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Abstract

In this paper, we establish a random coincidence and ran-
dom fixed point theorem for hybrid contractions consisting of
two single-valued and two multivalued mappings in separable
metric spaces. Some special results are stated. The results
improve and extend some known results.
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1 Introduction and preliminaries

A random version of a fixed point theorem for multivalued contraction map-
ping of Nadler (1969) [21] was given by Itoh (1977) [14]. Random fixed point
theorems for contraction mappings on separable complete metric spaces have
been proved by several authors ( see e.g. [1]-[13], [19]- [22], [25]), and many
authors.
Throughout this paper, let (X, d) be a separable metric space and (Ω,Σ) is
a measurable space. Let 2X be a family of all subsets of X, CB(X) de-
note the family of all non-empty bounded closed subsets of X and H denotes
the Housdorff metric on CB(X) induced by the metric d on X, that is for
A,B ∈ CB(X),

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)},
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where d(x,E) is the distance from a point x ∈ X to a subset E ⊂ X, that is
d(x,E) = inf{d(x, y) : y ∈ E}. A mapping T : Ω→ 2X is called measurable if
T−1(C) = {w ∈ Ω : T (w) ∩ C 6= φ} ∈ Σ for all open subsets C of X.
A mapping ξ : Ω→ X is called a measurable selector of a measurable mapping
T : Ω → 2X if ξ is measurable and ξ(w) ∈ T (w) for each w ∈ Ω. A mapping
f : Ω×X → X is said to be random mapping if for each x ∈ X, the mapping
f(., x) : Ω → X is measurable. A mapping T : Ω × X → CB(X) is said to
be random multivalued mapping if for each x ∈ X, T (., x) is measurable. A
measurable mapping ξ : Ω→ X is called a random fixed point of the random
multivalued mapping T : Ω × X → CB(X), (f : Ω × X → X) if ξ(w) ∈
T (w, ξ(w)), (ξ(w) = f(w, ξ(w))) for each w ∈ Ω. A measurable mapping
ξ : Ω → X is called a random coincidence point of T : Ω×X → CB(X) and
f : Ω×X → X if f(w, ξ(w)) ∈ T (w, ξ(w)) for each w ∈ Ω. We denote the set
of all coincidence points of the pair (f, T ) by C(f, T ).

Definition 1.1 [16],[6] The random mappings f : Ω × X → X and T : Ω ×
X → CB(X) are compatible if and only if f(w, T (w, ξ(w))) ∈ CB(X) for each
ξ(w) ∈ X, w ∈ Ω and lim

n→∞
H(f(w, T (w, ξn)), T (w, f(w, ξn))) = 0, whenever

ξn is a sequence in X such that lim
n→∞

T (w, ξn) = M ∈ CB(X), lim
n→∞

f(w, ξn) =

t ∈M .

Definition 1.2 [17] Random operators f : Ω × X → X and T : Ω × X →
CB(X) are weakly compatible if f(w, ξ(w)) ∈ T (w, ξ(w)), for some measurable
mappings ξ, then T (w, f(w, ξ(w))) = f(w, T (w, ξ(w))) for every w ∈ Ω.

Motivated by definition of (IT)-commuting on metric spaces given in [14] and
[24], we define the (IT)-commuting mappings in random spaces.

Definition 1.3 [14] Random mappings f : Ω × X → X and T : Ω × X →
CB(X) are (IT)-commuting at ξ(w) ∈ X if f(w, T (w, ξ(w))) ⊆ T (w, f(w, ξ(w))),
w ∈ Ω ,where ξ : Ω→ X is a measurable mapping.

Remark 1.4 It is well known that the compatible maps T, f are weakly com-
patible (see [17]). In addition, (IT)-commutativity of a a hybrid pair T and f
at a coincidence point x ∈ X is more general than its compatibility and weak
compatibility at the same point. The following example shows that and (see
also, Example 1 in [23]).

