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Abstract

In this paper we use the concept of a pair of asymptotically
regular and compatible mappings to prove some common fixed
point theorems in a complete fuzzy 2-metric space.
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1 Introduction

Fuzzy set was defined by Zadeh [6]. Kramosil and Michalek[7] introduced
fuzzy metric space,George and Veeramani[1] modified the notion of fuzzy met-
ric spaces with the help of continuous t-norms. Many researchers have obtained
common fixed point theorems for mappings satisfying different types of com-
mutativity conditions. Vasuki [12] proved fixed point theorems for R-weakly
commutating mappings. Pant[9,10,11] introduced the new concept recipro-
cally continuous mappings and established some common fixed point theo-
rems.Balasubramaniam [8],have shown that Rhoades[2] open problem on the
existence of contractive definition which generates a fixed point but does not
force the mappings to be continuous at the fixed point,posses an affirmative
answer. Pant and Jha[11] obtained some analogous results proved by Balasub-
ramanium.
Rhoades [3] introduced the concept of asymptotic regularity for a pair of maps
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and Jungck [5] proposed the concept of compatible mappings.
The concept of 2-metric space was initiated by Gahler[14] whose abstract prop-
erties were suggested by the area function in Euclidean space. In a paper
Sanjay Kumar [13] discussed fuzzy 2-metric space akin to 2-metric spaces in-
troduced by Gahler[14].
This paper presents some common fixed point theorems for a pair of asymp-
totically regular and compatible mappings in fuzzy 2-metric space.

2 Preliminary Notes

Definition 2.1 [6]A fuzzy set A in X is a function with domain X and
values in [0,1].

Definition 2.2 [4]A binary operation ∗ : [0, 1]× [0, 1] → [0, 1]is a continu-
ous t-norms if * is satisfying conditions:
1) * is commutative and associative;
2) * is continuous;
3) a∗1 = a for all a ∈ [0, 1];
4)a ∗b ≤ c ∗ d whenever a ≤ c and b ≤ d and a,b,c,d∈ [0, 1].

Definition 2.3 [1]A 3-tuple (X, M, ∗) is said to be a fuzzy metric space if X
is an arbitrary set,* is a continuous t-norm and M is a fuzzy set on X2×(0,∞)
satisfying the following conditions, for all x, y, z ∈ X, s, t > 0,
1) M(x,y,t)>0;
2) M(x,y,t)=1 if and only if x=y;
3) M(x,y,t)=M(y,x,t);
4) M(x,y,t)∗M(y, z, s) ≤ M(x, z, t + s);
5)M(x, y, .):(0,∞) → (0, 1] is continuous.
Then M is called a fuzzy metric on X. Then M(x,y,t) denotes the degree of
nearness between x and y with respect to t.

Example 2.4 (Induced fuzzy metric [3]) Let (X, d) be a metric space.
Denote a ∗ b = ab for all a, b ∈ [0, 1] and let Md be fuzzy sets on X2 ×
(0,∞) defined as follows :
Md = t

t+d(x,y)

Then(X,Md, ∗) is a fuzzy metric space.

Definition 2.5 A binary operation ∗ : [0, 1] × [0, 1] × [0, 1] → [0, 1] is
called a continuous t-norm if ([0, 1], .) is an abelian topological monoid with
unit 1 such that a ∗ b ∗ c ≤ d ∗ e ∗ f whenever a ≤ d, b ≤ e and c ≤ f for all
a,b,c,d,e,f∈ [0, 1].
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Definition 2.6 [13]A triplet (X, M, ∗) is a fuzzy 2-metric space if X is
an arbitrary set, * is a continuous t-norm, and M is a fuzzy set in X3× [0,∞)
satisfying the following conditions:
1) M(x,y,a,0)=0;
2) M(x, y, a, t) = 1 for all t > 0 if and only if atleast two of them are equal;
3) M(x,y,a,t)=M(y,a,x,t)=M(a,y,x,t) (Symmetric);
4) M(x,y,z,r) ∗ M(x,z,a,s) ∗ M(z,y,a,t) ≤ M(x,y,a,r+s+t) for all x,y,z ∈ X and
r,s,t > 0;
5) M(x, y, a, .) : [0,∞) → (0, 1] is left continuous for all x,y,z,a ∈ Xand
r, s, t > 0.
6)limn→∞ M(x, y, a, t) = 1 for all x,y,a ∈ X, t > 0.

