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Abstract

In this paper, we establish three inequalities for differentiable s-
geometrically and geometrically convex functions which are connected
with the famous Hermite-Hadamard inequality holding for convex func-
tions. Some applications to special means of positive real numbers are
given.
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1 Introduction

In this section we will present definitions and some results used in this paper.

Definition 1.1 Let I be an interval in R. Then f : I → R, ∅ 6= I ⊆ R is said
to be convex if

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y) . (1)

for all x, y ∈ I and t ∈ [0, 1] .

Definition 1.2 [1] Let s ∈ (0, 1] . A function f : I ⊂ R0 = [0,∞) → R0 is
said to be s−convex in the second sense if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y) (2)

for all x, y ∈ I and t ∈ [0, 1].
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It can be easily checked for s = 1, s-convexity reduces to the ordinary
convexity of functions defined on [0,∞).

Recently, In [2], the concept of geometrically and s-geometrically convex
functions was introduced as follows.

Definition 1.3 [2] A function f : I ⊂ R+ = (0,∞) → R+ is said to be a
geometrically convex function if

f
(
xty1−t

)
≤ [f (x)]t [f (y)]1−t (3)

for all x, y ∈ I and t ∈ [0, 1].

Definition 1.4 [2] A function f : I ⊂ R+ → R+ is said to be a s-geometrically
convex function if

f
(
xty1−t

)
≤ [f (x)]t

s

[f (y)](1−t)
s

(4)

for some s ∈ (0, 1], where x, y ∈ I and t ∈ [0, 1].

If s = 1, the s-geometrically convex function becomes a geometrically con-
vex function on R+.

Example 1.5 Let f (x) = xs/s, x ∈ (0, 1] , 0 < s < 1, q ≥ 1, and then the
function

|f ′ (x)|q = x(s−1)q (5)

is monotonically decreasing on (0, 1]. For t ∈ [0, 1], we have

(s− 1) q (ts − t) ≤ 0, (s− 1) q ((1− t)s − (1− t)) ≤ 0. (6)

Hence, |f ′ (x)|q is s-geometrically convex on (0, 1] for 0 < s < 1.

In [4], the following Lemma and its related Hermite-Hadamard type in-
equalities for convex functions were obtained.

Lemma 1.6 [4] Let f : I◦ ⊆ R → R be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b. If f ′ ∈ L [a, b] , then the following equality holds:

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx =
b− a

2

∫ 1

0

(1− 2t) f ′ (ta+ (1− t) b) dt. (7)

Theorem 1.7 [4] Let f : I◦ ⊆ R → R be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b. If |f ′| is convex on [a, b] , then the following inequality
holds: ∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ (b− a) (|f ′ (a)|+ |f ′ (b)|)
8

. (8)
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Theorem 1.8 [4] Let f : I◦ ⊆ R → R be a differentiable mapping on I◦,

a, b ∈ I◦ with a < b, and let p > 1. If the mapping |f ′|p/(p−1) is convex on
[a, b] , then the following inequality holds:

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ (9)

≤ b− a
2 (p+ 1)1/p

[
|f ′ (a)|p/(p−1) + |f ′ (b)|p/(p−1)

2

](p−1)/p
.

The goal of this paper is to establish some inequalities of Hermite-Hadamard
type for geometrically and s-geometrically convex functions.

2 On some inequalities for s-geometrically con-

vexity

Theorem 2.1 Let f : I ⊆ R+ → R+ be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b, and f ′ ∈ L [a, b] . If |f ′| is s-geometrically convex and
monotonically decreasing on [a, b] for s ∈ (0, 1] , then the following inequality
holds:∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ b− a
2

G1 (s; g1 (α) , g2 (α)) (10)

where

g1 (α) =

{
1
4

α = 1
2α1/2−2−lnα

(lnα)2
α 6= 1

, g2 (α) =

{
1
4

α = 1
2α1/2−2α+α lnα

(lnα)2
α 6= 1

(11)

α (u, v) = |f ′ (a)|u |f ′ (b)|−v , u, v > 0,

G1 (s; g1 (α) , g2 (α)) = |f ′ (b)|s [g1 (α (s, s)) + g2 (α (s, s))] , |f ′ (a)| ≤ 1.
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Proof: Since |f ′| is s-geometrically convex and monotonically decreasing
on [a, b], from Lemma 1.6, we have∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣
≤