Example 1.5 Let X = [0,∞),Ω = [0, 1] and Σ be the sigma algebra of
Lebesgue’s measurable subset of [0, 1] with usual metric and suppose:
f(w, ξ(w)) = 2ξ(w), T (w, ξ(w)) = [ξ(w) + 2(1− w2),∞), then

f(w, 2(1− w2)) = 4(1− w2),

T (w, 2(1− w2)) = [2(1− w2) + 2(1− w2),∞) = [4(1− w2),∞), w ∈ Ω,
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then f(w, 2(1− w2)) ∈ T (w, 2(1− w2)) and

f(w, T (w, 2(1− w2))) = [8(1− w2),∞) ⊂ [6(1− w2),∞) = T (w, f(w, 2(1− w2))),

hence f and T are (IT)-commuting at the coincidence point ξ(w) = 2(1−w2)
also the pair (f, T ) is not weakly compatible since f(w, T (w, 2(1 − w2))) 6=
T (w, f(w, 2(1− w2))).

Jhade et al. [15] studied the coincidence and fixed point theorems for a multi-
valued mapping T and self mapping f under the following nonexpansive type
condition:

H(Tx, Ty) ≤ a(x, y)d(fx, fy) + b(x, y) max{d(fx, Tx), d(fy, Ty)}
+ c(x, y) max{d(fx, fy), d(fx, Tx), d(fy, Ty)}
+ e(x, y) max{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty)},(1)

where a, b, c, e are nonnegative functions from X ×X → [0, 1), such that β =
infx,y∈X e(x, y) > 0 andγ = infx,y∈X(1+b(x, y)+e(x, y)) > 0 with supx,y∈X(a+
b+ c+ 2e)(x, y) = 1.
Motivated by the work of [15], we present the stochastic version of coincidence
and common fixed point theorems by extending the contractive condition (1)
to a pair of multivalued random mappings T, S and a pair of self random
mappings f, g. The contractive condition is defined as follows:
Condition A: Let T, S : Ω × X → CB(X) be two random multivalued
mappings and f, g : Ω × X → X are self random mappings satisfying the
following condition:

H(T (w,x),S(w,y)) ≤ a(w)d(f(w,x),g(w,y))+b(w)max{d(f(w,x),T (w,x)),d(g(w,y),S(w,y))}

+ c(w)max{d(f(w,x),g(w,y)),d(f(w,x),T (w,x)),d(g(w,y),S(w,y))}

+ e(w)max{d(f(w,x),g(w,y)),d(f(w,x),T (w,x)),d(g(w,y),S(w,y))

, d(f(w,x),S(w,y))},

for all x, y ∈ X and for all w ∈ Ω, where a(w), b(w), c(w), e(w) : Ω → (0, 1)
are measurable mappings such that, a(w) + b(w) + c(w) + 2e(w) = 1.
We also give the following definition:

Definition 1.6 Let (X, d) be a separable metric space, Let T, S : Ω × X →
CB(X) be two random multivalued mappings and f, g : Ω × X → X are self
random mappings. Suppose that ξ0(w) ∈ X. Then the set

O(f, g, T, S; ξ0) =

{
yi : yi = f(w, ξi(w)) ∈ T (w, ξi−1(w)), for i=2n+1;
yi = g(w, ξi(w)) ∈ S(w, ξi−1(w)), for i=2n+2.

(2)

for n ≥ 0 and for all w ∈ Ω is called an orbit of (T, S, f, g) at ξ0. A metric
space X is called (T, S, f, g)- orbitally complete if and only if every Cauchy
sequence in the orbit of (T, S, f, g) at ξ0 is convergent in X.
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2 Main Results

In this section, we will obtain a random coincidence and a common random
fixed point of (IT)-commuting random mappings under a condition A.

Theorem 2.1 Let X be a separable metric space. Let T, S : Ω×X → CB(X)
be two continuous random multivalued mappings and f, g : Ω × X → X are
self random mappings satisfying Condition A such that for w ∈ Ω, T (w,X) ⊆
f(w,X) and S(w,X) ⊆ g(w,X). If there exists ξ0(w) ∈ X such that f(w,X)∩
g(w,X) is (T, S, f, g)-orbitally complete at ξ0 for each w ∈ Ω, then
(I) The pair (f, T ) has a random coincidence point, i.e. there is η(w) such
that f(w, η(w)) ∈ T (w, η(w)), w ∈ Ω.
(II) The pair (g, S) has a random coincidence point, i.e. there is ζ(w) such
that g(w, ζ(w)) ∈ S(w, ζ(w)), w ∈ Ω.
Further:
(III) T and f have a common random fixed point f(w, η(w)) provided that
f(w, η(w)) is a random fixed point of f for some η(w) ∈ C(f, T ) and T and f
are (IT)-commuting at η(w).
(IV) S and g have a common random fixed point g(w, ζ(w)) provided g(w, ζ(w))
is a random fixed point of g for some ζ(w) ∈ C(g, S) and S and g are (IT)-
commuting at ζ(w).
(V) T, S, f and g have a common random fixed point provided (I) and (II) both
are true.

