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Abstract 

       This paper deals with the inventory model for deteriorating 

items in declining market when delay in payments is allowed to the 

retailer to settle the account against the purchases made by him. 

Shortages are not allowed in this model. Here we have dealt with two 

cases, first one for payment within the permissible time and another 

for payment after the permissible time. Numerical examples are 

given to illustrate our results. Sensitivity analysis has been carried 

out to analyze the changes in the optimal solution with respect to 

deterioration rate of units in inventory and the rate of change of 

demand. 
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1. Introduction 

In general, the objective of inventory management deals with minimization of the 
inventory carrying cost. Thus it is very important to determine the optimal stock 
and optimal time of replenishment of inventory to meet the future demand. This 
situation becomes more complicated when the inventories are subject to 
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deterioration, delay in payment is permissible and the demand is either increasing 
or decreasing. An EOQ model under the condition of permissible delay in 
payments has been developed by Goyal [5] where he has not consider the 
difference between the selling price and purchase cost. Goyal‟s model was 
improved by Dave [4] by assuming the fact that the selling price is higher than its 
purchase price. Inventory models for the optimal pricing and ordering policies for 
the retailer under the scenario of allowable trade credit was formulated by Hwang 
and Shinn [6] and Liao et al. [9]. Considering the difference between the unit sale 
price and unit purchase cost Jamal et al. [7] and [8] and Sarker et al. [14] have 
suggested that the retailer should settle the account sooner as the unit selling price 
increases relative to the unit cost. Most of the above have studied under the 
assumption of the constant and known deterministic demand. Chang et al. [1] 
have suggested a model under the condition that supplier offers trade credit to the 
buyer if the order quantity is greater than or equal to a pre-determined quantity. 
Further studies in this line are due to   Ouyang et al. [10], Chang et al. [2], Chung 
and Huang [3], Tripathy and Mishra    [11 ,12] etc. Teng et al. [15] has suggested 
the strategy of granting credit items adds not only an additional cost to the 
supplier but also default risk to the supplier. Ouyang et al. [13] have considered 
tread credit linked to order quantity for deteriorating items.   

In developing the present model demand of a product is assumed to be decreasing 
function of time. Generally decrease in demand is observed in case of fashionable 
garments, seasonal products etc. We have considered the case of no shortages and 
infinite replenishment rate. Here the case of the retailer‟s generating revenue on 
unit selling price which is necessarily higher than the unit purchase cost has been 
considered. We have found the optimal total cost, optimal ordering quantity 
optimal cycle length for the model. Numerical examples have been given to 
illustrate the model. Sensitivity analysis has also been carried out to observe the 
effects on the optimal solution. 

2. Notations and assumptions 

We need the following notations and assumptions to develop the proposed 

mathematical model. 

2.1 Notations 

)1()( btatR   :  the annual demand as a decreasing function of time where 

0a  is fixed demand and )10(  bb  denotes the rate of change of demand. 

C  : the unit purchase cost. 

P  : the unit selling price with )( CP  . 

h : the inventory holding cost per unit per year excluding interest charges. 

A  : the ordering cost per order. 

M  : the permissible credit period offered by the supplier to the retailer for settling 

the account. 

cI  : the interest charged per monetary unit in stock per annum by the supplier. 

eI  : the interest earned per monetary unit per year, where ce II  . 

Q  : the order quantity. 

t  : the linear deterioration rate, where 10  . 
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)(tI : the inventory level at any instant of time Ttt 0, .  

T  : the replenishment cycle time. 

)(TTC : the total inventory cost per time unit. 

Total cost of inventory includes (i) ordering cost, (ii) cost due to deterioration, 

(iii) inventory holding cost (excluding interest charges), (iv) interest charged on 

unsold item after the permissible trade credit when TM  , and (v) interest earned 

from sales revenue during the allowable permissible delay in period. 

2.2 Assumptions 

a. The inventory system under consideration deals with single item. 

b. The planning horizon is infinite. 

c. The demand of the product is declining function of the time. 

d.  Shortages are not allowed and lead-time is zero. 

e. The deteriorated units can neither be repaired nor replaced during the cycle 

time. 

f. The retailer can deposit generated sales revenue in an interest bearing account 

during the permissible credit period. At the end of this period, the retailer 

settles the account for all the units sold keeping the difference for day-to-day 

expenditure, and paying the interest charges on the unsold items in the stock. 

3. Mathematical model 

The rate of change of inventory level is governed by the following differential 

equation: 

TttRtI
dt

tdI
 0)()(

)(
   (1) 

Subject to the boundary conditions QI )0(  and 0)( TI . 

Since   is very small using series expansion ignoring second and higher powers 

of  , the solution of (1) will be 
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and the order quantity is  
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i. Ordering cost; 
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ii. Cost due to deterioration per unit time; 


















  34

)(
34

0

TaTab

T

C
dttRQ

T

C
DC

T


   (5) 

iii. Inventory holding cost per unit time; 
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Here two cases may arise based on the length of T  and M  using the fact of 

interest charges or earned (i.e., costs (iv) and (v) in section 2.2), 

Case -I: TM   

Under the assumption (b) above, the retailer sells MMR )(  units by the end of 

the permissible tread credit M and has MMCR )(  to pay the supplier. The supplier 

charges an interest rate cI  from time M onwards for the unsold items in the stock. 

