Int. J. Open Problems Compt. Math., Vol. 6, No. 1, March 2013 ISSN 1998-6262; Copyright © ICSRS Publication, 2013 www.i-csrs.org

TANGENT SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME IN HEISENBERG GROUP Heis³

Talat KÖRPINAR and Essin TURHAN

Firat University, Department of Mathematics 23119, Elazığ, TURKEY e-mails: talatkorpinar@gmail.com, essin.turhan@gmail.com

Abstract

In this paper, we study tangent surfaces of biharmonic B-general helices according to Bishop frame in the Heisenberg group Heis³. We give necessary and sufficient conditions for B-general helices to be biharmonic according to Bishop frame. We characterize the tangent surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberg group Heis³. Additionally, we illustrate our main theorem.

Keywords: Biharmonic curve, Bishop frame, Heisenberg group.

1 Introduction

Developable surfaces, which can be developed onto a plane without stretching and tearing, form a subset of ruled surfaces, which can be generated by sweeping a line through space. There are three types of developable surfaces: cones, cylinders (including planes) and tangent surfaces formed by the tangents of a space curve, which is called the cuspidal edge of this surface.

In this paper, we study tangent surfaces of biharmonic B-general helices according to Bishop frame in the Heisenberg group Heis³. We give necessary and sufficient conditions for B-general helices to be biharmonic according to Bishop frame. We characterize the tangent surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberg group Heis³. Additionally, we illustrate our main theorem.

2 The Heisenberg Group Heis³

Heisenberg group Heis³ can be seen as the space R³ endowed with the following multipilcation:

$$(\bar{x}, \bar{y}, \bar{z})(x, y, z) = (\bar{x} + x, \bar{y} + y, \bar{z} + z - \frac{1}{2}xy + \frac{1}{2}x\bar{y})$$
 (2.1)

Heis³ is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The Riemannian metric g is given by

$$g = dx^2 + dy^2 + (dz - xdy)^2.$$

The Lie algebra of Heis³ has an orthonormal basis

$$\mathbf{e}_1 = \frac{\partial}{\partial x}, \, \mathbf{e}_2 = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}, \, \mathbf{e}_3 = \frac{\partial}{\partial z},$$
 (2.2)

for which we have the Lie products

$$[\mathbf{e}_{1},\mathbf{e}_{2}] = \mathbf{e}_{3}, [\mathbf{e}_{2},\mathbf{e}_{3}] = [\mathbf{e}_{3},\mathbf{e}_{1}] = 0$$

with

$$g(\mathbf{e}_1, \mathbf{e}_1) = g(\mathbf{e}_2, \mathbf{e}_2) = g(\mathbf{e}_3, \mathbf{e}_3) = 1.$$

We obtain

$$\begin{split} \nabla_{\mathbf{e}_1} \mathbf{e}_1 &= \nabla_{\mathbf{e}_2} \mathbf{e}_2 = \nabla_{\mathbf{e}_3} \mathbf{e}_3 = 0, \\ \nabla_{\mathbf{e}_1} \mathbf{e}_2 &= -\nabla_{\mathbf{e}_2} \mathbf{e}_1 = \frac{1}{2} \mathbf{e}_3, \\ \nabla_{\mathbf{e}_1} \mathbf{e}_3 &= \nabla_{\mathbf{e}_3} \mathbf{e}_1 = -\frac{1}{2} \mathbf{e}_2, \\ \nabla_{\mathbf{e}_2} \mathbf{e}_3 &= \nabla_{\mathbf{e}_3} \mathbf{e}_2 = \frac{1}{2} \mathbf{e}_1. \end{split}$$

We adopt the following notation and sign convention for Riemannian curvature operator on Heis³ defined by

$$R(X,Y)Z = -\nabla_X \nabla_Y Z + \nabla_Y \nabla_Y Z + \nabla_{X,Y} Z,$$

while the Riemannian curvature tensor is given by

$$R(X,Y,Z,W) = g(R(X,Y)Z,W),$$

where X, Y, Z, W are smooth vector fields on Heis³.

The components $\{R_{ijkl}\}$ of R relative to $\{e_1, e_2, e_3\}$ are defined by

$$g(R(e_i, e_j)e_k, e_l) = R_{ijkl}$$

The non vanishing components of the above tensor fields are

$$R_{121} = -\frac{3}{4}e_2$$
, $R_{131} = \frac{1}{4}e_3$, $R_{122} = \frac{3}{4}e_1$,

$$R_{232} = \frac{1}{4}e_3$$
, $R_{133} = -\frac{1}{4}e_1$, $R_{233} = -\frac{1}{4}e_2$,

and

$$R_{1212} = -\frac{3}{4}, \quad R_{1313} = R_{2323} = \frac{1}{4}.$$
 (2.3)

