<871)L <a5(571)’ b5(571)> |:A <CIJ5(.571)7 bs(sfl)) _ (1/2) L (a5(571)7b5(571)>:| ‘

From (25) and (26), we have the desired inequality.

Proposition 3.2 Let 0 <a<b<1, 0<s<1. Then

o sq(l—s) - e 1/
|A (G/S? bs) . [Ls (Cl, b)]5| S (b CL) sb |:L (asq(s 1),b q( 1)>:| q (27)
2(p+1)""
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Proof: The proof is obvious from Theorem 2.2 applied f (z) = z°/s, x €

(0,1],0< s <1and g>1. Then |[f' (a)] =a*' > b1 =|f' (b)] > 1 and

sa(s=1) 5 sa(s—1)
L <a ,b )

(28)

aSQ(s—l) N bsq(s_l) 1

bsq(s—l) (ln ajsq(s—l) o ln bsq(s—l)) = bsq(s—l)

93 (a (sq, 5q)) =

From (28), we have the desired inequality.

Proposition 3.3 Let 0<a<b0<1,0<s<1andqg>1. Then

A )= o < 07D (1) T o]

Proof: The proof is obvious from Theorem 2.4 applied f ()
(0,1],0< s <1and g > 1. Then |f' (a)] = a*"t > b1 = |f' ()]

1 1 sq(s=1)  sa(s=l)
9 (Oé (Sq’ Sq)) = U= sq(s—1) In bsq(sfl) sq(s—1) Lia 7b -1 )
b 2

Ina

(2) 2qs(s—1)
b

31
(ln asq(sfl) o 1n bSQ(871)) X ( )

g2 (a(sq,sq)) = V =

()" +1

sals— sq(s—1) sq(s—1)
(2)"eY <1na T b C )

From (30) and (31), we have the desired inequality.

1—

4 Open Problem

It is well known that if f is a convex function on the interval I C R, then
the Hadamard’s inequality holds for the convex functions. It has already been
proved a lot of this type inequalities for several convex functions. So, there is
one questions as follows:

How can be established the general versions of the inequalities (10), (14)
and (21) involving several differentiable s-geometrically convex and monoton-
ically decreasing function on I.
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