Example 2.7 [13] Let X be the set {1,2,3,4} with 2-metric d defined by,

d(x, y, z) =

{
0, ifx = y, y = z, z = x and {x, y, z} = {1, 2, 3}
1
2
, otherwise,

For each t ∈ [0,∞), define a∗b∗c=abc and

M(x, y, z, t) =

{
0, if t = 0

t
t+d(x,y,z)

, ift > 0, where x, y, z ∈ X.

Then (X,M, ∗) is a fuzzy 2-metric space.

Definition 2.8 [13] (a) A sequence {xn} in (X,M, ∗) is Convergent to
x ∈ X if limn→∞M(xn, x, a, t) = 1 for each t > 0.
(b) A fuzzy 2-metric space, (X, M, ∗) is called Cauchy if limn,m→∞M(xn, xm, a, t) = 1
for each t > 0.
(c) A fuzzy 2-metric space in which every Cauchy sequence is convergent is
said to be Complete.

Definition 2.9 Two self mappings f and g of a fuzzy 2-metric space (X, M, ∗)
are called compatible if limn→∞M(fgxn, gfxn, a, t) = 1 whenever {xn} is a se-
quence in X such that limn→∞ fxn = limn→∞ gxn = x for some x in X.

Definition 2.10 A sequence {xn} in X is called asymptotically regular with
respect to pair (S,T ) if limn→∞M(Sxn, Txn, a, t) = 1.

Lemma 2.11 Let (X, M, ∗) be a fuzzy 2-metric space. If there exists q ∈
(0, 1) such that M(x, y, a, qt) ≥ M(x, y, a, t) for all x, y ∈ X and t > 0, then
x = y.
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Proof: If M(x, y, a, qt) ≥ M(x, y, a, t),for all t > 0 and some constant 0 < q <
1, then we have, M(x, y, a, qt) ≥ M(x, y, a, t

q
) ≥ M(x, y, a, t

q2 ) ≥ .............. ≥
M(x, y, a, t

qn ), for all t > 0 and x, y ∈ X.Letting n →∞, we have M(x, y, a, t) =
1 and thus x = y.

3 Main Results

Theorem 3.1 Let P,S and T be self mappings of a complete fuzzy 2-metric
space (X,M, ∗) with t-norm defined by a ∗ b ∗ c = a.b.c where a, b, c ∈ [0, 1]
satisfying:
(i)M(Px, Py, a, qt) ≥ αM(Sy, Py, a, t)+βmin{M(Tx, Px, a, t), M(Sx, Px, a, t)

, M(Ty, Py, a, t)}

for all x, y, a ∈ X, and q ∈ (0, 1) where α, β > 0, (α + β) ≥ 1,
(ii) the pairs (P, S) and (P, T ) are Compatible,
(iii)there exists a sequence {xn} which is asymptotically regular with respect to
(P, S) ,(S, T ) and (P, T ),
(iv) S and T are Continuous,
Then P,S and T have a unique common fixed point.

Proof: Let {xn} satisfy (iii).From (i), we have
M(Pxn, Pxm, a, qt) ≥ αM(Sxm, Pxm, a, t) + βmin{M(Txn, Pxn, a, t),

M(Sxn, Pxn, a, t), M(Txm, Pxm, a, t)}

Making m, n →∞ and using (iii),we get

≥ (α + β) (as, (α + β) ≥ 1)

≥ 1.

limm,n→∞M(Pxn, Pxm, a, qt) ≥ 1.
Hence {Pxn} is a Cauchy sequence and so converges to some z ∈ X (as X is
complete).
Also,
M(Sxn, z, a, r+s+ t) ≥ M(Sxn, z, Pxn, r)∗M(Sxn, Pxn, a, s)∗M(Pxn, z, a, t)
Making n →∞ and using (iii), we have
limn→∞M(Sxn, z, a, r + s + t) ≥ 1.
So,Sxn → z.Similarly, Txn → z.
Now from(iv), we have
SPxn → Sz, S2xn = SSxn → Sz, STxn → Sz.
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TPxn → Tz, T 2xn = TTxn → Tz, TSxn → Tz.
Also, from (ii) we have