3 Biharmonic B-General Helices with Bishop Frame In The Heisenberg Group Heis³

Let $\gamma: I \to Heis^3$ be a non geodesic curve on the Heisenberg group Heis³ parametrized by arc length. Let $\{T, N, B\}$ be the Frenet frame fields tangent to the Heisenberg group Heis³ along γ defined as follows:

T is the unit vector field γ' tangent to γ , **N** is the unit vector field in the direction of $\nabla_{\mathbf{T}}\mathbf{T}$ (normal to γ), and **B** is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$\nabla_{\mathbf{T}}\mathbf{T} = \kappa \mathbf{N},$$

$$\nabla_{\mathbf{T}}\mathbf{N} = -\kappa \mathbf{T} + \tau \mathbf{B},$$

$$\nabla_{\mathbf{T}}\mathbf{B} = -\tau \mathbf{N},$$
(3.1)

where κ is the curvature of γ and τ is its torsion and

$$g(\mathbf{T}, \mathbf{T}) = 1, g(\mathbf{N}, \mathbf{N}) = 1, g(\mathbf{B}, \mathbf{B}) = 1,$$

 $g(\mathbf{T}, \mathbf{N}) = g(\mathbf{T}, \mathbf{B}) = g(\mathbf{N}, \mathbf{B}) = 0.$ (3.2)

In the rest of the paper, we suppose everywhere $\kappa \neq 0$ and $\tau \neq 0$.

The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. The Bishop frame is expressed as

$$\nabla_{\mathbf{T}} \mathbf{T} = k_1 \mathbf{M}_1 + k_2 \mathbf{M}_2,$$

$$\nabla_{\mathbf{T}} \mathbf{M}_1 = -k_1 \mathbf{T},$$

$$\nabla_{\mathbf{T}} \mathbf{M}_2 = -k_2 \mathbf{T},$$
(3.3)

where

$$g(\mathbf{T}, \mathbf{T}) = 1, g(\mathbf{M}_1, \mathbf{M}_1) = 1, g(\mathbf{M}_2, \mathbf{M}_2) = 1,$$

 $g(\mathbf{T}, \mathbf{M}_1) = g(\mathbf{T}, \mathbf{M}_2) = g(\mathbf{M}_1, \mathbf{M}_2) = 0.$ (3.4)

Here, we shall call the set $\{\mathbf{T}, \mathbf{M}_1, \mathbf{M}_2\}$ as Bishop trihedra, k_1 and k_2 as Bishop curvatures. where $\theta(s) = \arctan \frac{k_2}{k_1}$, $\tau(s) = \theta'(s)$ and $\kappa(s) = \sqrt{k_2^2 + k_1^2}$.

Thus, Bishop curvatures are defined by

$$k_1 = \kappa(s)\cos\theta(s),$$

$$k_2 = \kappa(s)\sin\theta(s).$$
(3.5)

With respect to the orthonormal basis $\{e_1, e_2, e_3\}$ we can write

$$\mathbf{T} = T^{1}\mathbf{e}_{1} + T^{2}\mathbf{e}_{2} + T^{3}\mathbf{e}_{3},$$

$$\mathbf{M}_{1} = M_{1}^{1}\mathbf{e}_{1} + M_{1}^{2}\mathbf{e}_{2} + M_{1}^{3}\mathbf{e}_{3},$$

$$\mathbf{M}_{2} = M_{2}^{1}\mathbf{e}_{1} + M_{2}^{2}\mathbf{e}_{2} + M_{2}^{3}\mathbf{e}_{3}.$$
(3.6)

Theorem 3.1. $\gamma: I \to Heis^3$ is a biharmonic curve with Bishop frame if and only if

$$k_{1}^{2} + k_{2}^{2} = \text{constant} = C \neq 0,$$

$$k_{1}^{"} - Ck_{1} = k_{1} \left[\frac{1}{4} - \left(M_{2}^{3} \right)^{2} \right] - k_{2} M_{1}^{3} M_{2}^{3},$$

$$k_{2}^{"} - Ck_{2} = k_{1} M_{1}^{3} M_{2}^{3} + k_{2} \left[\frac{1}{4} - \left(M_{1}^{3} \right)^{2} \right].$$
(3.7)

To separate a general helix according to Bishop frame from that of Frenet-Serret frame, in the rest of the paper, we shall use notation for the curve defined above as B-general helix.

