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Abstract

In this paper, we establish sufficient conditions for the
existence and uniqueness of solutions for impulsive fractional
differential equations of order α, (n − 1 < α ≤ n, n ∈ N∗) in
Banach spaces. These results are obtained using Banach con-
traction fixed point theorem. Other existence results are also
presented using Krasnoselskii theorem.
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1 Introduction

The fractional differential equations theory is a new branch of applied math-
ematics by which many physical phenomena in various fields of science and
engineering can be modeled. Significant development in this area has been
achieved for the last two decades. For details, we refer to [3, 4]. Moreover, the
study of impulsive fractional differential equations is also of great importance.
The study of such equations is linked to their utility in processes which ex-
perience a sudden change of their state at certain moments. These processes
arise in phenomena studied in physics, chemical technology, population dy-
namics, biotechnology, and economics [1, 2]. Many researchers have discussed
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existence of solutions for impulsive systems in Banach space. For more details,
we refer the reader to [7, 8, 9, 10]. Motivated by the works [5], the main aim
of this paper is to establish some existence results for evolution fractional dif-
ferential equations in Banach spaces by using the fractional calculus and fixed
point theorems. So, let us consider the following αth-order evolution fractional
differential equations with integral boundary conditions:

Dαx (t) + f (t, x (t)) = 0, ti 6= t, t ∈ J := [0, 1], n− 1 < α ≤ n, n ∈ N∗

−∆(n−1)|t=ti , i = 1, 2, ...,m,

x(0) = x
′
(0) = ... = x(n−2)(0) = 0, x(1) =

∫ 1

0
h(t)x(t)dt,

(1)

where Dα denotes the Caputo derivative, f ∈ C(J×X,X), Ii ∈ C(X,X), X is
a real space, (t)i=1,...,m are fixed points, with 0 < t1 < t2 < ... < ti < ... < tm,
m fixed in N, and ∆x(n−1)|t=ti = x(n−1)(t+i ) − x(n−1)(t−i ), such that x(n−1)(t+i )
and x(n−1)(t−i ) represent the right-hand limit and left-hand limit of x(n−1)(t)
at t = ti, respectively and h ∈ L1(J) is nonnegative.

2 Preliminaries

We give the necessary notation and basic definitions which will be used in this
paper [6, 11].

Definition 1: A real valued functionf(t), t > 0 is said to be in the space
Cµ, µ ∈ R, if there exists a real number p > µ such that f(t) = tpf1(t), where
f1(t) ∈ C([0,∞)).
Definition 2: A function f(t), t > 0 is said to be in the space Cn

µ , n ∈ N, if

f (n) ∈ Cµ.
Definition 3: The Riemann-Liouville fractional integral operator of order
α ≥ 0, for a function f ∈ Cµ, µ ≥ −1, is defined as

Jαf(t) = 1
Γ(α)

∫ t
0
(t− τ)α−1f(τ)dτ ; α > 0, t > 0,

J0f(t) = f(t),

(2)

where Γ(α) :=
∫∞

0
e−uuα−1du.

The fractional derivative of f ∈ Cn
−1([0,∞[) in the Caputo’s sense is defined

as

Dαf(t) =

{
1

Γ(n−α)

∫ t
0
(t− τ)n−α−1f (n)(τ)dτ, n− 1 < α < n, n ∈ N∗,

dn

dtn
f(t), α = n.

(3)
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In order to define the solutions of problem (1), we will consider the following
sets:
Let J

′
= J − {t1, t2, ..., tn}, and

PCn−1(J,X) = {x : J → X : x ∈ C(J,X), x(n−1)|(ti,ti+1)
∈ C(ti, ti+1),

x(n−1)|(t−i ) = x(n−1)|(ti),∃x(n−1)|t+i , i = 1, 2, ...,m}.
(4)

Then PCn−1(J,X) is a real Banach space with norm

||x|| = max{||x||∞, ||x
′ ||∞, ..., ||x(n−1)||∞}, (5)

where ||x(n−1)||∞ = supt∈J |x(n−1)|, n = 1, 2, ....
A function PCn−1(J,X) is called a solution of (1) if it satisfies (1).

We need the following lemma:

Lemma 2.1 [12] For α > 0, the general solution of equation Dαx = 0 is
given by

x(t) = c0 + c1t+ c2t
2 + ...cn−1t

n−1, (6)

where ci ∈ R, i = 0, 1, 2, ...n− 1, n = [α] + 1.

