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Abstract

In this paper, we establish a random coincidence and ran-
dom fixed point theorem for hybrid contractions consisting of
two single-valued and two multivalued mappings in separable
metric spaces. Some special results are stated. The results
improve and extend some known results.
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1 Introduction and preliminaries

A random version of a fixed point theorem for multivalued contraction map-
ping of Nadler (1969) [21] was given by Itoh (1977) [14]. Random fixed point
theorems for contraction mappings on separable complete metric spaces have
been proved by several authors ( see e.g. [1]-[13], [19]- [22], [25]), and many
authors.

Throughout this paper, let (X, d) be a separable metric space and (2,%) is
a measurable space. Let 2% be a family of all subsets of X, CB(X) de-
note the family of all non-empty bounded closed subsets of X and H denotes
the Housdorff metric on C'B(X) induced by the metric d on X, that is for
A, B e CB(X),

H(A, B) = max{supd(a, B),supd(A,b)},

acA beB



104 R. A. Rashwan et al.

where d(z, F) is the distance from a point x € X to a subset £ C X, that is
d(z,E) = inf{d(z,y) : y € E}. A mapping T : Q — 2% is called measurable if
T7HC)={we Q:T(w)NC # ¢} € T for all open subsets C of X.

A mapping £ : €2 — X is called a measurable selector of a measurable mapping
T : Q — 2% if £ is measurable and £(w) € T'(w) for each w € Q. A mapping
f:Qx X — X is said to be random mapping if for each z € X, the mapping
f(,x) : Q@ - X is measurable. A mapping 7' : 2 x X — CB(X) is said to
be random multivalued mapping if for each = € X, T'(.,x) is measurable. A
measurable mapping £ : 2 — X is called a random fixed point of the random
multivalued mapping 7' : Q@ x X — CB(X), (f : @ x X — X) if {(w) €
T(w,&(w)), (E(w) = f(w,&(w))) for each w € €. A measurable mapping
¢ :Q — X is called a random coincidence point of 7': 2 x X — CB(X) and
[:OxX = Xif f(w,&(w)) € T'(w,&(w)) for each w € . We denote the set
of all coincidence points of the pair (f,T) by C(f,T).

Definition 1.1 [16/,/6] The random mappings f: Q2 x X — X and T : Q x
X — CB(X) are compatible if and only if f(w,T(w,&(w))) € CB(X) for each
E(w) € X, we Q and lim H(f(w, T(w,&,)), T(w, f(w,&,))) = 0, whenever
n—oo
&n 18 a sequence in X such that lim T(w,§,) = M € CB(X), lim f(w,&,) =
n—oo n—oo
te M.

Definition 1.2 [17] Random operators f : @ x X — X and T : Q x X —
CB(X) are weakly compatible if f(w,&(w)) € T(w,&(w)), for some measurable
mappings €, then T(w, f (1, £(w))) = f(w, T(w, E(w))) for every w € O

Motivated by definition of (IT)-commuting on metric spaces given in [14] and
[24], we define the (IT)-commuting mappings in random spaces.

Definition 1.3 [1// Random mappings f : @ x X — X and T : Q x X —
CB(X) are (IT)-commuting at {(w) € X if f(w, T'(w,&(w))) C T'(w, f(w,&(w))),
w € Q ,where £ : Q1 — X is a measurable mapping.

Remark 1.4 [t is well known that the compatible maps T, f are weakly com-
patible (see [17]). In addition, (IT)-commutativity of a a hybrid pair T and f
at a coincidence point x € X s more general than its compatibility and weak
compatibility at the same point. The following example shows that and (see
also, Example 1 in [23]).