Theorem 3.2. Let $\gamma_B: I \to Heis^3$ be a unit speed biharmonic B-general helix with non-zero natural curvatures. Then the parametric equation of γ_B are

$$x_{B}(s) = \frac{\sin \theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta)^{\frac{1}{2}}} \sin[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_{0}] + \zeta_{2},$$

$$y_{B}(s) = -\frac{\sin \theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta)^{\frac{1}{2}}} \cos[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta)^{\frac{1}{2}} s + \zeta_{0}] + \zeta_{3},$$

$$(3.8)$$

$$z_{B}(s) = (\cos \theta)s + \frac{\sin^{2}\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos \theta)^{\frac{1}{2}}} (\frac{s}{2} - \frac{\sin 2[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos \theta)^{\frac{1}{2}}s + \zeta_{0}]}{4(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos \theta)^{\frac{1}{2}}} - \frac{\zeta_{1}\sin \theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos \theta)^{\frac{1}{2}}} \cos[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos \theta)^{\frac{1}{2}}s + \zeta_{0}] + \zeta_{4},$$

where ζ_0 , ζ_1 , ζ_2 , ζ_3 , ζ_4 are constants of integration, [10].

We can draw unit speed biharmonic B-general helices according to Bishop frame with helping the programme of Mathematica as follow:

Fig.1.

4 Tangent Surface of Biharmonic B-General Helices with Bishop Frame In The Heisenberg Group Heis³

The purpose of this section is to study tangent developable of biharmonic B -general helices with Bishop frame in the Heisenberg group Heis³.

The tangent surface of $\gamma_{\rm B}$ is a ruled surface

$$R(s,u) = \gamma_{B}(s) + uT(s). \tag{4.1}$$

Theorem 4.1. (Main Theorem) Let $\gamma_B: I \to Heis^3$ be a unit speed biharmonic B-general helix with non-zero natural curvatures. Then the parametric equation of tangent surface of γ_B are

$$x_{B}(s,u) = \frac{\sin \theta}{\left(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta\right)^{\frac{1}{2}}} \sin\left[\left(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta\right)^{\frac{1}{2}} s + \zeta_{0}\right]$$

$$+ u \sin \theta \cos\left[\left(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta\right)^{\frac{1}{2}} s + \zeta_{0}\right] + \zeta_{2},$$

$$y_{B}(s,u) = -\frac{\sin \theta}{\left(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta\right)^{\frac{1}{2}}} \cos\left[\left(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta\right)^{\frac{1}{2}} s + \zeta_{0}\right] (4.2)$$

$$+ u \sin \theta \sin\left[\left(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2} \theta} - \cos \theta\right)^{\frac{1}{2}} s + \zeta_{0}\right] + \zeta_{3},$$

$$z_{B}(s,u) = (\cos\theta)s + \frac{\sin^{2}\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} (\frac{s}{2} - \frac{\sin 2[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_{0}]}{4(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}}$$
$$- \frac{\zeta_{1}\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}}\cos[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_{0}] + u\cos\theta$$
$$+ \frac{u\sin^{2}\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}}\sin^{2}[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_{0}]$$

$$+u\zeta_{1}\sin\theta\sin[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}]+\zeta_{4},$$

where ζ_0 , ζ_1 , ζ_2 , ζ_3 , ζ_4 are constants of integration.

Proof. From orthonormal basis (2.2) and (3.8), we obtain

$$\mathbf{T} = (\sin\theta \cos[(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_0], \sin\theta \sin[(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_0],$$

$$\cos\theta + \frac{\sin^2\theta}{(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}}\sin^2[(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_0]$$

$$+ \zeta_1 \sin\theta \sin[(\frac{k_1^2 + k_2^2}{\sin^2\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_0]),$$
(4.3)

where ζ_1 is constant of integration.

Using above equation, we have (4.2), the theorem is proved.

We need following lemma.

Lemma 4.2. Let $\gamma_B: I \to Heis^3$ be a unit speed biharmonic B-general helix with non-zero natural curvatures. Then the position vector of γ_B is

$$\gamma_{B}(s) = \left[\frac{\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \sin\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_{0}\right] + \zeta_{2}\right] \mathbf{e}_{1}$$

$$+ \left[-\frac{\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \cos\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_{0}\right] + \zeta_{3}\right] \mathbf{e}_{2}$$

$$+ \left[-\left[\frac{\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \sin\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_{0}\right] + \zeta_{2}\right] \quad (4.4)$$

$$\left[-\frac{\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \cos\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_{0}\right] + \zeta_{3}\right]$$

$$+ (\cos\theta)s + \frac{\sin^{2}\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} (\frac{s}{2} - \frac{\sin2\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}s + \zeta_{0}\right]}{4(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}}$$

$$-\frac{\zeta_{1}\sin\theta}{(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}}\cos[(\frac{k_{1}^{2}+k_{2}^{2}}{\sin^{2}\theta}-\cos\theta)^{\frac{1}{2}}s+\zeta_{0}]+\zeta_{4}]\mathbf{e}_{3},$$

where ζ_0 , ζ_1 , ζ_2 , ζ_3 , ζ_4 are constants of integration.