Also, we have the following properties

DαJαx = x

and

JαDαx(t) = x(t) +
n−1∑
i=0

x(i)(0)
ti

i!
. (7)

We need also:

Lemma 2.2 A solution of the problem (1) is given by:

x(t) = −Jαf(t, x(t))−
∑
ti<t

Ii(x(ti))(t− ti)n−1

(n− 1)!
+

tn−1

(n− 1)!

[
(n− 1)!

∫ 1

0

h(t)x(t)dt

+ (n−1)!
Γ(α)

∫ 1

0
(1− τ)α−1f(τ, x(τ))dτ +

∑
ti<1 Ii(x(ti))(t− ti)n−1

]
.

(8)

Proof: We have:

Dαx(t) = −f(t, x(t)). (9)
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Applying the fractional integral operator Jα to both sides of (9), and using
Lemma 1, we get

JαDαx(t) = −Jαf(t, x(t))−
∑
ti<t

Ii(x(ti))(t− ti)n−1

(n− 1)!

−
∑n−1

i=0 x
(i)(0) ti

i!
, n− 1 < α < n,

(10)

that is

x(t) = −Jαf(t, x(t))−
∑
ti<t

Ii(x(ti))(t− ti)n−1

(n− 1)!

−x(n−1)(0) tn−1

(n−1)!
, n− 1 < α < n.

(11)

If t = 1, then we have∫ 1

0

h(t)x(t)dt = − 1

Γ(α)

∫ 1

0

(1− τ)α−1f(τ, x(τ))dτ

−
∑

ti<t
Ii(x)(ti)(1−ti)n−1

(n−1)!
− x(n−1)(0)

(n−1)!
.

(12)

Consequently,

x(n−1)(0) = −(n− 1)!

Γ(α)

∫ 1

0

(1− τ)α−1f(τ, x(τ))dτ −
∑
ti<t

Ii(x(ti))(t− ti)n−1

−(n− 1)!
∫ 1

0
h(t)x(t)dt.

(13)
Therefore

x(t) = − 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ))dτ −
∑
ti<t

Ii(x(ti))(t− ti)n−1

(n− 1)!

+ tn−1

(n−1)!

[
(n−1)!
Γ(α)

∫ 1

0
(1− τ)α−1f(τ, x(τ))dτ +

∑
ti<t

Ii(x(ti))(1− ti)n−1

+(n− 1)!
∫ 1

0
h(t)x(t)dt

]
.

(14)

Lemma 2 is thus proved.

To establish the existence of solutions in PCn−1(J,X) of problem (1), let us
list the following assumptions:
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(H1) : The nonlinear function f : J × X → X is continuous and there exist
constants β > 0, ß > 0, such that

||f(t, x(t))− f(t, y(t))|| ≤ β||x− y||;x, t ∈ X, t ∈ J (15)

and
ß = maxt∈J ||f(t, 0)||.

(H2) : Ii : X → X is continuous and there exist constants $i such that

||Ii(x)− Ii(y) ≤ $i||x− y||, i = 1, 2, ...,m, x, y ∈ X

and
ω = maxt∈J ||Ii(0)||.

(H3) : For t ∈ J , the function h : J → X is continuous and there exists a
constant M > 0; such that

||h(t)|| ≤M, fort ∈ J.

(H4) : There exists a positive constant r > 0 such that

γ(2βr + 2ß) +Mr +
1

(n− 1)!

(
2

m∑
i=1

$ir + 2mω
)
≤ r,

where

γ =
1

Γ(α + 1)
.

3 Main Results

3.1 Existence Results Using Banach Fixed Point Theo-
rem

We prove the existence and the uniqueness of a solution for the impulsive
fractional differential equation (1) by using Banach fixed point theorem. We
have

Theorem 3.1 If the hypotheses (Hj)j=1,4 and

0 ≤ Λ := 2βγ +
2
∑m

i=1$i

(n− 1)!
+M < 1 (16)

are satisfied, then the impulsive fractional differential system (1) has a unique
solution on PCn−1(J,X).
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Proof: Let us take Br = {x ∈ PCn−1(J,X) : ||x|| ≤ r}. Based on (1), we
define an operator Φ : PCn−1(J,Br)→ PCn−1(J,Br) by

Φ(x(t)) = − 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ))dτ −
∑
ti<t

Ii(x)ti))(t− ti)n−1

(n− 1)!

+ tn−1

(n−1)!

[
(n− 1)!

∫ 1

0
h(t)x(t)dt+ (n−1)!