Exzample 1.5 Let X = [0,00),Q = [0,1] and ¥ be the sigma algebra of
Lebesgue’s measurable subset of [0, 1] with usual metric and suppose:
= [

]
f(w, &(w)) = 26 (w), T(w,&(w)) = [&(w) +2(1 — w?), 00), then

flw,2(1—w?) = 4(1-w?),
Tw,2(1 —w?) = [2(1 —w?) +2(1 —w?),00) = [4(1 — w?), ), w € Q,
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then f(w,2(1 —w?) € T(w,2(1 —w?)) and
fw, T(w7 2(1 - w2))) = [8(1 - w2)> 00) C [6(1 - w2)7 00) = T(w, f(w,2(1 — w2))),

hence f and T are (IT)-commuting at the coincidence point £(w) = 2(1 — w?)
also the pair (f,T) is not weakly compatible since f(w,T(w,2(1 —w?))) #

Jhade et al. [15] studied the coincidence and fixed point theorems for a multi-
valued mapping 7" and self mapping f under the following nonexpansive type
condition:

H(Txz,Ty) a(z,y)d(fz, fy) + b(z,y) max{d(fz,Tx),d(fy,Ty)}

<
+ c(z,y) max{d(fz, fy),d(fr,Tx),d(fy, Ty)}
+ e(w,y) max{d(fz, fy),d(fz,Tz),d(fy,Ty),d(fz,Ty)},(1)

where a, b, ¢, e are nonnegative functions from X x X — [0,1), such that 8 =
inf, yex e(r,y) > 0 andy = inf, yex (1+b(z,y) +e(r,y)) > 0 with sup, , x(a+
b+ c+2e)(x,y) = 1.

Motivated by the work of [15], we present the stochastic version of coincidence
and common fixed point theorems by extending the contractive condition (1)
to a pair of multivalued random mappings 7,5 and a pair of self random
mappings f, g. The contractive condition is defined as follows:

Condition A: Let 7,5 : Q x X — CB(X) be two random multivalued
mappings and f,g : 2 x X — X are self random mappings satisfying the
following condition:

H(T (w,x),5(w,y)) a(w)d(f(w,x),9(w,y))+b(w) max{d(f(w,x), T (w,r)),d(g(w,y),S(w,y))}
c(w) max{d(f(w,z),9(w,y)),d(f(w,z),T(w,z)),d(g(wy),S(wy))}

e(w) max{d(f (w,z),9(w,y)),d(f (w,),T(w,x)),d(g(w,y),5(w,y))
(

) d f(wvl‘%‘s(wvy))}?

+ 4+ IA

for all x,y € X and for all w € Q, where a(w),b(w), c(w),e(w) : Q@ — (0,1)
are measurable mappings such that, a(w) + b(w) + ¢(w) + 2e(w) = 1.
We also give the following definition:

Definition 1.6 Let (X,d) be a separable metric space, Let T, S : Q x X —
CB(X) be two random multivalued mappings and f,g: Q x X — X are self
random mappings. Suppose that Ey(w) € X. Then the set

oy S yiiyi=fw, &G(w) € T(w, -1 (w)),  for i=2n+1;
09T 5:%0) = { yi = g(w, &(w)) € S(wafzel(wi)a Jor i=2n+2. 2)

forn >0 and for all w € § is called an orbit of (T,S, f,q) at &. A metric
space X is called (T, S, f,g)- orbitally complete if and only if every Cauchy
sequence in the orbit of (T, S, f,g) at & is convergent in X .
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2 Main Results

In this section, we will obtain a random coincidence and a common random
fixed point of (IT)-commuting random mappings under a condition A.

Theorem 2.1 Let X be a separable metric space. Let T,S : 2x X — CB(X)
be two continuous random multivalued mappings and f,g : 2 x X — X are
self random mappings satisfying Condition A such that for w € Q, T'(w, X) C
fw, X) and S(w, X) C g(w, X). If there exists {o(w) € X such that f(w, X)N
g(w, X) is (T, S, f, g)-orbitally complete at & for each w € ), then

(I) The pair (f,T) has a random coincidence point, i.e. there is n(w) such
that f(w,n(w)) € T(w,n(w)),w € 2.

(II) The pair (g,S) has a random coincidence point, i.e. there is ((w) such
that g(w,((w)) € S(w,((w)),w € €.