Hence, the interest charged, 1IC  per time unit is 

iv. 
T

M

c dttI
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During  M,0  the retailer sells the product and deposits the revenue into an 

interest earning account at the rate eI  per monetary unit per year. Since b  is very 

small, using series expansion and ignoring second and higher powers of b , we get 

the interest earned, 1IE  per time unit 

v. 
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Hence, the total cost; )(1 TTC  of an inventory system per time unit is 

111 )( IEICIHCDCOCTTC   
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Case -II: TM   
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Here, the retailer sells R(T) T- units in all by the end of the cycle time and has 

CR(T) T to pay the supplier in full by the end of the credit period M. Hence, 

interest charges 

iv.    02 IC         (10) 

and the interest earned per time unit is 

v.    
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 The total cost; )(2 TTC  of an inventory system per time unit is 

222 )( IEICIHCDCOCTTC   
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Hence, the total cost; )(TTC  of an inventory system per time unit is 
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For MT  , in equation (12) we have 
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Now )(1 TTC  will be minimum, the optimum values of  T  for the minimum 

average total cost )(1 TTC  is the solution of equation 

0
)(1 
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From equation (15) we get, 
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Again,  )(2 TTC  will be minimum, the optimum values of  T  for the minimum 

average total cost )(2 TTC  is the solution of equation 

0
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From equation (18) we get,        
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4. Numerical Examples 

Example-1  

Let 100a units/year, 2.0b , 100$A  per order, 8$C /unit, 20$P /unit, 

60$h /unit/annum, 12.0$cI /year, 09.0$eI /year, 365/30M years and 

04.0 /annum  in appropriate units. By the help of Mathematica-5.1 software, 

we obtain the optimum solution for T  of Equation (17) of case-I, as 

185554.0* T  year which is greater than 082.0M year. Putting *T  in (9) and 

(3) we get the optimum average cost and ordering quantity as 20.1077)( *

1 TTC  

and 2028.18* Q  respectively. 

Example-2 

 Let 400a units/year, 2.0b , 100$A  per order, 8$C /unit, 20$P /unit, 

00.60$h /unit/annum, 09.0$eI /year, 365/90M years and 

04.0 /annum in appropriate units. By the help of Mathematica-5.1 software, 

we obtain the optimum solution for T  of Equation (20) of case-II, as 

203117.0* T  year which is less than 246.0M year. Putting *T  in (12) and (3) 

we get the optimum average cost and ordering quantity as 

92.2758)( *

2 TTC and 5532.79* Q  respectively. 

5. Sensitivity Analysis 
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We have performed sensitivity analysis by changing parameters b  ,   and M as 

20%, 50%, - 20% and –50% and keeping the remaining parameters at their 

original values. The corresponding changes in the cycle time, purchase quantities 

and the total cost are exhibited in table-1 and table-2.  

 

 

 

 

Table-1: Sensitivity analysis for Case -I ( TM  ) 

Parameters %  

Change 

Change in 
*T  

Change 

in *Q  

Change 

in  
*

1 )(TTVC  

 +20 0.186567 18.2306 1074.42 

b  +50 0.188141 18.2746 1070.17 

 -20 0.184569 18.1762 1079.96 

 -50 0.183139 18.1381 1084.04 

 +20 0.185627 18.2082 1077.04 

  +50 0.185736 18.2162 1076.80 

 -20 0.185482 18.1975 1077.39 

 -50 0.155374 18.1896 1077.61 

 +20 0.185298 18.1782 1074.07 

M  +50 0.184828 18.1330 1068.69 

 -20 0.185765 18.2231 1079.98 

 -50 0.185997 18.2454 1083.48 

Table-2: Sensitivity analysis for Case -II ( TM  ) 

Parameters %  

Change 

Change in 
*T  

Change 

in *Q  

Change in 
*

2 )(TTVC  

 +20 0.204574 79.7768 2759.59 

b  +50 0.206806 80.1113 2760.36 

 -20 0.201683 79.3289 2758.12 

 -50 0.199572 78.9905 2756.69 

 +20 0.203208 79.5794 2758.95 

  +50 0.203345 79.6188 2759.00 

 -20 0.203026 79.5270 2758.89 

 -50 0.202890 79.4878 2758.84 

 +20 0.204657 80.1431 2739.19 

M  +50 0.206948 81.0203 2709.54 

 -20 0.201567 78.9593 2778.63 

 -50 0.199222 78.0603 2808.15 
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6. Results 

From table-1, we observed that as rate of change of demand increases, cycle time 

increases while the average total cost of an inventory system decreases. It is 

interesting observe that increases in deterioration rate forces retailer to buy more 

number of units and hence increase cycle time and decrease total cost of an 

inventory system. Increase in delay period decrease retailer‟s cycle time and total 

cost of inventory system.  

From table-2, we observed that as rate of change of demand increases, cycle time 

increases while total cost of an inventory system increase.  Increases in 

deterioration rate forces retailer to buy more number of units and hence inscrease 

cycle time and total cost of an inventory system. Increases in delay period 

increase retailer‟s cycle time and decrease total cost of inventory system.  

7. Conclusion 

The model developed in this paper assumes demand of a product to be decreasing 

function of time. Shortages are not allowed and replenishment rate is infinite. It is 

assumed that the retailer generates revenue on unit selling price which is 

necessarily higher than the unit purchase cost. The effect of delay period offered 

by the supplier to retailer is analyzed when the demand of the product is 

decreasing in the market. The units in inventory are assumed to be subject to time 

dependent linear deterioration rate. We observe from both cases that increase in 

credit period „M’ results in the decrease of total inventory cost. 

8. Open Problem  

The model considered above is suited for items having variable deterioration rate 

as against earlier models which have considered items having constant rate of 

deterioration. This model can be used for items like fruits and vegetables whose 

deterioration rate increases with time. Demand pattern considered here is 

decreasing function of time, which can also be converted into constant demand 

pattern. The suggested model can further be extended for fixed credit period with 

and without shortages. This model can also be further extended for items having 

quadratic demand or power demand.  
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