∣∣∣∣b− a2

∫ 1

0

(1− 2t) f ′ (ta+ (1− t) b) dt
∣∣∣∣

≤ b− a
2

∫ 1

0

|1− 2t| |f ′ (ta+ (1− t) b)| dt

≤ b− a
2

{∫ 1
2

0

(1− 2t)
∣∣f ′ (atb1−t)∣∣ dt+

∫ 1

1
2

(2t− 1)
∣∣f ′ (atb1−t)∣∣ dt}

≤ b− a
2

{∫ 1
2

0

(1− 2t) |f ′ (a)|t
s

|f ′ (b)|(1−t)
s

dt

+

∫ 1

1
2

(2t− 1) |f ′ (a)|t
s

|f ′ (b)|(1−t)
s

dt

}
.

If 0 < µ ≤ 1, 0 < α, s ≤ 1, then

µα
s ≤ µαs. (12)

If |f ′ (a)| ≤ 1, by (12), we get that∫ 1
2

0

(1− 2t) |f ′ (a)|t
s

|f ′ (b)|(1−t)
s

dt+

∫ 1

1
2

(2t− 1) |f ′ (a)|t
s

|f ′ (b)|(1−t)
s

dt

≤
∫ 1

2

0

(1− 2t) |f ′ (a)|st |f ′ (b)|s(1−t) dt+

∫ 1

1
2

(2t− 1) |f ′ (a)|st |f ′ (b)|s(1−t) dt

=

∫ 1
2

0

(1− 2t) |f ′ (b)|s
∣∣∣∣f ′ (a)

f ′ (b)

∣∣∣∣st dt+

∫ 1

1
2

(2t− 1) |f ′ (b)|s
∣∣∣∣f ′ (a)

f ′ (b)

∣∣∣∣st dt
= |f ′ (b)|s [g1 (α (s, s)) + g2 (α (s, s))] (13)

Thus, immediately gives the required inequality (10).

Theorem 2.2 Let f : I ⊆ R+ → R+ be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b, and f ′ ∈ L [a, b] . If |f ′|q is s-geometrically convex and
monotonically decreasing on [a, b] for 1/p + 1/q = 1 and s ∈ (0, 1] , then the
following inequality holds:∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ b− a
2 (p+ 1)1/p

G2 (s, q; g3 (α)) (14)
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where

g3 (α) =

{
1, α = 1,
α−1
lnα

, α 6= 1,
(15)

G2 (s, q; g3 (α)) = |f ′ (b)|s [g3 (α (sq, sq))]
1
q , |f ′ (a)| ≤ 1. (16)

Proof: Since |f ′|q is s-geometrically convex and monotonically decreasing
on [a, b], from Lemma 1.6 and Hölder inequality, we have∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ (17)

≤ b− a
2

∫ 1

0

|1− 2t| |f ′ (ta+ (1− t) b)| dt

≤ b− a
2

(∫ 1

0

|1− 2t|p dt
) 1

p
(∫ 1

0

|f ′ (ta+ (1− t) b)|q dt
) 1

q

Using the properties of |f ′|q , we obtain that(∫ 1

0

|f ′ (ta+ (1− t) b)|q dt
) 1

q

≤
(∫ 1

0

∣∣f ′ (atb1−t)∣∣q dt) 1
q

≤
(∫ 1

0

|f ′ (a)|qt
s

|f ′ (b)|q(1−t)
s

dt

) 1
q

. (18)

If |f ′ (a)| ≤ 1, by (12), we get that(∫ 1

0

|f ′ (a)|qt
s

|f ′ (b)|q(1−t)
s

dt

) 1
q

≤
(∫ 1

0

|f ′ (a)|sqt |f ′ (b)|sq(1−t) dt
) 1

q

=

(
|f ′ (b)|sq

∫ 1

0

∣∣∣∣f ′ (a)

f ′ (b)

∣∣∣∣sqt dt
) 1

q

= |f ′ (b)|s [g3 (α (sq, sq))]
1
q . (19)

Further, since∫ 1

0

|1− 2t|p dt =

∫ 1
2

0

(1− 2t)p dt+

∫ 1

1
2

(2t− 1)p dt = 2

∫ 1
2

0

(1− 2t)p dt =
1

p+ 1

(20)
a combination of (17)-(20) immediately gives the proof of inequality (14).