proof. Let ξ0 : Ω → X be arbitrary measurable function on Ω. Since
T (w,X) ⊆ f(w,X) and T is continuous, then for every u ∈ X, the map
(w, x) → d(u, T (w, x)) is a caratheodory function (that is measurable in w ∈
Ω, continues in x ∈ X). Thus it is jointly measurable. Hence, since ξ0 :
Ω → X is measurable, w → d(u, T (w, ξ0(w))) is measurable too, therefore
w → T (w, ξ0(w)) is weakly measurable by Wagner ([26], p. 868). By Kura-
towski ([18], Theorem 8), there exists a measurable map ξ1 : Ω→ X such that
y1 = f(w, ξ1(w)) ∈ T (w, ξ0(w)) for w ∈ Ω and similarly since S is continu-
ous and S(w,X) ⊆ g(w,X), for ξ1 : Ω → X we can choose another function
ξ2 : Ω → X such that for w ∈ Ω, g(w, ξ2(w)) ∈ S(w, ξ1(w)) such that y1 6= y2
and d(y1, y2) ≤ H(T (w, ξ0(w)), S(w, ξ1(w))).
In general, we can define a sequence of functions {yn(w)}, w ∈ Ω as follows:

y2n+1(w) = f(w, ξ2n+1(w)) ∈ T (w, ξ2n(w)),

y2n+2(w) = g(w, ξ2n+2(w)) ∈ S(w, ξ2n+1(w)), (3)



Random coincidence and fixed point theorems for... 107

From Condition A, we have

d(y2n+1(w),y2n+2(w)) ≤ H(T (w,ξ2n(w)),S(w,ξ2n+1(w)))

≤ a(w)d(f(w,ξ2n(w)),g(w,ξ2n+1(w)))

+ b(w)max{d(f(w,ξ2n(w)),T (w,ξ2n(w))),d(g(w,ξ2n+1(w)),S(w,ξ2n+1(w)))}

+ c(w)max{d(f(w,ξ2n(w)),g(w,ξ2n+1(w))),d(f(w,ξ2n(w)),T (w,ξ2n(w)))

, d(g(w,ξ2n+1(w)),S(w,ξ2n+1(w)))}

+ e(w)max{d(f(w,ξ2n(w)),g(w,ξ2n+1(w))),d(f(w,ξ2n(w)),T (w,ξ2n(w)))

, d(g(w,ξ2n+1(w)),S(w,ξ2n+1(w))),d(f(w,ξ2n(w)),S(w,ξ2n+1(w)))},

It follows by (3) that

d(y2n+1(w),y2n+2(w)) ≤ a(w)d(y2n(w),y2n+1(w))

+ b(w)max{d(y2n(w),y2n+1(w)),d(y2n+1(w),y2n+2(w))}

+ c(w)max{d(y2n(w),y2n+1(w)),d(y2n(w),y2n+1(w))

, d(y2n+1(w),y2n+2(w))}

+ e(w)max{d(y2n(w),y2n+1(w)),d(y2n(w),y2n+1(w))

, d(y2n+1(w),y2n+2(w)),d(y2n(w),y2n+2(w))},

using triangle inequality, we get

d(y2n+1(w),y2n+2(w)) ≤ a(w)d(y2n(w),y2n+1(w))

+ b(w)max{d(y2n(w),y2n+1(w)),d(y2n+1(w),y2n+2(w))}

+ c(w)max{d(y2n(w),y2n+1(w)),d(y2n(w),y2n+1(w))

, d(y2n+1(w),y2n+2(w))}

+ e(w)max{d(y2n(w),y2n+1(w)),d(y2n(w),y2n+1(w))

, d(y2n+1(w),y2n+2(w))

, d(y2n(w),y2n+1(w))+d(y2n+1(w),y2n+2(w))}, (4)

If for some n, d(y2n+1(w), y2n+2(w)) > d(y2n(w), y2n+1(w)), (4) becomes:

d(y2n+1(w), y2n+2(w)) < (a(w) + b(w) + c(w) + 2e(w))d(y2n+1(w), y2n+2(w)).