Further:

(III) T and [ have a common random fized point f(w,n(w)) provided that
f(w,n(w)) is a random fized point of f for some n(w) € C(f,T) and T and f
are (IT)-commuting at n(w).

(IV) S and g have a common random fized point g(w, ((w)) provided g(w, ((w))
is a random fized point of g for some ((w) € C(g,S) and S and g are (IT)-
commuting at ((w).

(V)T,S, f and g have a common random fized point provided (1) and (II) both
are true.

proof. Let & : @ — X be arbitrary measurable function on 2. Since
T(w,X) C f(w,X) and T is continuous, then for every u € X, the map
(w,x) = d(u,T(w,z)) is a caratheodory function (that is measurable in w €
), continues in z € X). Thus it is jointly measurable. Hence, since &, :
) — X is measurable, w — d(u,T(w,&(w))) is measurable too, therefore
w — T(w,&(w)) is weakly measurable by Wagner ([26], p. 868). By Kura-
towski ([18], Theorem 8), there exists a measurable map & : 2 — X such that
y1 = f(w,&(w)) € T(w,&(w)) for w € Q2 and similarly since S is continu-
ous and S(w, X) C g(w, X), for & : Q@ — X we can choose another function
& : Q — X such that for w € Q, g(w, & (w)) € S(w, & (w)) such that y; # yo
and d(yr, 12) < H(T(w, &(w)), S(w, & (w))).

In general, we can define a sequence of functions {y,(w)}, w € Q as follows:

y2n+1(w> = f(w7§2n+l(w)) € T(w’§2n<w))7
Yant2(w) = g(w, Lant2(w)) € S(w, Ens1(w)), (3)
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From Condition A, we have

H(T(w,&2n (w)),S(w,82n+1(w)))
a(w)d(f(w,€2n(w)),g(w,E2nt1(w)))
b(w) max{d(f(w,&2n (w)), T (w,E2n(w))),d(g(w,E2n+1(w)),S (w,E2nt1(w)))}
c(w) max{d(f(w,&2n(w)),g(w,E2n+1(w))),d(f (w,E2n (w)), T (w,E2n (w)))
y o dlg(w,€ant(w)),S(w,Eanv1(w)))}
e(w) max{d(f (w,&2n(w)),g(wE2n+1(w))),d(f (w,E2n (w)), T (w,E2n (w)))
o d(g(w,gant1(w)),S(wEan+1(w))),d(f (w,€2n (w)),S(w,E2n+1(w)))}

d(y2n+1(w),y2nt2(w))

+ 4+ INIA

_|_

It follows by (3) that

d(y2n+1(w),y2nt2(w)) a(w)d(yzn (w),y2n+1(w))

b(w) max{d(yzn (w),y2n+1(w)),d(Y2n+1(w),y2n+2(w))}

+ 4+ IA

c(w) max{d(yzn (w),y2n+1(w)),d(y2n (w),y2n+1(w))

y  d(y2n+1(w),y2nt2(w))}

_l_

e(w) max{d(yzn (w),y2n+1(w)),d(y2n (w),y2n+1(w))
y o d(yzns1 (W) y2ns2(w)),d(yzn (W), y2n+2(w)) }
using triangle inequality, we get
d(y2n+1(w),y2n+2(w)) a(w)d(yzn (w) y2n+1(w))
b(w) max{d(yzn (w)y2n+1(w)),d(Y2nt1(w),y2n+2(w))}
(

c(w) max{d(yan (w),y2n+1(w)),d(y2n (w),y2n+1(w))

+ 4+ IA

y  d(y2nt1(w)y2nt2(w))}

_I_

e(w) max{d(yan (w),y2n+1(w)),d(y2n (w),y2n+1(w))
y o d(yant1(w),y2nt2(w))

, dlyn () g2n () 4 ()20 42 (w))} (4)
If for some n, d(Yant+1(w), Yant2(w)) > d(yzn(w), Yont1(w)), (4) becomes:
d(Y2n+1(w), yans2(w)) < (a(w) + b(w) + c(w) + 2e(w))d(Yzn+1(w), Y2ns2(w)).

