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Abstract 

     In this paper, we study timelike biharmonic general helices in the 
Lorentzian group of rigid motions (1,1)E . We characterize the 
timelike biharmonic general helices in terms of their curvature and 
torsion in the Lorentzian group of rigid motions (1,1)E .  

     Keywords: Bienergy, Biharmonic curve, General helix, Rigid motion 

1      Introduction 

A curve of constant slope or general helix is defined by the property that 

the tangent lines make a constant angle with a fixed direction. A necessary and 

sufficient condition that a curve to be general helix is that ratio of curvature to 

torsion be constant. Indeed, a helix is a special case of the gerenal helix. If both 

curvature and torsion are non-zero constants, it is called a helix or only a W-curve. 

On the other hand in Mechanics, selection of helical gears involves 

specifying whether the gear should be single or double helix. Often, 

turbomachinery operators make this decision based on past experience or the 

traditions followed in their engineering firm. The double helical gear eliminates 

internal thrust without introducing a thrust bearing, while maintaining a helical 

design for load sharing and smooth transfer of load from tooth to tooth. However, 

this style of gear is subject to a mismatch of the helices between the pinion and 

the gear. In the case of a single helix, the pinion can be corrected with respect to 

the gear whereas in the case of two helices a compromise must be settled for the 

left and right-hand helices. This is because mismatch is not necessarily 

symmetrical but accumulative, [10]. 

The notions of harmonic and biharmonic maps between Riemannian 

manifolds have been introduced by J. Eells and J.H. Sampson (see [4]). 

http://www.i-csrs.org/
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A smooth map MN :  is said to be biharmonic if it is a critical point 

of the bienergy functional: 

   ,)(
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1
=

2

2 h
N

dvE  T  

where  dtr:=)(T  is the tension field of   

The Euler--Lagrange equation of the bienergy is given by 0=)(2 T . Here 

the section )(2 T  is defined by 

   ,),(tr)(=)(2   ddR TTT   (1.1) 

and called the bitension field of  . Non-harmonic biharmonic maps are called 

proper biharmonic maps. 

There are a few results on biharmonic curves in arbitrary Riemannian 

manifolds. The biharmonic curves in the Heisenberg group Heis 3  are investigated 

in [7,8,11-13] by Körpınar and Turhan. 

In this paper, we study timelike biharmonic general helices in the 

Lorentzian group of rigid motions (1,1)E . We characterize the timelike 

biharmonic general helices in terms of their curvature and torsion in the 

Lorentzian group of rigid motions (1,1)E . 

 

2      Preliminaries 

 

Let (1,1)E  be the group of rigid motions of Euclidean 2-space. This 

consists of all matrices of the form 
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Topologically, (1,1)E  is diffeomorphic to 3R  under the map 
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The bracket relations are 

       .=0,=,= 23132321 ee,ee,eee,e  (2.2) 

 

We consider left-invariant Lorentzian metrics which has a pseudo-

orthonormal basis  ., 321 XX,X  We consider left-invariant Lorentzian metric, 

given by 

       ,=
2

31212
312121 dxedxedxedxedxg xxxx    (2.3) 

where  

       1.==1,= 332211 e,ee,ee,e ggg   (2.4) 

 

Let coframe of our frame be defined by 

 .=,=,= 312133121211 dxedxedxedxedx xxxx  
θθθ  

 

 

Proposition 2.1. For the covariant derivatives of the Levi-Civita 

connection of the left-invariant metric g , defined above the following is true: 
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where the ),( ji -element in the table above equals j
i
ee  for our basis 

 }.{=1,2,3}=,{ 321 e,e,ee kk  
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3      Timelike Biharmonic General Helices in the 
Lorentzian Group of Rigid Motions (1,1)E   

Let (1,1): EI  be a non geodesics timelike curve in the group of rigid 

motions (1,1)E  parametrized by arc length. Let }{ BN,T,  be the Frenet frame 

fields tangent to the group of rigid motions (1,1)E  along   defined as follows: 