A contradiction. Thus

d(y2n+1(w), y2n+2(w)) ≤ d(y2n(w), y2n+1(w)). (5)
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Again from Condition A, we have

d(f(w,ξ2n−1),S(w,ξ2n)) ≤ H(T (w,ξ2n−2(w)),S(w,ξ2n(w)))

≤ a(w)d(f(w,ξ2n−2(w)),g(w,ξ2n(w)))

+ b(w)max{d(f(w,ξ2n−2(w)),T (w,ξ2n−2(w))),d(g(w,ξ2n(w)),S(w,ξ2n(w)))}

+ c(w)max{d(f(w,ξ2n−2(w)),g(w,ξ2n(w))),d(f(w,ξ2n−2(w)),T (w,ξ2n−2(w)))

, d(g(w,ξ2n(w)),S(w,ξ2n(w)))}

+ e(w)max{d(f(w,ξ2n−2(w)),g(w,ξ2n(w))),d(f(w,ξ2n−2(w)),T (w,ξ2n−2(w)))

, d(g(w,ξ2n(w)),S(w,ξ2n(w))),d(f(w,ξ2n−2(w)),S(w,ξ2n(w)))},

using (3), we obtain

d(f(w,ξ2n−1),S(w,ξ2n)) ≤ a(w)d(y2n−2(w),y2n(w))

+ b(w)max{d(y2n−2(w),y2n−1(w)),d(y2n(w),y2n+1(w))}

+ c(w)max{d(y2n−2(w),y2n(w)),d(y2n−2(w),y2n−1(w))

, d(y2n(w),y2n+1(w))}

+ e(w)max{d(y2n−2(w),y2n(w)),d(y2n−2(w),y2n−1(w))

, d(y2n(w),y2n+1(w)),d(y2n−2(w),y2n+1(w))},

by triangle inequality and (5), we obtain

d(f(w,ξ2n−1),S(w,ξ2n)) ≤ 2a(w)d(y2n−2(w),y2n−1(w))+b(w)d(y2n−2(w),y2n−1(w))

+ 2c(w)d(y2n−2(w),y2n−1(w))

+ e(w)max{2d(y2n−2(w),y2n−1(w)),3d(y2n−2(w),y2n−1(w))}

= (2a(w)+b(w)+2c(w)+3e(w))d(y2n−2(w),y2n−1(w)), (6)

since a(w) + b(w) + c(w) + 2e(w) = 1, then

d(f(w, ξ2n−1), S(w, ξ2n)) ≤ (2− b(w)− e(w))d(y2n−2(w), y2n−1(w)). (7)

Again, using Condition A,

d(y2n(w),y2n+1(w)) ≤ H(T (w,ξ2n−1(w)),S(w,ξ2n(w)))

≤ a(w)d(f(w,ξ2n−1(w)),g(w,ξ2n(w)))

+ b(w)max{d(f(w,ξ2n−1(w)),T (w,ξ2n−1(w))),d(g(w,ξ2n(w)),S(w,ξ2n(w)))}

+ c(w)max{d(f(w,ξ2n−1(w)),g(w,ξ2n(w))),d(f(w,ξ2n−1(w)),T (w,ξ2n−1(w)))

, d(g(w,ξ2n(w)),S(w,ξ2n(w)))}

+ e(w)max{d(f(w,ξ2n−1(w)),g(w,ξ2n(w))),d(f(w,ξ2n−1(w)),T (w,ξ2n−1(w)))

, d(g(w,ξ2n(w)),S(w,ξ2n(w))),d(f(w,ξ2n−1(w)),S(w,ξ2n(w)))}. (8)
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Substituting (7) into the last term of (8) and using (5), we get

d(y2n(w),y2n+1(w)) ≤ [a(w)+b(w)+c(w)+e(w)(2−b(w)−e(w))]d(y2n−2(w),y2n−1(w))

= [1− e(w)b(w)− e2(w)]d(y2n−2(w), y2n−1(w))

= kd(y2n−2(w), y2n−1(w))

≤ knd(y0(w), y1(w))

where k = 1− (e(w)b(w) + e2(w)) < 1. In general,

d(yn(w), yn+1(w)) ≤ k
n
2 d(y0(w), y1(w)), w ∈ Ω.