Γ(α)

∫ 1

0
(1− τ)α−1f(τ, x(τ))dτ

+
∑

ti<t
Ii(x(ti))(1− ti)n−1

]
.

(17)

(1∗) We show that ΦBr ⊂ Br. We have:

||Φ(x(t))|| ≤ 1

Γ(α)

∫ t

0

(t− τ)α−1||f(τ, x(τ))||dτ +
∑
ti<t

||Ii(x(ti))||
(n− 1)!

+ 1
(n−1)!

[
(n− 1)!

∫ 1

0
||h(t)x(t)||dt+ (n−1)!

Γ(α)

∫ 1

0
(1− τ)α−1||f(τ, x(τ))||dτ

+
∑

ti<1 ||Ii(x(ti))||
]
.

(18)

Consequently,

||Φ(x(t))|| ≤ 1

Γ(α)

∫ t

0

(t− τ)α−1||f(τ, x(τ))− f(τ, 0)||dτ

+ 1
Γ(α)

∫ t
0
(t− τ)α−1||f(τ, 0)dτ +

∑
ti<t

||Ii(x(ti))−Ii(0)||
(n−1)!

+
∑

ti<t
||Ii(0)||
(n−1)!

+M ||x||+ 1
Γ(α)

∫ 1

0
(1− τ)α−1||f(τ, x(τ))− f(τ, 0)||dτ

+ 1
Γ(α)

∫ 1

0
(1− τ)α−1||f(τ, 0)||dτ +

∑
ti<1

||Ii(x(ti))−Ii(0)||
(n−1)!

+
∑

ti<1
||Ii(0)||
(n−1)!

.

(19)

Using (H1) and (H2), we can write

||Φ(x(t))|| ≤ 2β

Γ(α + 1)
||x||+ 2ß

Γ(α + 1)

2
∑m

i=1$i||x||
(n−1)!

+ 2mω
(n−1)!

+M ||x||.

(20)

This implies that

||Φ(x(t))|| ≤ γ(2β + 2ß) +Mr +
1

(n− 1)!

(
2

m∑
i=1

$ir + 2mω
)
. (21)
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Thanks to (H4), we obtain
||Φ(x(t))|| ≤ r.

Then ΦBr ⊂ Br; which implies that the operator Φ maps Br into itself.
(2∗) Now we prove that Φ is a contraction mapping on Br :
Let x and y ∈ Br, then we can write:

||Φ(x(t))− Φ(y(t))|| ≤ || − 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ))dτ −
∑
ti<t

Ii(x(ti))(t− ti)n−1

(n− 1)!

+ tn−1

(n−1)!
[(n− 1)!

∫ 1

0
h(t)y(t)dt+ (n−1)!

Γ(α)

∫ 1

0
(1− τ)α−1f(τ, x(τ))dτ

+
∑

ti<t
Ii(x(ti))(1− ti)n−1 + 1

Γ(α)

∫ t
0
(t− τ)α−1f(τ, y(τ))dτ

+
∑

ti<t
Ii(y(ti))(t−ti)n−1

(n−1)!
− tn−1

(n−1)!
[(n− 1)!

∫ 1

0
h(t)y(t)dt

+ (n−1)!
Γ(α)

∫ 1

0
(1− τ)α−1f(τ, y(τ))dτ +

∑
ti<t

Ii(y(ti))(1− ti)n−1]||.
(22)

Consequently,

||Φ(x(t))− Φ(y(t))|| ≤ || − 1

Γ(α)

∫ t

0

(t− τ)α−1(f(τ, x(τ))− f(τ, y(τ)))dτ

−
∑

ti<t
(Ii(x(ti))−Ii(y(ti)))(t−ti)n−1

(n−1)!

+ tn−1

(n−1)!
[(n− 1)!

∫ 1

0
h(t)[x(t)− y(t)]dt

+ (n−1)!
Γ(α)

∫ 1

0
(1− τ)α−1(f(τ, x(τ))− f(τ, y(τ)))dτ

+
∑

ti<t
(Ii(x(ti))− Ii(y(ti)))(1− ti)n−1]||.

(23)
By a simple calculate we obtain

||Φ(x(t))− Φ(y(t))|| ≤
(

2γβ +
2
∑m

i=1$i

(n− 1)!
+M

)
||x− y||.

Then by (16), we get

||Φ(x(t))− Φ(y(t))|| ≤ Λ||x− y||.

Since 0 ≤ Λ < 1, then Φ is a contraction and so by Banach fixed point theorem,
there exists a unique fixed point x ∈ PCn−1(J,Br) such that (Φx)(t) = x(t).