Theorem 4.3. Let $\gamma_B: I \to Heis^3$ be a unit speed biharmonic B-general helix with non-zero natural curvatures. Then the equation of tangent surface of γ_B is

$$R_{B}(s,u) = \left[\frac{\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \sin\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}} s + \zeta_{0}\right] + u \sin\theta \cos\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}} s + \zeta_{0}\right] + \zeta_{2} \right] \mathbf{e}_{1}$$

$$+ \left[-\frac{\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \cos\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}} s + \zeta_{0}\right] + \zeta_{3} \right] \mathbf{e}_{2}$$

$$+ u \sin\theta \sin\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}} s + \zeta_{0}\right] + \zeta_{3} \right] \mathbf{e}_{2}$$

$$+ \left[-\left[\frac{\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \sin\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}} s + \zeta_{0}\right] + \zeta_{3}\right]$$

$$+ \left[-\frac{\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \cos\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}} s + \zeta_{0}\right] + \zeta_{3}\right]$$

$$+ \left(\cos\theta\right) s + \frac{\sin^{2}\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \left(\frac{s}{2} - \frac{\sin2\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}} s + \zeta_{0}\right]}{4(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} + \frac{\zeta_{1}\sin\theta}{(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}}} \cos\left[(\frac{k_{1}^{2} + k_{2}^{2}}{\sin^{2}\theta} - \cos\theta)^{\frac{1}{2}} s + \zeta_{0}\right] + u \cos\theta + \zeta_{4}\right] \mathbf{e}_{3},$$

where ζ_0 , ζ_1 , ζ_2 , ζ_3 , ζ_4 are constants of integration.

Proof. From section 3, we immediately arrive at

$$\mathbf{T} = \sin \theta \cos \left[\left(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta \right)^{\frac{1}{2}} s + \zeta_0 \right] \mathbf{e}_1 + \sin \theta \sin \left[\left(\frac{k_1^2 + k_2^2}{\sin^2 \theta} - \cos \theta \right)^{\frac{1}{2}} s + \zeta_0 \right] \mathbf{e}_2 + \cos \theta \mathbf{e}_3.$$
(4.6)

Using above equation we have (4.5). Thus, the proof is finished.

5 Open Problem

The authors can be resarch minimal tangent surfaces of biharmonic B-general helices according to Bishop frame in the Heisenberg group Heis³.

References

- [1] L. R. Bishop, *There is More Than One Way to Frame a Curve, Amer. Math.* Monthly 82 (3) (1975) 246-251.
- [2] B. Bükcü, M.K. Karacan, Special Bishop motion and Bishop Darboux rotation axis of the space curve, J. Dyn. Syst. Geom. Theor. 6 (1) (2008) 27--34.
- [3] TA. Cook, *The curves of life*, Constable, London 1914, Reprinted (Dover, London 1979).
- [4] J. Eells, J.H. Sampson, *Harmonic mappings of Riemannian manifolds*, Amer. J. Math. 86 (1964), 109--160.
- [5] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Prentice-Hall, New Jersey, (1965).

- [6] J. Inoguchi, Submanifolds with harmonic mean curvature in contact 3-manifolds, Colloq. Math. 100 (2004), 163--179.
- [7] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), 130--144.
- [8] G.Y. Jiang, 2-harmonic maps and their first and second variation formulas, Chinese Ann. Math. Ser. A 7 (1986), 389--402.
- [9] W. E. Langlois, *Slow Viscous Flow*, Macmillan, New York; Collier-Macmillan, London, (1964).
- [10] T. Körpınar, E. Turhan, *Biharmonic* B-General Helices with Bishop Frame In The Heisenberg Group Heis³, (preprint).
- [11] E. Loubeau, C. Oniciuc, On the biharmonic and harmonic indices of the *Hopf map*, preprint, arXiv:math.DG/0402295 v1 (2004).
- [12] J. Milnor, Curvatures of Left-Invariant Metrics on Lie Groups, Advances in Mathematics 21 (1976), 293-329.
- [13] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York (1983).
- [14] C. Oniciuc, On the second variation formula for biharmonic maps to a sphere, Publ. Math. Debrecen 61 (2002), 613--622.
- [15] Y. L. Ou, *p-Harmonic morphisms*, biharmonic morphisms, and nonharmonic biharmonic maps, J. Geom. Phys. 56 (2006), 358-374.
- [16] S. Rahmani, *Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois*, Journal of Geometry and Physics 9 (1992), 295-302.
- [17] T. Sasahara, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen 67 (2005), 285-303.
- [18] DJ. Struik, Lectures on Classical Differential Geometry, New York: Dover, 1988
- [19] JD. Watson, FH. Crick, *Molecular structures of nucleic acids*, Nature, 1953, 171, 737-738.