Now, for positive integer m > n ≥ 1 we have

d(yn(w),ym(w)) ≤ d(yn(w),yn+1(w))+d(yn+1(w),yn+2(w))+...+d(ym−1(w),ym(w))

≤ [(
√
k)n + (

√
k)n+1 + ...+ (

√
k)m−1]d(y0(w), y1(w))

It follows that {yn(w)} is a Cauchy sequence such that {yn(w)} ⊂ O(f, g, T, S; ξ0)
∩f(w,X)∩g(w,X). Since f(w,X)∩g(w,X) is (T, S, f, g)-orbitally complete at
ξ0, so that, there exists ξ(w) ∈ f(w,X)∩g(w,X) such that {yn(w)} → {ξ(w)}
as n → ∞ for w ∈ Ω and consequently the subsequences {y2n+1(w)} and
{y2n+2(w)} converge to {ξ(w)} for w ∈ Ω. Let η(w) ∈ f−1(w, ξ(w)) and
ζ(w) ∈ g−1(w, ξ(w)), then η(w), ζ(w) ∈ X and

ξ(w) = f(w, η(w)) = g(w, ζ(w)).

Now, we will show that f(w, η(w)) ∈ T (w, η(w)), w ∈ Ω,

d(f(w,η(w)),T (w,η(w))) ≤ d(f(w,η(w)),g(w,ξ2n+2(w)))+d(g(w,ξ2n+2(w)),T (w,η(w)))

≤ d(f(w,η(w)),g(w,ξ2n+2(w)))+H(T (w,η(w)),S(w,ξ2n+1(w)))

≤ d(f(w,η(w)),g(w,ξ2n+2(w)))+a(w)d(f(w,η(w)),g(w,ξ2n+1(w)))

+ b(w)max{d(f(w,η(w)),T (w,η(w))),d(g(w,ξ2n+1(w)),S(w,ξ2n+1(w)))}

+ c(w)max{d(f(w,η(w)),g(w,ξ2n+1(w))),d(f(w,η(w)),T (w,η(w)))

, d(g(w,ξ2n+1(w)),S(w,ξ2n+1(w)))}

+ e(w)max{d(f(w,η(w)),g(w,ξ2n+1(w))),d(f(w,η(w)),T (w,η(w)))

, d(g(w,ξ2n+1(w)),S(w,ξ2n+1(w))),d(f(w,η(w)),S(w,ξ2n+1(w)))},

by (3), we obtain

d(f(w,η(w)),T (w,η(w))) ≤ d(f(w,η(w)),y2n+2(w))+a(w)d(f(w,η(w)),y2n+1(w))

+ b(w)max{d(f(w,η(w)),T (w,η(w))),d(y2n+1(w),y2n+2(w))}

+ c(w)max{d(f(w,η(w)),y2n+1(w)),d(f(w,η(w)),T (w,η(w)))

, d(y2n+1(w),y2n+2(w))}

+ e(w)max{d(f(w,η(w)),y2n+1(w)),d(f(w,η(w)),T (w,η(w)))

, d(y2n+1(w),y2n+2(w)),d(f(w,η(w)),y2n+2(w))}.
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Taking the limit as n→∞, and using ξ(w) = f(w, η(w)) we obtain

d(f(w,η(w)),T (w,η(w))) ≤ d(f(w,η(w)),f(w,η(w)))+a(w)d(f(w,η(w)),f(w,η(w)))

+ b(w)max{d(f(w,η(w)),T (w,η(w))),d(f(w,η(w)),f(w,η(w)))}

+ c(w)max{d(f(w,η(w)),f(w,η(w))),d(f(w,η(w)),T (w,η(w)))

, d(f(w,η(w)),f(w,η(w)))}

+ e(w)max{d(f(w,η(w)),f(w,η(w))),d(f(w,η(w)),T (w,η(w)))

, d(f(w,η(w)),f(w,η(w))),d(f(w,η(w)),f(w,η(w)))}.