M(PSxn, Sz, a, r + s + t) ≥ M(PSxn, Sz, SPxn, r) ∗M(PSxn, SPxn, a, s)

∗M(SPxn, Sz, a, t)

= 1 ∗ 1 ∗ 1

=1
So, PSxn → Sz. Similarly, PTxn → Tz. Also from (i) put x = Sxn and
y = Txn we get

M(PSxn, PTxn, a, qt) ≥ αM(STxn, PTxn, a, t)+βmin{M(TSxn, PSxn, a, t),

M(S2xn, PSxn, a, t), M(T 2xn, PTxn, a, t)}

Making n →∞ we get

M(Sz, Tz, a, qt) ≥ αM(Sz, Tz, a, t) + βmin{M(Tz, Sz, a, t),

M(Sz, Sz, a, t), M(Tz, Tz, a, t)}

= (α + β)M(Sz, Tz, a, t) as, (α + β) ≥ 1)

≥ M(Sz, Tz, a, t)

⇒ Sz = Tz. Again from (i) put x = Txn and y = z we get

M(PTxn, P z, a, qt) ≥ αM(Sz, Pz, a, t) + βmin{M(T 2xn, PTxn, a, t)

, M(STxn, PTxn, a, t), M(Tz, Pz, a, t),

Making n →∞ we get
M(Tz, Pz, a, qt) ≥ αM(Tz, Pz, a, t) + βmin{M(Tz, Tz, a, t)

, M(Sz, Tz, a, t), M(Tz, Pz, a, t)}

= (α + β)M(Tz, Pz, a, t)

= M(Tz, Pz, a, t)
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⇒ Tz = Pz = Sz.

Also from (i) put x = Pz and y = z we get

M(PPz, Pz, a, qt) ≥ αM(Sz, Pz, a, t) + βmin{M(TPz, P 2z, a, t),

M(SPz, P 2z, a, t), M(Tz, Pz, a, t)}

= αM(Sz, Sz, a, t) + βmin{M(TPz, PTz, a, t)

, M(SPz, PSz, a, t), M(Tz, Tz, a, t)}

= (α + β) (From(ii)and (α + β) ≥ 1.)

= 1
Hence, PPz = PSz = Pz = u (say).And

M(Su, u, a, r + s + t) = M(SPz, u, a, r + s + t)

≥ M(SPz, PSz, a, s)∗M(SPz, PSz, u, r)∗M(PSz, u, a, t)

=1 (From(ii))
Thus Su = u. Similarly Tu = u.Thus Pu = Su = Tu = u,i.e. u is the
common fixed point of P,S and T.
To prove the uniqueness of u, let v be another common fixed point of P,S and
T. Then from (i), we have

M(Pu, Pv, a, qt) ≥ αM(Sv, Pv, a, t) + βmin{M(Tu, Pu, a, t)

,M(Su,Pu,a,t),M(Tv,Pv,a,t)}

≥ (α + β) (as, (α + β) ≥ 1.)

≥ 1
Hence, u = v. This completes the proof of the Theorem (3.1).

Theorem 3.2 Let P,S and T be self mappings of a complete fuzzy 2-metric
space (X,M, ∗) with t-norm defined by a ∗ b ∗ c = min{a, b, c} where a, b, c ∈
[0, 1] satisfying:
(i)M(Px, Py, a, qt) ≥ αM(Sy, Py, a, t)+βmin{M(Tx, Px, a, t), M(Sx, Px, a, t)

,M(Ty,Py,a,t)}
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for all x, y, a ∈ X, and q ∈ (0, 1),where α, β > 0, (α + β) ≥ 1,
(ii)thepairs(P,S)and(P,T)areCompatible,
(iii)thereexistsasequence{xn} which is asymptotically regular with respect to
(P, S) and (P, T ),
(iv) S and T are Continuous,
Then P,S and T have a unique common fixed point.

Proof: The proof of this theorem follows from Theorem 3.1.