T  is the unit vector field '  tangent to  , N  is the unit vector field in the 

direction of TT  (normal to  ) and B  is chosen so that }{ BN,T,  is a positively 

oriented orthonormal basis. Then, we have the following Frenet formulas: 

        ,= ssss NTT   

            ,= ssssss BTNT    (3.1) 

        ,NBT ssss  =  

where  s  is the curvature of  ,  s  is its torsion and 

 

                1,=,1,=,1,=, ssgssgssg BBNNTT   (3.2) 

                0.=,=,=, ssgssgssg BNBTNT  

 

With respect to the orthonormal basis }{ 321 e,e,e  we can write 

         ,= 332211 eeeT sTsTsTs   (3.3) 

         ,= 332211 eeeN sNsNsNs   

             .== 332211 eeeNTB sBsBsBsss   

 

 

Theorem 3.1. (1,1): EI  is a non geodesic timelike biharmonic curve 

in the Lorentzian group of rigid motions (1,1)E   if and only if 

   0,constant= s  

      ,21= 2

1

22 sBss   (3.4) 

      .2= 11 sBsNs'   

 

 

Proof. Using (3.1), we have (3.4). This complete the proof of the theorem. 

 

If we write this curve in the another parametric representation   = , 

where   .=
0

dss
s

   We have new Frenet equations as follows: 

      ,=  NTT  

          ,=  BTNT f  (3.5) 
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        ,=  NBT f  

where  
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f  

 

If we write        BNT ,,  with respect to the orthonormal basis 

}{ 321 e,e,e  as following: 

         ,= 332211 eeeT  TTT   

         ,= 332211 eeeN  NNN   (3.6) 

             .== 332211 eeeNTB  BBB   

 

 

Theorem 3.2.  Let (1,1): EI  is a non geodesic timelike biharmonic 

general helix in the Lorentzian group of rigid motions (1,1).E  Then, the 

parametric equations of   are 
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where ,1  ,2  ,3  ,4  5  are constants of integration. 

 

Proof. Since the curve    is a timelike general helix, i.e. the tangent 

vector  T  makes a constant angle  , with the constant timelike vector called 

the axis of the general helix. So, without loss of generality, we take the axis of a 

general helix as being parallel to the timelike vector 1X . Then, using first 

equation of (3.6), we get 

      .cosh=,= 11 XT  gT  (3.8) 

 

So, substituting the components  ,1 T   2T  and  3T  in the first 

equation of (3.6), we have the following equation 

     .sinsinhcossinhcosh= 321 eeeT     (3.9) 
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If we substitute (3.5) in (3.9), we have  

   ,= 21   (3.10) 

where ,1  2  are constants of integration. 

Since (3.9) and (3.10), imply 

     .sinsinhcossinhcosh= 3212211 eeeT   

 (3.11) 

 

Using (2.1) in (3.11), we obtain 
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where 3  is constant of integration. 

Also, we have 
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If we take the integral of (3.12), we get (3.7). Thus, the proof is completed. 

 

Theorem 3.3.  Let (1,1): EI  is a non geodesic timelike biharmonic 

general helix in the Lorentzian group of rigid motions (1,1).E  Then, the 

parametric equations of   are 
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where ,1  ,2  ,3  ,4  5  are constants of integration. 

 

Proof. From first equation of (3.4) and the definition of  , we have 

 .= s  (3.14) 

 

So, substituting (3.14) in the system (3.7), we have (3.13) and the assertion 

is proved. 

 

We can use Mathematica in Theorem 3.3, yields 

  
 Figure1.  

 

 

5      Open Problem 

In this work, we study timelike biharmonic general helices in the Lorentzian 

group of rigid motions (1,1)E . We have given some explicit characterizations of 

biharmonic curves. Additionally, problems such as; investigation timelike 

biharmonic curves or extending such kind curves to higher dimensional 

Heisenberg group can be presented as further researches. 
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