Int. J. Open Problems Compt. Math., Vol. 5, No. 1, March 2012 ISSN 1998-6262; Copyright © ICSRS Publication, 2012 www.i-csrs.org

On Differential Ideals of Differential rings

Yaseen A.W.Alhiti

Ishik University Erbil – Iraq

E-mail: al_hiti@yahoo.com

Abstract

In this paper we introduce two operators denoted by $(\)_{(n)}$ and $(\)_u$ of a differential ring constructed from a subset of a differential ring. We shall also discuss the relationship between these operators and the differential ideals in differential rings, and Keigher differential ring.

Keywords: Differential ring, Keigher differential ring, Prime differential spectrum.

1 Introduction

Rings considered in this paper are all commutative with unity. The 0 ring has 1=0. Also, all differential rings are ordinary, i.e., posses a single derivation Recall that by a derivation of a ring R we means any additive map $\delta: R \to R$ satisfying $\delta(ab) = \delta(a)b + a\delta(b)$ for every $a,b \in R$. A differential ring R is a ring with a derivation δ . If R is a differential ring and $a \in R$, then $a^{(n)}$ denotes the n th derivative of a. A subset A of R is called differential if $\delta(A) \subseteq A$. For any subset A of R, the set $A_{\delta} = \{a \in A : \delta(a) \in A\}$ is called the differential of A.

Let R be a differential ring and let A be a subset of R. We define a subset, denoted by $A_{(n)}$, of R by $A_{(n)} = \{a : a^{(n)} \in A, \text{ for all } n \ge 0\}$. The following two theorems give some of the properties of $A_{(n)}$.

Theorem 1.1. Let R be a differential ring. Then

- (1) If $A \subset R$, then $A_{(n)} \subset A$ and $(A_{(n)})_{(n)} = A_{(n)}$.
- (2) If $A \subset R$, then $A_{(n)} = A$ iff A is differential subset of R.
- (3) If A,B are subsets of R with $A \subset B$, then $A_{(n)} \subset B_{(n)}$.
- (4) If $\{A_{\alpha}\}_{\alpha \in I}$ is a family of subsets of R, then $(\bigcap_{\alpha \in I} A_{\alpha})_{(n)} = \bigcap_{\alpha \in I} (A_{\alpha})_{(n)}$ and

$$(\bigcup_{\alpha\in I} A_{\alpha})_{(n)} \supset \bigcup_{\alpha\in I} (A_{\alpha})_{(n)}.$$

 $(\bigcup_{\alpha \in I} A_{\alpha})_{(n)} \supset \bigcup_{\alpha \in I} (A_{\alpha})_{(n)}.$ $If \quad A, B \ are \quad subsets \quad of \quad R, \quad then \qquad (A+B)_{(n)} \supset A_{(n)} + B_{(n)}$ (5) $and(A.B)_n \supset A_{(n)}.B_{(n)}.$

Theorem 1.2. Let R and S be differential rings and let $\varphi: R \to S$ be differential ring homomorphism such that $\varphi(1) = 1$.. If A is a subset of R and B is a subset of S , then $\varphi(A_{(n)}) = (\varphi(A))_{(n)}$ and $\varphi^{-1}(B_{(n)}) = (\varphi^{-1}(B))_{(n)}$.

The proof of these theorems is elementary and follows immediately from the definitions.

From theorems 1.1 and 1.2, we see that for any subset A of a differential ring R, $A_{(n)}$ is a differential subset. Also, the union and the intersection of any family of differential subsets is again a differential subset, and finite sums and products of differential subsets are differential subsets. Moreover, direct and inverse images of differential subsets under a differential ring homomorphism are differential.

Let A be a subset of a differential ring R. We define a subset, denoted by A_u , of R by $A_u = \{a \in A : \exists b \in A \text{ such that } ab = 1\}$. Hence, if A is a subring of R, A_{μ} is the set of units in A.

Theorem 1.3. Let R be a differential ring and S a subring of R. Then $(S_{(n)})_{u} = S_{(n)} \cap S_{u}$.

Proof. It is clear that $(S_{(n)})_u \subset S_{(n)} \cap S_u$, so let $a \in S$ be such that $a^{(n)} \in S$ for all $n \ge 0$, and suppose that ab = 1 for some $b \in S$. We want to show that $b^{(n)} \in S$ for all $n \ge 0$. We may assume $n \ge 1$ and that for each $k < n, b^{(k)} \in S$. Then by Leibnit z's rule [6] we have

$$0 = (ab)^{(n)} = ab^{(n)} + \sum_{k=1}^{n} {n \choose k} a^{(k)} b^{(n-k)},$$

So that

$$b^{(n)} = -b \left(\sum_{k=1}^{n} {n \choose k} a^{(k)} b^{(n-k)} \right) \in S$$

Hence, $(S_{(n)})_{u} = S_{(n)} \cap S_{u}$.

2. DIFFERENTIAL IDEALS AND KEIGHER RINGS

Theorem 2.1. Let R be a differential ring and let A be a subset of R, then

- (1) If A is a subring of R, then $A_{(n)}$ is a subring of R.
- (2) If A is an ideal of R, then $A_{(n)}$ is an ideal of R.

Proof. The proof of part (1) follows immediately from the definition. To prove part (2) ,suppose $x \in R$ and $a \in A_{(n)}$. Then by Leibentiz's rule [6] we have

$$(x a)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} x^{(k)} a^{(n-k)}$$

Since every $a^{(n-k)} \in A$ and A is an ideal of R, $(x a)^{(n)} \in A$ and hence $x a \in A_{(n)}$. So that, $A_{(n)}$ is an ideal of R.