Theorem 3.3 Let P,S and T be self mappings of a complete fuzzy 2-metric
space (X, M, ∗) with t-norm defined by a ∗ b ∗ c = a.b.c where a, b, c ∈ [0, 1]
satisfying:
(i)M(Px, Py, a, qt) ≥ r{min[M(Sx, Px, a, t), M(Tx, Px, a, t), M(Sy, Py, a, t)

, M(Ty, Py, a, t)]}

for all x, y, a ∈ X, and q ∈ (0, 1),where r : [0, 1] → [0, 1] is a continuous
function such that r(t) > t for 0 ≤ t ≤ 1 and r(t) = 1 for t = 1,
(ii) the pairs (P, S) and (P, T ) are Compatible,
(iii) there exists a sequence {xn} which is asymptotically regular with respect
to (P, S) and (P, T ),
(iv) S and T are Continuous,
Then P,S and T have a unique common fixed point.

Proof: Let {xn} satisfy (iii).From (i), we have
M(Pxn, Pxm, a, qt) ≥ r{min[M(Sxn, Pxn, a, t), M(Txn, Pxn, a, t), M(Sxm, Pxm, a, t)

, M(Txm, Pxm, a, t)]}

Making m, n →∞ and using (iii),we get
limm,n→∞M(Pxn, Pxm, a, qt) ≥ r(1).

≥ 1.

Hence {Pxn} is a Cauchy sequence and so converges to some z ∈ X (as X
is complete).
Also,
M(Sxn, z, a, r+s+ t) ≥ M(Sxn, z, Pxn, r)∗M(Sxn, Pxn, a, s)∗M(Pxn, z, a, t)
Making n →∞ and using (iii), we have
limn→∞M(Sxn, z, a, r + s + t) ≥ 1.
So,Sxn → z.Similarly, Txn → z.
Now from(iv), we have
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SPxn → Sz, S2xn = SSxn → Sz, STxn → Sz.
TPxn → Tz, T 2xn = TTxn → Tz, TSxn → Tz.
Also, from (ii) we have

M(PSxn, Sz, a, r + s + t) ≥ M(PSxn, Sz, SPxn, r) ∗M(PSxn, SPxn, a, s)

∗M(SPxn, Sz, a, t)

= 1 ∗ 1 ∗ 1

=1
So, PSxn → Sz. Similarly, PTxn → Tz. Also from (i) put x = Sxn and
y = Txn we get

M(PSxn, PTxn, a, qt) ≥ r{min[M(S2xn, PSxn, a, t), M(TSxn, PSxn, a, t),

M(STxn, PTxn, a, t), M(T 2xn, PTxn, a, t)]}
Making n →∞ we get

M(Sz, Tz, a, qt) ≥ r{min[M(Sz, Sz, a, t), M(Tz, Sz, a, t)

, M(Sz, Tz, a, t), M(Tz, Tz, a, t)]}

= r{min[1, M(Tz, Sz, a, t), M(Sz, Tz, a, t), 1]}

= M(Sz, Tz, a, t)

⇒ Sz = Tz. Again from (i) put x = Txn and y = z we get

M(PTxn, P z, a, qt) ≥ r{min[M(STxn, PTxn, a, t), M(T 2xn

, PTxn, a, t), M(Sz, Pz, a, t), M(Tz, Pz, a, t)]}

Making n →∞ we get
M(Tz, Pz, a, qt) ≥ r{min[M(Tz, Tz, a, t), M(Tz, Tz, a, t), M(Tz, Pz, a, t)

, M(Tz, Pz, a, t)]}

= r{min[1, 1, M(Tz, Pz, a, t), M(Tz, Pz, a, t)]}

= M(Tz, Pz, a, t)
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⇒ Tz = Pz = Sz.