It follows that

d(f(w, η(w)), T (w, η(w))) ≤ (b(w) + c(w) + e(w))d(f(w, η(w)), T (w, η(w))),

which leads to,

f(w, η(w)) ∈ T (w, η(w)), w ∈ Ω. (9)

Similarly, we can show that g(w, ζ(w)) ∈ S(w, ζ(w)), w ∈ Ω,

d(g(w,ζ(w)),S(w,ζ(w)) ≤ d(g(w,ζ(w)),f(w,ξ2n+1(w)))+d(f(w,ξ2n+1(w)),S(w,ζ(w)))

≤ d(g(w,ζ(w)),f(w,ξ2n+1(w)))+H(T (w,ξ2n(w)),S(w,ζ(w)))

≤ d(g(w,ζ(w)),f(w,ξ2n+1(w)))+a(w)d(f(w,ξ2n(w)),g(w,ζ(w)))

+ b(w)max{d(f(w,ξ2n(w)),T (w,ξ2n(w))),d(g(w,ζ(w)),S(w,ζ(w)))}

+ c(w)max{d(f(w,ξ2n(w)),g(w,ζ(w))),d(f(w,ξ2n(w)),T (w,ξ2n(w)))

, d(g(w,ζ(w)),S(w,ζ(w)))}

+ e(w)max{d(f(w,ξ2n(w)),g(w,ζ(w))),d(f(w,ξ2n(w)),T (w,ξ2n(w)))

, d(g(w,ζ(w)),S(w,ζ(w))),d(f(w,ξ2n(w)),S(w,ζ(w)))},

using (3), we obtain

d(g(w,ζ(w)),S(w,ζ(w)) ≤ d(g(w,ζ(w)),y2n+1(w))+a(w)d(y2n(w),g(w,ζ(w)))

+ b(w)max{d(y2n(w),y2n+1(w)),d(g(w,ζ(w)),S(w,ζ(w)))}

+ c(w)max{d(y2n(w),g(w,ζ(w))),d(y2n(w),y2n+1(w))

, d(g(w,ζ(w)),S(w,ζ(w)))}

+ e(w)max{d(y2n(w),g(w,ζ(w))),d(y2n(w),y2n+1(w))

, d(g(w,ζ(w)),S(w,ζ(w))),d(y2n(w),S(w,ζ(w)))},

Again taking the limit as n→∞, and using ξ(w) = g(w, ζ(w))

d(g(w,ζ(w)),S(w,ζ(w)) ≤ d(g(w,ζ(w),g(w,ζ(w)))+a(w)d(g(w,ζ(w),g(w,ζ(w)))

+ b(w)max{d(g(w,ζ(w),g(w,ζ(w))),d(g(w,ζ(w)),S(w,ζ(w)))}

+ c(w)max{d(g(w,ζ(w),g(w,ζ(w)))),d(g(w,ζ(w),g(w,ζ(w)))

, d(g(w,ζ(w)),S(w,ζ(w)))}

+ e(w)max{d(g(w,ζ(w),g(w,ζ(w)))),d(g(w,ζ(w),g(w,ζ(w))))

, d(g(w,ζ(w)),S(w,ζ(w))),d(g(w,ζ(w),S(w,ζ(w))))}.
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It follows that

d(g(w, ζ(w)), S(w, ζ(w)) ≤ (b(w) + c(w) + e(w))d(g(w, ζ(w)), S(w, ζ(w))

Hence,

g(w, ζ(w)) ∈ S(w, ζ(w)), w ∈ Ω. (10)

So, we prove that the pairs (f, T ) and (g, S) have a random coincidence point.
Now, from the hypotheses (III) of the theorem, we have f(w, η(w)) is a random
fixed point of f for some η(w) ∈ C(f, T ), i.e. f(w, f(w, η(w))) = f(w, η(w)).
Since T and f are (IT)-commuting at η(w), then

f(w, η(w)) ∈ T (w, η(w))

⇒ f(w, f(w, η(w))) ∈ f(w, T (w, η(w))) ⊆ T (w, f(w, η(w)))

⇒ f(w, η(w)) = f(w, f(w, η(w))) ∈ T (w, f(w, η(w))), w ∈ Ω.

Hence, T and f have a common random fixed point f(w, η(w)).
Similarly, from (IV), we have g(w, ζ(w)) is a fixed point of g for some ζ(w) ∈
C(g, S), i.e. g(w, g(w, ζ(w))) = g(w, ζ(w)). Since S and g are (IT)-commuting
at ζ(w), we have

g(w, ζ(w)) ∈ S(w, ζ(w))

⇒ g(w, g(w, ζ(w))) ∈ g(w, S(w, ζ(w))) ⊆ S(w, g(w, ζ(w)))

⇒ g(w, ζ(w)) = g(w, g(w, ζ(w))) ∈ S(w, g(w, ζ(w))), w ∈ Ω.