A contradiction. Thus

d(yan11(w), Yant2(w)) < d(Yan(w), yani1(w)). (5)
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Again from Condition A, we have

d(f(w,€2n-1),5(w,E2n)) H(T (w,62n—2(w)),5(w,£2n (w)))

a(w)d(f(w,E2n—2(w)),g(w,E2n (w)))

b(w)max{d(f(w,§2n—2(w)),T(w,E2n—2(w))),d(g(w,&2n (w)),S(w,E2n (w)))}

c(w)max{d(f (w,€an—2(w)),g(w,E2n (w))),d(f(w,E2n—2(w)),T(w,E2n—2(w)))

d(g(w,€2n (w)),S(w,E2n (w)))}

e(w) max{d(f(w,§2n—2(w)),g(w,&2n (w))),d(f (w,E2n—2(w)), T (w,E2n—2(w)))
( )

9 d g(w1§2n(w))7s(w7§2’ﬂ (’LU ))7d(f(w7£2n72 (w)),S(w,Ezn (’U})))},

+ 4+ INIA

_|_

using (3), we obtain

d(f(wgon—1),S(wé2n)) < a(w)d(yzn—2(w).yan(w))

+ b(w) max{d(yzn—2(w),y2n—1(w)),d(y2n (w) Y2041 (w))}

+  e(w) max{d(y2n—2(w),y2n (w)),d(y2n—2(w),y2n—1(w))
;o d(yzn(w)y2ny1(w))}

+  e(w) max{d(yzn—2(w),y2n (w)),d(y2n—2(w),y2n—1(w))

y o dyan(w)y2nt1(w)),d(y2n—2(w),y2n+1(w))},
by triangle inequality and (5), we obtain

d(f(w,&2n—1),5(w,&2n)) S 2a(w)d(yzn—2(w),y2n—1(w))+b(w)d(y2n—2(w),y2n—1(w))
+  2c(w)d(y2n—2(w),y2n—1(w))
+  e(w) max{2d(y2n—2(w),y2n—1(w)),3d(y2n—2(w),y2n—1(w))}

= (2a(w)+b(w)+2¢(w)+3e(w))d(y2n—2 (W) y2n—1(w)), (6)
since a(w) + b(w) + c(w) + 2e(w) = 1, then

d(f(w, Ean—1), S(w, &) < (2= b(w) — e(w))d(yzn—2(w), y2n-1(w)). (7)
Again, using Condition A,

H(T(w,&2n—1(w)),S(w,&2n (w)))

a(w)d(f (w,§2n-1(w)),g(w,€2n (w)))

b(w) max{d(f(w,&2n—1(w)),T(w,E2n-1(w))),d(g(w,E2n(w)),S(w,€2n (w)))}

c(w) max{d(f(w,€2n—1(w)),g(w,E2n (w))),d(f (w,€2n—1(w)), T (w,E2n—1(w)))

o dg(wi€an(w)),S(w,E2n (w)))}

e(w) max{d(f(w,£2n—1(w)),g(w,&2n (w))),d(f (w,E2n—1(w)), T (w,E2n -1 (w)))
(

y d(g(w,Ean (w)),S (w,E2n (W), d(f (W,E2n—1 (1)), (w,E2n ()} (8)

d(y2n(w),y2n+1(w))

+ 4+ INIA

+
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Substituting (7) into the last term of (8) and using (5), we get

d(yan(w),yont1(w)) < [a(w)+b(w)+e(w)+e(w)(2—b(w)—e(w))]d(y2n—2(w),y2n—1(w))
= [1—e(w)b(w) — *(w)]d(Yan—2(w), Yan—1(w))
= kd(y2n—2(w), yan-1(w))

< E"d(yo(w), y1(w))

where k =1 — (e(w)b(w) + e*(w)) < 1. In general,
d(yn (W), Y1 (w)) < k2d(yo(w), yr(w)), w € Q.