Also from (i) put x = Pz and y = z we get

M(PPz, Pz, a, qt) ≥ r{min[M(SPz, P 2z, a, t), M(TPz, P 2z, a, t)

, M(Sz, Pz, a, t), M(Tz, Pz, a, t)]}

= r{min[M(SPz, PSz, a, t), M(TPz, PTz, a, t), M(Sz, Sz, a, t),

M(Pz, Pz, a, t)]}

= r{min[1, 1, 1, 1]} (From(ii))

= 1
Hence, PPz = PSz = Pz = u (say).And

M(Su, u, a, r + s + t) = M(SPz, u, a, r + s + t)

≥ M(SPz, PSz, a, s)∗M(SPz, PSz, u, r)∗M(PSz, u, a, t)

=1 (From(ii))
Thus Su = u. Similarly Tu = u.Thus Pu = Su = Tu = u,i.e. u is the
common fixed point of P,S and T.
To prove the uniqueness of u, let v be another common fixed point of P,S and
T. Then from (i), we have

M(Pu, Pv, a, qt) ≥ r{min[M(Su, Pu, a, t), M(Tu, Pu, a, t), M(Sv, Pv, a, t)

, M(Tv, Pv, a, t)]}

= r{min[M(Pu, Pu, a, t), M(Pu, Pu, a, t), M(Pv, Pv, a, t)

, M(Pv, Pv, a, t)]}

= r{min[1, 1, 1, 1]}

= 1
Hence, u = v. This completes the proof of the Theorem (3.1).

Theorem 3.4 Let P,S and T be self mappings of a complete fuzzy 2-metric
space (X, M, ∗) with t-norm defined by a ∗ b ∗ c = min{a, b, c} where a, b, c ∈
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[0, 1] satisfying:
(i)M(Px, Py, a, qt) ≥ r{min[M(Sx, Px, a, t), M(Tx, Px, a, t), M(Sy, Py, a, t)

, M(Ty, Py, a, t)]}

for all x, y, a ∈ X, and q ∈ (0, 1),where r : [0, 1] → [0, 1] is a continuous
function such that r(t) > t for 0 ≤ t ≤ 1 and r(t) = 1 for t = 1,
(ii) the pairs (P, S) and (P, T ) are Compatible,
(iii) there exists a sequence {xn} which is asymptotically regular with respect
to (P, S) and (P, T ),
(iv) S and T are Continuous,
Then P,S and T have a unique common fixed point.

Proof: The proof follows from Theorem 3.3.

Theorem 3.5 Let P,S and T be self mappings of a complete fuzzy 2-metric
space (X, M, ∗) with t-norm defined by a ∗ b ∗ c = a.b.c where a, b, c ∈ [0, 1]
satisfying:
(i)M(Px, Py, a, qt) ≥ min{M(Sx, Px, a, t), M(Tx, Px, a, t), M(Sy, Py, a, t), M(Ty, Py, a, t),

M(Sy,Ty,a,t)}

for all x, y, a ∈ X, and q ∈ (0, 1),
(ii) the pairs (P, S) and (P, T ) are Compatible,
(iii) there exists a sequence {xn} which is asymptotically regular with respect
to (P, S),(S, T ) and (P, T ),
(iv) S and T are Continuous,
Then P,S and T have a unique common fixed point.

Proof: Proof: Let {xn} satisfy (iii).From (i), we have
M(Pxn, Pxm, a, qt) ≥ min{M(Sxn, Pxn, a, t), M(Txn, Pxn, a, t), M(Sxm, Pxm, a, t),

M(Txm, Pxm, a, t), M(Sxm, Txm, a, t)}

Making m, n →∞ and using (iii),we get
limm,n→∞M(Pxn, Pxm, a, qt) ≥ 1.
Hence {Pxn} is a Cauchy sequence and so converges to some z ∈ X (as X is
complete).
Also,
M(Sxn, z, a, r+s+ t) ≥ M(Sxn, z, Pxn, r)∗M(Sxn, Pxn, a, s)∗M(Pxn, z, a, t)
Making n →∞ and using (iii), we have
limn→∞M(Sxn, z, a, r + s + t) ≥ 1.
So,Sxn → z.Similarly, Txn → z.
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Now from(iv), we have
SPxn → Sz, S2xn = SSxn → Sz, STxn → Sz.
TPxn → Tz, T 2xn = TTxn → Tz, TSxn → Tz.
Also, from (ii) we have

M(PSxn, Sz, a, r + s + t) ≥ M(PSxn, Sz, SPxn, r) ∗M(PSxn, SPxn, a, s)

∗M(SPxn, Sz, a, t)

