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Abstract

Recursive sequence has been used to help solve and charac-
terize some implicit functions. In this note, we consider an
exponential recursive sequence βk = 1− e−λkβk−1 with βk ∈ (0, 1)
and λk > 1. Under some mild conditions, we show a con-
cise and beautiful property that

∏∞
k=1 βk > 0 if and only if∑∞

k=1 e−λk < ∞.
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1 Three Introductory Examples

For λ > 1, the equation
β = 1− e−λβ (1)

determines a unique β ∈ (0, 1) (see e.g. [2] Chap. 5). The form of implicit
function (1) appears in various fields in mathematics.

The following are three examples.

Example 1.1 (Galton-Watson branching process) Let X ∈ N be a
random variable. The Galton-Watson branching process defined by X starts
with a single particle, which produces Z1 other particles, where the number
Z1 of first-generation particles has the same distribution as X. Each of the
offspring particles produces, in turn, its own children, whose number has distri-
bution X, independently for each particle, and so on. If we denote the number
of offspring in the i-th generation by Zi, then Z0 ≡ 1, while for i ≥ 1 the
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variable Zi is the sum of Zi−1 independent copies of X. The probability ρ of
extinction of the branching process is defined as ρ = limn→∞ P (Zn = 0).

Let X ∼ Poi(λ). Then the probability generating function of X is

f(x) =
∞∑
i=0

xiP (X = i) =
∞∑
i=0

λixi

i!
e−λ = eλ(x−1). (2)

It is known that [1], if EX > 1 and P (X = 0) > 0, the probability ρ that
the branching process defined by X dies out is equal to the unique solution of
the equation f(x) = x which belongs to the interval (0, 1). Hence, if λ > 1,
ρ = 1− β, where β ∈ (0, 1) is uniquely determined by the equation (1).

Example 1.2 (Erdős-Rényi random graph) Given a real number p ∈
[0, 1], the Erdős-Rényi random graph, denoted by G(n, p), is defined by taking
as Ω the set of all graphs on vertex set [n] = {1, 2, · · · , n} and setting

P (G) = pe(1− p)(
n
2)−e, (3)

where e = |E(G)| stands for the number of edges of G. It can be viewed as a
result of

(
n
2

)
independent coin flippings, one for each pair of vertices, with the

probability of success (i.e., drawing an edge) equal to p.
Let p = λ/n with λ > 1. Then G(n, p) contains a giant component of

(1 + o(1))βn vertices, where β ∈ (0, 1) is defined as in (1); see [3, 5].

Example 1.3 (SIR model for epidemic process) The fully mixed SIR
(susceptible-infected-removed) model consists of n people. Suppose that people
meet and make contacts sufficient to result in the spread of disease entirely
at random with a per-individual rate β, meaning that each individual has, on
average, β contacts with randomly chosen others per unit time. Infected in-
dividuals remove at some constant average rate γ. Assume the disease starts
with a small number c of individuals and everyone else in the susceptible state.

Let r be the fraction of removed individuals at t → ∞, which is also the
total number of individuals who ever catch the disease during the entire course
of the epidemic—the total size of the outbreak. It can be shown (see e.g. [4])
that r satisfies the following equation

r = 1−
(

1− c

n

)
e−

βr
γ . (4)

In the limit of large population size n →∞, by setting λ = β/γ, the final value
of r satisfies

r = 1− e−λr, (5)

which again follows the form of (1).
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Now, the implicit function (1) naturally induces the following recursive
relation

βk = 1− e−λkβk−1 , (6)

where λk > 1 and βk ∈ (0, 1) for all k ≥ 1. We make the following basic
observations:

• If limk→∞ λk = λ < ∞, then limk→∞ βk = β ∈ (0, 1).

• If limk→∞ λk = ∞, then limk→∞ βk = 1.

In the sequel, we will focus on a general sequence {λk}k≥1 and derive an
interesting property for {βk}k≥1.

2 A Property for the Recursive Sequence

For each k ≥ 1, let βk ∈ (0, 1) satisfy the recursive relation (6), where β0 = 1.
We establish the following result.

Theorem 2.1 Assume that λk is non-decreasing, λ1 > 1 and λ2 > 1/(1 −
e−1). Then βk > 1− e−1 for all k ≥ 1, and

∞∑
k=1

e−λk(1−e−1) < ∞ =⇒
∞∏

k=1

βk > 0 =⇒
∞∑

k=1

e−λk < ∞. (7)

Moreover, if λk/λk−1 ≤ C for some constant C > 0, then

∞∏
k=1

βk > 0 ⇐⇒
∞∑

k=1

e−λk < ∞. (8)

Proof. (6) with k = 1 and λ1 > 1 imply β1 > 1 − e−1. Since λ2β1 >
(1 − e−1)/(1 − e−1) = 1, from (6) we have β2 > 1 − e−1. Likewise, we obtain
for all k ≥ 1, λkβk−1 > 1 and βk > 1− e−1.

We next turn to the proof of (7). It follows from (6) that

1− βk = e−λkβk−1

= e−λk(1−e−λk−1βk−2)

= e−λkeλke−λk−1βk−2

≤ e−λkeλke−1

= e−λk(1−e−1), (9)
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where the last inequality follows from the fact that λkβk−1 > 1. Since βk >
1−e−1 and there exists α large enough such that αx > ex for all x ∈ [1−e−1, 1],
we obtain

∞∏
k=1

βk ≥
e

α

∞∏
k=1

e−(1−βk) =
e

α
e−

∑∞
k=1(1−βk). (10)

Combining (9) and (10), we derive that

∞∑
k=1

e−λk(1−e−1) < ∞ =⇒
∞∏

k=1

βk > 0. (11)

On the other hand, since ex ≤ ex for all x ∈ R, and βk < 1, we have

∞∏
k=1

βk ≤
∞∏

k=1

e−(1−βk)

= e−
∑∞

k=1(1−βk)

= e−
∑∞

k=1(e−λkβk−1 )

< e−
∑∞

k=1 e−λk . (12)

Accordingly,
∞∏

k=1

βk > 0 =⇒
∞∑

k=1

e−λk < ∞, (13)

which together with (11) concludes the proof of (7).
To prove (8), note that

1− βk = e−λkβk−1

= e−λk(1−e−λk−1βk−2)

= e−λkeλke−λk−1βk−2

= e−λke
λkλk−1βk−2

λk−1βk−2
e−λk−1βk−2

≤ e−λke
λk

λk−1βk−2e

< e−λke
C

e−1 , (14)

where the last but two inequality follows from the inequality xe−x ≤ e−1, and
the last inequality follows from the fact βk > 1 − e−1 and the assumption
λk/λk−1 ≤ C. Hence, (14) and (10) imply that

∞∑
k=1

e−λk < ∞ =⇒
∞∏

k=1

βk > 0. (15)

The proof of (8) is thus completed. 2

We remark that the cycle in (7) can not be closed, since in general
∑∞

k=1 e−λk

< ∞ 6=⇒
∑∞

k=1 e−λk(1−e−1) < ∞.
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3 Open Problems

In this section, we mention some open problems that deserve further investi-
gation. In order to show the equivalence relation (8), we assumed that the
growth rate of λk is upper bounded. This condition is presumably not optimal
and it would be interesting to examine how far it can be relaxed. Indeed,
some condition on the rate of change involving λk is presumably necessary.
Moreover, an alternative generating function approach [6] may be use to help
further understand the recursive sequence (6). Potential applications within
and beyond each setting of the aforementioned examples would be more than
desirable.
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