Now, for positive integer m > n > 1 we have

d(yn(w)aym(w)) < d(yn(w)vyn+l(w))+d(yn+1(w)vyn+2(w))+"'+d(ymfl(w)vym(w))

< (VR + (VR 4 o+ (VE™d(yo(w), 1 (w)

It follows that {y,,(w)} is a Cauchy sequence such that {y,(w)} C O(f, g, T, S; &)
Nf (w, X)Ng(w, X). Since f(w, X)Ng(w, X) is (T, S, f, g)-orbitally complete at
&o, so that, there exists {(w) € f(w, X)Ng(w, X) such that {y,(w)} — {{(w)}
as n — oo for w € Q and consequently the subsequences {yo,+1(w)} and

{yonso(w)} converge to {&(w)} for w € Q. Let n(w) € f~'(w,&(w)) and
C(w) € g7 (w, &(w)), then n(w), ((w) € X and

§(w) = f(w,n(w)) = g(w,{(w)).
Now, we will show that f(w,n(w)) € T(w,n(w)),w € Q,

d(f (wn(w)),T (w,n(w))) ( 9(W,E2n+2(w)))+d(g(w,E2n+2(w)), T (w,n(w)))
(f(wm(w)),g(w,&2n+2(w)))+H(T (w,n(w)),S(w,E2n+1(w)))
(
(

d(f (w,n(w))
( )
(wn(w)),g(w,Ean+2(w)))+a(w)d(f (wn(w)),g(w.E2nt1(w)))
) (
) (

S9

)
)

~

b(w Hla.)({d ! wﬂ?( )) T(wvn(w)))rd(g(w1§2n+1(w))vs(w7§2n+1(w)))}

(
(w

+ 4+ INIA A
U

c(w) max{d(f(w,n(w)),g(w,&an+1(w))),d(f(wn(w)),T(wn(w)))

d(g(w,&2n+1(w)),S(w,E2n+1(w)))}

e(w) max{d(f(w,n(w)),g(w,E2nt1(w))),d(f (wn(w)),T(wn(w)))
(9(w,E2n+1(w)),S(w,€an+1(w))),d(f (w,n(w)),S(w,E2n+1(w)))},

+

S9

by (3), we obtain

d(f (wyn(w)),T(wn(w))) d(f (wn(w)),y2n+2(w))+a(w)d(f(wn(w))yani1(w))
b(w) max{d(f(w,n(w)),T(w,n(w))),d(yzn+1(w),y2n+2(w))}
c(w) max{d(f(w,n(w)),y2n+1(w)),d(f (wmn(w)),T(wn(w)))

o d(yzny1(w)yante(w))}

e(w) max{d(f(w,n(w)),y2n+1(w)),d(f(wn(w)),T(wn(w)))
( (

9 d y2n+1(w) Yon+2 w))vd(f(wvn(w))7y2n+2(w))}'

+ 4+ IA

+
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Taking the limit as n — oo, and using &(w) = f(w,n(w)) we obtain

d(f (w,n(w)),T (w

It follows that

d(f (w, n(w)), T (w, n(w)))

which leads to,

Similarly, we can show that g

d(g(w,{(w)),S(w,¢

m(w)))

f(w,

(w))

+ 4+ INIA A

_|_

using (3), we obtain

d(g(w,¢(w)),S(w,¢(w))

+ + IA

+

d(f (wn(w)),f(w,n(w)))+a(w)d(f(wn(w)),f(wn(w)))

(w,
)
)
d(f (wn(w)), f(wn(w)))}
)
(w

d(f (wn(w)), f(w,n(w))),d(f (wn(w)),f(w,n(w)))}

b(w) max{d(f(w,n(w)), T (w,n(w))),d(f(w,n(w)),f(wmn(w)))}
c(w) max{d(f (w,n(w)),f (w,n(w))),d(f (w,n(w)),T(wn(w)))

e(w) max{d(f (w,n(w)),f(wn(w))),d(f (wn(w)),T(wn(w)))