= 1 ∗ 1 ∗ 1

=1
So, PSxn → Sz. Similarly, PTxn → Tz. Also from (i) put x = Sxn and
y = Txn we get

M(PSxn, PTxn, a, qt) ≥ min{M(S2xn, PSxn, a, t), M(TSxn, PSxn, a, t),

M(STxn, PTxn, a, t), M(T 2xn, PTxn, a, t), M(STxn, T
2xn, a, t)}

Making n →∞ we get

M(Sz, Tz, a, qt) ≥ min{M(Sz, Sz, a, t), M(Tz, Sz, a, t), M(Sz, Tz, a, t), M(Tz, Tz, a, t)

,M(Sz,Tz,a,t)}

= min{1, M(Tz, Sz, a, t), M(Sz, Tz, a, t), 1, M(Sz, Tz, a, t)}

= M(Sz, Tz, a, t)

⇒ Sz = Tz. Again from (i) put x = Txn and y = z we get

M(PTxn, P z, a, qt) ≥ min{M(STxn, PTxn, a, t), M(T 2xn, PTxn, a, t), M(Sz, Pz, a, t),

M(Tz, Pz, a, t), M(Sz, Tz, a, t)}
Making n →∞ we get

M(Tz, Pz, a, qt) ≥ min{M(Tz, Tz, a, t), M(Tz, Tz, a, t), M(Tz, Pz, a, t), M(Tz, Pz, a, t)

,M(Tz,Tz,a,t)}

= min{1, 1, M(Tz, Pz, a, t), M(Tz, Pz, a, t), 1}

= M(Tz, Pz, a, t)
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⇒ Tz = Pz = Sz.

Also from (i) put x = Pz and y = z we get

M(PPz, Pz, a, qt) ≥ min{M(SPz, P 2z, a, t), M(TPz, P 2z, a, t), M(Sz, Pz, a, t),

M(Tz, Pz, a, t), M(Sz, Tz, a, t)}

= min{M(SPz, PSz, a, t), M(TPz, PTz, a, t), M(Sz, Sz, a, t),

M(Pz, Pz, a, t), M(Sz, Sz, a, t)}

= min{1, 1, 1, 1, 1} (From(ii))

= 1
Hence, PPz = PSz = Pz = u (say).And

M(Su, u, a, r + s + t) = M(SPz, u, a, r + s + t)

≥ M(SPz, PSz, a, s)∗M(SPz, PSz, u, r)∗M(PSz, u, a, t)

=1 (From(ii))
Thus Su = u. Similarly Tu = u.Thus Pu = Su = Tu = u,i.e. u is the
common fixed point of P,S and T.
To prove the uniqueness of u, let v be another common fixed point of P,S and
T. Then from (i), we have

M(Pu, Pv, a, qt) ≥ min{M(Su, Pu, a, t), M(Tu, Pu, a, t), M(Sv, Pv, a, t), M(Tv, Pv, a, t)

,M(Sv,Tv,a,t)}

= min{M(Pu, Pu, a, t), M(Pu, Pu, a, t), M(Pv, Pv, a, t), M(Pv, Pv, a, t)

,M(Pv,Pv,a,t)}

= min{1, 1, 1, 1, 1}

= 1
Hence, u = v. This completes the proof of the Theorem (3.1).

Theorem 3.6 Let P,S and T be self mappings of a complete fuzzy 2-metric
space (X, M, ∗) with t-norm defined by a ∗ b ∗ c = min{a, b, c} where a, b, c ∈
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[0, 1] satisfying:
(i)M(Px, Py, a, qt) ≥ min{M(Sx, Px, a, t), M(Tx, Px, a, t), M(Sy, Py, a, t), M(Ty, Py, a, t)

,M(Sy,Ty,a,t)}

for all x, y, a ∈ X, and q ∈ (0, 1),
(ii) the pairs (P, S) and (P, T ) are Compatible,
(iii) there exists a sequence {xn} which is asymptotically regular with respect
to (P, S),(S, T ) and (P, T ),
(iv) S and T are Continuous,
Then P,S and T have a unique common fixed point.

Proof: Proof: The proof follows from Theorem 3.5.

4 Open Problem

Question 1. Are the above mentioned theorems true in an intuitionistic fuzzy
2-metric space?.
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