Corollary 2.3 Let f : I ⊆ (0,∞) → (0,∞) be differentiable on I◦, a, b ∈ I
with a < b, and f ′ ∈ L ([a, b]) . If |f ′|q is s-geometrically convex and monoton-
ically decreasing on [a, b] for s ∈ (0, 1] , then
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i) When p = q = 2, one has∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ b− a
2
√

2
G2 (s, 2, g3 (α))

ii) If we take s = 1 in (14), we have for geometrically convex, one has∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ b− a
2 (p+ 1)

1
p

G2 (1, q, g3 (α))

where g3, G2 are same with (15), (16).

Theorem 2.4 Let f : I ⊆ R+ → R+ be a differentiable mapping on I◦,
a, b ∈ I◦ with a < b, and f ′ ∈ L [a, b] . If |f ′|q is s-geometrically convex and
monotonically decreasing on [a, b] for q ≥ 1 and s ∈ (0, 1] , then the following
inequality holds:∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ b− a
2

(
1

4

)1− 1
q

G3 (s, q; g1 (α) , g2 (α))

(21)
where g1 (α) , g2 (α) is the same as in (11), and

G3 (s, q; g1 (α) , g2 (α))

= |f ′ (b)|s
[
[g1 (α (sq, sq))]

1
q + [g2 (α (sq, sq))]

1
q

]
, |f ′ (a)| ≤ 1

Proof: Since |f ′| q is s-geometrically convex and monotonically decresing
on [a, b] , from Lemma 1.6 and well known power mean inequality, we have∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣
≤ b− a

2

∫ 1

0

|1− 2t| |f ′ (ta+ (1− t) b)| dt

≤ b− a
2

[∫ 1
2

0

(1− 2t) |f ′ (ta+ (1− t) b)| dt+

∫ 1

1
2

(2t− 1) |f ′ (ta+ (1− t) b)| dt

]

≤ b− a
2

(∫ 1
2

0

(1− 2t) dt

)1− 1
q
[∫ 1

2

0

(1− 2t) |f ′ (ta+ (1− t) b)|q dt

] 1
q

+

(∫ 1

1
2

(2t− 1) dt

)1− 1
q
[∫ 1

1
2

(2t− 1) |f ′ (ta+ (1− t) b)|q dt

] 1
q


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≤ b− a
2

(
1

4

)1− 1
q

[∫ 1
2

0

(1− 2t)
∣∣f ′ (atb1−t)∣∣q dt] 1

q

+

[∫ 1

1
2

(2t− 1)
∣∣f ′ (atb1−t)∣∣q dt] 1

q


≤ b− a

2

(
1

4

)1− 1
q

[∫ 1
2

0

(1− 2t) |f ′ (a)|qt
s

|f ′ (b)|q(1−t)
s

dt

] 1
q

+

[∫ 1

1
2

(2t− 1) |f ′ (a)|qt
s

|f ′ (b)|q(1−t)
s

dt

] 1
q

 (22)

If |f ′ (a)| ≤ 1, by (12), we get that∫ 1
2

0

(1− 2t) |f ′ (a)|qt
s

|f ′ (b)|q(1−t)
s

dt

≤
∫ 1

2

0

(1− 2t) |f ′ (a)|sqt |f ′ (b)|sq(1−t) dt = |f ′ (b)|sq g1 (α (sq, sq)) ,∫ 1

1
2

(2t− 1) |f ′ (a)|qt
s

|f ′ (b)|q(1−t)
s

dt (23)

≤
∫ 1

1
2

(2t− 1) |f ′ (a)|sqt |f ′ (b)|sq(1−t) dt = |f ′ (b)|sq g2 (α (sq, sq))

By combining of (22)-(23) immediately gives the required inequality (21).

Corollary 2.5 Let f : I ⊆ (0,∞) → (0,∞) be differentiable on I◦, a, b ∈ I
with a < b, and f ′ ∈ L ([a, b]) . If |f ′|q is s-geometrically convex and monoton-
ically decreasing on [a, b] for q ≥ 1, and s ∈ (0, 1] , then

i) If we take q = 1 in (21), we obtain that∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ b− a
2

G3 (s, 1; g1 (α) , g2 (α))

ii) If we take s = 1 in (21), for geometrically convex, we obtain that∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ ≤ b− a
2

(
1

4

)1− 1
q

G3 (1, q; g1 (α) , g2 (α))

where g1 (α) , g2 (α) , α (u, v) , G3 (s, q; g1 (α) , g2 (α)) are same with above.
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3 Applications to some special means

Let

A (a, b) =
a+ b

2
, L (a, b) =

b− a
ln b− ln a

(a 6= b) ,

Lp (a, b) =

(
bp+1 − ap+1

(p+ 1) (b− a)

)1/p

, a 6= b, p ∈ R, p 6= −1, 0

be the arithmetic, logarithmic, generalized logarithmic means for a, b > 0
respectively.