< (b(w) + c(w) + e(w))d(f (w, n(w)), T (w, n(w))),

n(w)) € T(w,n(w)), w € Q.
(w, ¢(w)) € S(w, {(w)), w €,
Alg(w,G()).F (. Ean+1 () +d(F (0 Ean 1 (), S (W (w)))

(
d(g(w,C(w)), f(w,€2n+1(w)))+H(T (w,é2n (w)),S(w,((w)))
d(g(w,¢(w)), f(w,€an+1(w)))+a(w)d(f(w,E2n (w)),g(w,((w)))

)

)

)

b(w) max{d(f(w,2n(w)), T (w,§2n(w))),d(g(w,{(w)),S(w,((w)))}
),9(w,¢(w)),d(f (w,€2n (w)), T (w,E2n (w)))

e(w) max{d(f(w,&an (w
d(g(w,¢(w)),S(w,¢(w)))}

e(w) max{d(f (w,§2n (w)),g(w,{(w))),d(f (w,E2n (w)), T (w,E2n (w)))

d(g(w,((w)),S (w,(w))),d(f (w,E2n (w)),S (w,{(w))) }

d(g(w,¢(w)),y2n+1(w))+a(w)d(yzn (w),g(w,{(w)))
b(w) max{d(yzn (w),y2n+1(w)),d(g(w,¢(w)),S (w,{(w)))}
c(w) max{d(yzn (w),g(w,¢(w))),d(y2n (w)y2n+1(w))

y o dlg(w,C(w)),S(w,¢(w)))}

e(w) max{d(yzn (w),g(w,{(w))),d(y2n (W) y2n+1(w))

o dlg(w,C(w)),S(w,¢(w))),d(yzn (w),S(w,¢(w)))},

+ 4+ IA

+

Again taking the limit as n — oo, and using &(w) = g(w, ((w))

d(g(w,¢(w)),S

(w,¢(w))

+ 4+ IA

+

d(g(w,¢(w),g(w,¢(w)))+a(w)d(g(w,{(w),g(w,{(w)))

b(w) max{d(g(w,{(w),g(w,(w))),d(g(w,((w)),S(w,{(w)))}
c(w) max{d(g(w,{(w),g(w,{(w)))),d(g(w,{(w),g(w,{(w)))
d(g(w,¢(w)),S(w,¢(w)))}

e(w) max{d(g(w,{(w),g(w,{(w)))),d(g(w,{(w),g(w,(w))))
(

9)
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It follows that

d(g(w, ((w)), S(w,((w)) < (b(w) + c(w) + e(w))d(g(w, {(w)), S(w, {(w))

Hence,

g9(w,{(w)) € S(w, ((w)), w € Q2. (10)

So, we prove that the pairs (f,7T") and (g, .S) have a random coincidence point.
Now, from the hypotheses (III) of the theorem, we have f(w,n(w)) is a random

fixed point of f for some n(w) € C(f,T), i.e. f(w, f(w,n(w))) = f(w,n(w)).
Since T" and f are (IT)-commuting at n(w), then

flw,n(w)) € T(w,n(w))
= f(w, f(w,n(w))) € f(w, T(w,n(w))) € T(w, f(w,n(w)))
= flw,n(w)) = f(w, fw,n(w))) € T(w, f(w,n(w))), w € Q.

Hence, T" and f have a common random fixed point f(w,n(w)).

Similarly, from (IV), we have g(w, {(w)) is a fixed point of ¢ for some ((w) €
C(g,9S),ie. g(w,g(w,((w))) = g(w,(w)). Since S and g are (IT)-commuting
at ((w), we have

9w, C(w)) € Sw,((w))
= g(w, g(w,((w))) € g(w, S(w,{(w))) € S(w, g(w, ((w)))
= g(w, ((w)) = g(w, g(w, ((w))) € S(w, g(w, ((w))), w € Q.