8 S. Belarbi, Z. Dahmani

3.2 Existence of Solution Using Krasnoselskii’s Fixed
Point Theorem

Our second result is based on the existence of solution using the following
Krasnoselskii’s fixed point theorem:

Theorem 3.2 [8] Let S be a closed convex and nonempty subset of a Ba-
nach space X. Let P,Q be the operators such that
(i) Px+Qy ∈ S, x, y ∈ S,
(ii) P is compact and continuous, (iii) Q is a contraction mapping.
Then there exists x∗ such that x∗ = Px∗ +Qx∗.

We have:

Theorem 3.3 Suppose that the hypotheses (Hj)j=1,4 are satisfied. If there
exists a constant Υ such that

Υ := 2γβ +M < 1,

then the system (1) has a solution on PCn−1(J,X).

Proof: On Br, we define the operators R and S as:

Rx(t) = − 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ))dτ

+ tn−1

Γ(α)

∫ 1

0
(1− τ)α−1f(τ, x(τ))dτ

+tn−1
∫ 1

0
h(t)x(t)dt

(24)

and

Sx(t) = −
∑
ti<t

Ii(x(ti))(t− ti)n−1

(n− 1)!
+
∑
ti<1

Ii(x(ti))t
n−1(1− ti)n−1

(n− 1)!
. (25)

For x, y ∈ Br, we have

||Rx(t) + Sy(t)|| ≤ ||Rx(t)||+ ||Sy(t)||.
Then we can write

||Rx(t) + Sy(t)|| ≤ || 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ))dτ ||+ ||tn−1

∫ 1

0

h(t)x(t)dt||

+|| tn−1

Γ(α)

∫ 1

0
(1− τ)α−1f(τ, x(τ))dτ ||

+||
∑

ti<t
Ii(x(ti))(t−ti)n−1

(n−1)!
||+ ||

∑
ti<1

Ii(x(ti))t
n−1(1−ti)n−1

(n−1)!
||.

(26)



Fractional Evolution Equations 9

By (H1), (H2) and (H3), it follows that

||Rx(t) + Sy(t)|| ≤ γ(2βr + 2ß) +Mr +
1

(n− 1)!

(
2

m∑
i=1

$ir + 2mω
)
. (27)

Thanks to (H4), we get

||Rx(t) + Sy(t)|| ≤ r.

Hence Rx+ Sy ∈ BR.
On other hand, we have

||Rx(t)−Ry(t)|| = || − 1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, x(τ))dτ +
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ, y(τ))dτ

+ tn−1

Γ(α)

∫ 1

0
(1− τ)α−1f(τ, x(τ))dτ − tn−1

Γ(α)

∫ 1

0
(1− τ)α−1f(τ, y(τ))dτ

+tn−1
∫ 1

0
h(t)x(t)dt− tn−1

∫ 1

0
h(t)y(t)dt||.

(28)
Hence,

||Rx(t)−Ry(t)|| ≤ (2γβ +M)||x− y||

≤ Υ||x− y||.
(29)

Since Υ < 1, then the operator R is a contraction.
Now, we shall prove that the operator S is completely continuous from Br to
Br. Since Ii ∈ C(X,X), then S is continuous on Br.
To prove the compactness of S, we shall prove that S(Br) ⊆ PCn−1(J,X) is
equicontinuous and S(Br) is precompact for any r > 0, t ∈ J.
Let x ∈ Br and t+ h ∈ J . Then we can write

||Sx(t+ h)− Sx(t)|| ≤ ||
∑
ti<t+h

Ii(x(ti))((t+ h)− ti)n−1

(n− 1)!

−
∑

ti<t
Ii(x(ti))t

n−1(1−ti)n−1

(n−1)!
||.

(30)

The inequality (30) is independent of x; thus S is equicontinous, and as h→ 0
the right hand side of the above inequality tends to zero. So S(Br) is relatively
compact, and S is compact. Finally by Krasnosellkii theorem, there exists a
fixed point x(.) in Br such that (Φx)(t) = x(t) and this point x(.) is a solution
of (1).
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4 Open Problems

We pose the following problems:
Open Problem 1: Using fractional differential operator of order α in the
sense of Riemann-Liouville for a function f ∈ C(J ×X,X), under what con-
ditions do Theorem 3.1 and Theorem 3.3 hold for 1 < α < 2?
Open Problem 2: Is it possible to generalize Theorem 3.1 and Theorem 3.3
for α, n < α < n+ 1, n ∈ N, using the Riemann-Liouville derivative approach?
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