It follows that S and g have a common random fixed point g(w, ζ(w)).
Finally, (V) is obtained immediately from (III) and (IV).

Corollary 2.2 Let X be a separable metric space. Let T : Ω×X → CB(X)
be continuous random multivalued mapping and f : Ω×X → X is self random
mapping such that T (w,X) ⊆ f(w,X) and satisfying the following condition:

H(T (w,x),T (w,y)) ≤ a(w)d(f(w,x),f(w,y))+b(w)max{d(f(w,x),T (w,x)),d(f(w,y),T (w,y))}

+ c(w)max{d(f(w,x),f(w,y)),d(f(w,x),T (w,x)),d(f(w,y),T (w,y))}

+ e(w)max{d(f(w,x),f(w,y)),d(f(w,x),T (w,x)),d(f(w,y),T (w,y))

, d(f(w,x),T (w,y))}, w ∈ Ω,

for all x, y ∈ X and for all w ∈ Ω, where a(w), b(w), c(w), e(w) : Ω → (0, 1)
are measurable mappings such that, a(w) + b(w) + c(w) + 2e(w) = 1. If there
exists ξ0 ∈ X such that f(w,X) is (T, f)-orbitally complete at ξ0, then the
pairs (f, T ) has a random coincidence point. Further T and f have a common
fixed point f(w, η(w)) provided that f(w, η(w)) is a fixed point of f for some
η(w) ∈ C(f, T ) and T and f are (IT)-commuting at η(w).
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proof. Put T = S and f = g in Theorem 2.1, then the Corollary 2.2 follows
from Theorem 2.1.

Remark 2.3 Corollary 2.2 is a stochastic version and extension of Theorem
2 in [15].

If we put f = g = I(w, x) = x (the identity random mapping on X) in Theorem
2.1, we obtain the following corollary:

Corollary 2.4 Let X be a separable metric space. Let T, S : Ω×X → CB(X)
be two random multivalued mappings satisfying the following condition

H(T (w, x), S(w, y)) ≤ a(w)d(x, y) + b(w) max{d(x, T (w, x)), d(y, S(w, y))}
+ c(w) max{d(x, y), d(x, T (w, x)), d(y, S(w, y))}
+ e(w) max{d(x, y), d(x, T (w, x)), d(y, S(w, y))

, d(x, S(w, y))}, w ∈ Ω,

for all x, y ∈ X and for all w ∈ Ω, where a(w), b(w), c(w), e(w) : Ω → (0, 1)
are measurable mappings such that, a(w) + b(w) + c(w) + 2e(w) = 1. If there
exists ξ0 ∈ X such that is T (w,X)∩S(w,X)-orbitally complete at ξ0, then the
pair T, S have a common random fixed point.

Also, if we put T = S in Corollary 2.4 we also obtain a random version of
Corollary 2 in [15].

Corollary 2.5 Let X be a separable metric space. Let T : Ω×X → CB(X)
be random multivalued mapping satisfying the following condition

H(T (w, x), T (w, y)) ≤ a(w)d(x, y) + b(w) max{d(x, T (w, x)), d(y, T (w, y))}
+ c(w) max{d(x, y), d(x, T (w, x)), d(y, T (w, y))}
+ e(w) max{d(x, y), d(x, T (w, x)), d(y, T (w, y))

, d(x, T (w, y))}, w ∈ Ω,

for all x, y ∈ X and for all w ∈ Ω, where a(w), b(w), c(w), e(w) : Ω→ (0, 1) are
measurable mappings such that, a(w)+b(w)+c(w)+2e(w) = 1. If there exists
ξ0 ∈ X such that is T (w,X)-orbitally complete at ξ0, then T has a random
fixed point.

3 Open Problem

In this section, we should present an open problem:
Let (X, d) be a separable complete metric space and (Ω,Σ) is a measurable
space, CB(X) denotes the family of all nonempty closed bounded subsets of
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X and K(X) denotes the family of all nonempty compact subsets of X. Can
be the Theorem (2.1) extended to four multivalued mappings S, T : Ω×X →
CB(X) and F,G : Ω×X → K(X) under the conditions given in the Theorem.
Moreover, are the results in this paper hold if we replace a separable metric
space X by a cone random metric space?
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