Proposition 3.1 Let 0 < a < b ≤ 1, 0 < s < 1. Then

|A (as, bs)− [Ls (a, b)]s| (24)

≤ (b− a) sb
s(s−1)

2
L
(
a

s(s−1)

, b
s(s−1)

)
×
[
A
(
a

s(s−1)

, b
s(s−1)

)
− (1/2)L

(
a

s(s−1)

, b
s(s−1)

)]
Proof: The proof is obvious from Theorem 2.1 applied f (x) = xs/s, x ∈

(0, 1] , 0 < s < 1. Then |f ′ (a)| = as−1 > bs−1 = |f ′ (b)| ≥ 1 and∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣ =
1

s
|A (as, bs)− [Ls (a, b)]s| , (25)

and

(26)

|f ′ (b)|s [g1 (α (s, s)) + g2 (α (s, s))]

= b
s(s−1) 4

√(
a
b

)s(s−1) − ln
(
a
b

)s(s−1) − 2
(
a
b

)s(s−1)
+
(
a
b

)s(s−1)
ln
(
a
b

)s(s−1) − 2[
ln
(
a
b

)s(s−1)]2
=

b
s(s−1)

ln a
s−1
s − ln b

s−1
s

(
a

s(s−1) − bs(s−1)

bs(s−1)

)[
a

s(s−1)
+ b

s(s−1)

2bs(s−1)
− 1

2bs(s−1)

a
s(s−1) − bs(s−1)

ln as(s−1) − ln bs(s−1)

]
= b

s(s−1)

L
(
a

s(s−1)

, b
s(s−1)

) [
A
(
a

s(s−1)

, b
s(s−1)

)
− (1/2)L

(
a

s(s−1)

, b
s(s−1)

)]
.

From (25) and (26), we have the desired inequality.

Proposition 3.2 Let 0 < a < b ≤ 1, 0 < s < 1. Then

|A (as, bs)− [Ls (a, b)]s| ≤ (b− a) sb
sq(1−s)

2 (p+ 1)1/p

[
L
(
a

sq(s−1)

, b
sq(s−1)

)]1/q
(27)
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Proof: The proof is obvious from Theorem 2.2 applied f (x) = xs/s, x ∈

(0, 1] , 0 < s < 1 and q > 1. Then |f ′ (a)| = as−1 > bs−1 = |f ′ (b)| ≥ 1 and

g3 (α (sq, sq)) =
a

sq(s−1) − bsq(s−1)

bsq(s−1)
(
ln asq(s−1) − ln bsq(s−1)

) =
1

bsq(s−1)
L
(
a

sq(s−1)

, b
sq(s−1)

)
(28)

From (28), we have the desired inequality.

Proposition 3.3 Let 0 < a < b ≤ 1, 0 < s < 1 and q ≥ 1. Then

|A (as, bs)− [Ls (a, b)]s| ≤ s (b− a)

2

(
1

4

)1− 1
q

b
s(s−1)

[
U

1
q + V

1
q

]
(29)

Proof: The proof is obvious from Theorem 2.4 applied f (x) = xs/s, x ∈
(0, 1] , 0 < s < 1 and q > 1. Then |f ′ (a)| = as−1 > bs−1 = |f ′ (b)| ≥ 1 and

(30)

g1 (α (sq, sq)) = U =
1

ln asq(s−1) − ln bsq(s−1)

(
1

b
sq(s−1)

2

L

(
a

sq(s−1)
2 , b

sq(s−1)
2

)
− 1

)
,

g2 (α (sq, sq)) = V =

(
a
b

)2qs(s−1)(
ln asq(s−1) − ln bsq(s−1)

) × (31)1−
(
a
b

)sq(s−1)
+ 1(

a
b

)sq(s−1)(
ln a

sq(s−1)
2 − ln b

sq(s−1)
2

)


From (30) and (31), we have the desired inequality.

4 Open Problem

It is well known that if f is a convex function on the interval I ⊂ R, then
the Hadamard’s inequality holds for the convex functions. It has already been
proved a lot of this type inequalities for several convex functions. So, there is
one questions as follows:

How can be established the general versions of the inequalities (10), (14)
and (21) involving several differentiable s-geometrically convex and monoton-
ically decreasing function on I.
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