It follows that S and g have a common random fixed point g(w, ((w)).
Finally, (V) is obtained immediately from (III) and (IV).

Corollary 2.2 Let X be a separable metric space. Let T : 2 x X — CB(X)
be continuous random multivalued mapping and f : Q x X — X 1is self random
mapping such that T'(w, X) C f(w, X) and satisfying the following condition:

H(T(w,z),T(w,y)) a(w)d(f(w,z),f(w,y))+b(w) max{d(f(w,z),T(w,x)),d(f(w,y),T(w,y))}

<

+  c(w) max{d(f(w,z),f(wy)).d(f (w.a),T(we)),d(f(wy)T(wy))}
+  e(w) max{d(f(w,a),f(w,y))d(f (w,e),T(w,z)),d(f(wy),T(w,y))
, d(f(wa) T(wy)}, w € €,

for all x,y € X and for all w € Q, where a(w),b(w), c(w), e(w) : @ — (0,1)
are measurable mappings such that, a(w) + b(w) + c(w) + 2e(w) = 1. If there
exists & € X such that f(w,X) is (T, f)-orbitally complete at &, then the
pairs (f,T) has a random coincidence point. Further T and f have a common
fized point f(w,n(w)) provided that f(w,n(w)) is a fixed point of f for some
n(w) € C(f,T) and T and f are (IT)-commuting at n(w).
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proof. Put T'= S and f = g in Theorem 2.1, then the Corollary 2.2 follows
from Theorem 2.1.

Remark 2.3 Corollary 2.2 is a stochastic version and extension of Theorem
2 in [15].

If we put f = g = I(w, ) = x (the identity random mapping on X) in Theorem
2.1, we obtain the following corollary:

Corollary 2.4 Let X be a separable metric space. Let T, S : Qx X — CB(X)
be two random multivalued mappings satisfying the following condition

< a(w)d(z,y) + b(w) max{d(z, T'(w, z)), d(y, S(w, y))}
+  c(w) max{d(z,y),d(z,T(w, z)),d(y, S(w,y))}

+ e(w)max{d(x,y),d(z,T(w,z)),d(y, S(w,y))

, d(z,S(w,y))},w e Q,

H(T(w, ), S(w,y))

for all x,y € X and for all w € Q, where a(w),b(w), c(w),e(w) : @ — (0,1)
are measurable mappings such that, a(w) + b(w) + c¢(w) + 2e(w) = 1. If there
exists & € X such that is T'(w, X) N S(w, X)-orbitally complete at &, then the
pair TS have a common random fixed point.

Also, if we put T = S in Corollary 2.4 we also obtain a random version of
Corollary 2 in [15].

Corollary 2.5 Let X be a separable metric space. Let T : Q2 x X — CB(X)
be random multivalued mapping satisfying the following condition

H(T(w,z), T(w,y)) < a(w)d(z,y)+ b(w)max{d(z,T(w,z)),d(y,T(w,y))}
+  c(w)max{d(z,y), d(z, T(w,z)),d(y, T(w,y))}
+ e(w)max{d(z,y),d(z, T(w,x)),d(y, T(w,y))

, d(z,T(w,y))}we Q,

for all z,y € X and for allw € Q, where a(w), b(w), c(w), e(w) : & — (0,1) are
measurable mappings such that, a(w)+b(w) + c(w) +2e(w) = 1. If there exists
& € X such that is T(w, X)-orbitally complete at &, then T has a random
fixed point.

3 Open Problem

In this section, we should present an open problem:
Let (X, d) be a separable complete metric space and (£2,3) is a measurable
space, C'B(X) denotes the family of all nonempty closed bounded subsets of
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X and K(X) denotes the family of all nonempty compact subsets of X. Can
be the Theorem (2.1) extended to four multivalued mappings S, 7 : Q2 x X —
CB(X)and F,G : Qx X — K(X) under the conditions given in the Theorem.
Moreover, are the results in this paper hold if we replace a separable metric
space X by a cone random metric space?
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