Recall that by a Ritt algebra [5] we means any differential ring which contains the rational numbers. Also, if I is an ideal of a differential ring R, the set $r(I) = \{a \in R : a^n \in I \text{ for some } n \in \mathbb{Z}^+\}$ is called the radical of I. An ideal I of R is called a radical ideal if r(I) = I.

Theorem 2.2. Let R be a Ritt algebra and let I be a subset of R, then

- (1) If I is a prime ideal of R, then $I_{(n)}$ is a prime ideal of R.
- (2) If I is a radical ideal of R, then $I_{(n)}$ is a radical ideal of R.

Proof. (1) From theorem 1.4 we have $I_{(n)}$ is an ideal of R, so suppose that $a \notin I_{(n)}$ and $b \notin I_{(n)}$. Then there exist positive integers m,n such that $a^{(m)} \notin I$, $b^{(n)} \notin I$ and for all k < m and l < n, $a^{(k)} \in I$ and $b^{(l)} \in I$. Now let

$$(ab)^{(m+n)} = \sum_{k=0}^{m+n} {m+n \choose k} a^{(k)} b^{(m+n-k)}$$

We note that, $\binom{m+n}{k}a^{(k)}b^{(m+n-k)} \in I$ for k < m, while for k > m, i.e., for m+n-k < n, $\binom{m+n}{k}a^{(k)}b^{(m+n-k)} \in I$.

If k = m, $a^{(m)}b^{(n)} \notin I$ since I is a prime ideal, and since R is a Ritt algebra $\binom{m+n}{m}a^{(m)}b^{(n)}\notin I$. Hence $(ab)^{(m+n)}\notin I$, so that $I_{(n)}$ is a prime ideal.

(2) Note that every radical ideal of R is an intersection of prime ideals of R and conversely. Since the operator $()_{(n)}$ preserves the intersection of ideals by Theorem 1.1 and prime ideals by part (1), we have well that $()_{(n)}$ preserves the radical ideals.

Definition 2.3 [7]. Let R be a differential ring, R is said to be a Keigher ring if for each prime ideal I in R, $I_{(n)}$ is also prime ideal in R.

Examples.

- **1.** Every Ritt algebra R is a Keigher ring by the above Theorem 2.2.
- **2.** Every differential field F is a keigher ring.
- **3.** Every ring R with trivial derivation (i.e., $a^{(n)} = 0$ for all $a \in R$ and $n \ge 1$) is a Keigher ring.

Theorem 2.4. Let R be a Keigher differential ring and $\varphi: R \to S$ a surjective differential ring homomorphism. Then S is also a Keigher ring.

Proof. Since φ is surjective, then φ induces a one-to-one correspondence between prime ideals J in S and prime ideals I in R containing the kernel of φ via $I = \varphi^{-1}(J)$ and $J = \varphi(I)$. Hence if J is a prime ideal in S, then we have $J_{(n)} = \varphi(\varphi^{-1}(J_{(n)})) = \varphi((\varphi^{-1}(J))_{(n)})$. But since R is a Keigher ring, $(\varphi^{-1}(J))_{(n)}$ is prime ideal in R and hence $J_{(n)}$ is prime ideal in S.

Recall that if *S* is a multiplicative subset of a differential ring *R*, then the ring opf fractions $S^{-1}R$ is a differential ring via $(\frac{r}{s})^{(1)} = \frac{s \, r^{(1)} - r \, s^{(1)}}{s^{(2)}}$, see [2].

The following lemma was proved by Keigher in [7].

Lemma 2.5. Let R be a differential ring. Let S be a multiplicative subset of R and I a prime ideal in R such that $I \cap S = \emptyset$. Then in the differential ring $S^{-1}R$ we have $(S^{-1}I)_{(n)} = S^{-1}I_{(n)}$.

Theorem 2.6. Let R be a Keigher differential ring and S a multiplicative subset of R. Then $S^{-1}R$ is also a Keigher ring.

Proof. The proof follows immediately from the Lemma 2.1, since there is a one-to-one correspondence between prime ideals of $S^{-1}R$ and prime ideals of R disjoint from S [7].

Corollary 2.7. Let R be a differential ring and let P be a prime ideal of R, then R is a Keigher differential ring if and only if R_P is a Keigher ring.

Proof. If R is a Keigher ring , then so every R_P by Theorem 2.4. Conversely , let P be a prime ideal of R and let $f:R\to R_P$ be the canonical differential ring homomorphism . Let S=R-P , then since $P=f^{-1}(S^{-1}P)$, we see that $P_{(n)}=f^{-1}((S^{-1}P)_{(n)})$ by Theorem 1.1, and since R_P is a Keigher ring $(S^{-1}P)_{(n)}$ is prime in R_P . Hence $P_{(n)}$ is prime in R and R is a Keigher ring.

Theorem 2.8. Let $R = \prod_{i=1}^{n} R_i$, where R_i is differential ring. Then R is a Keigher ring if and only if each R_i is a Keigher ring.

Proof. If R is a Keigher ring , then so is each R_i by Theorem 2.3 . Conversely suppose that I is a prime ideal of R, and let $\pi_i:R\to R_i$, i=1,2,...,n, be the canonical projections. Then $\pi_k(I)=I_k$, $1\le k\le n$, is a prime ideal in R_k and $\pi_j(I)=R_j$ for $j\ne k$. It is clear that $I_{(n)}=\pi_k^{-1}((I_k)_{(n)})$, and since R_k is a Keigher ring, $I_{(n)}$ is prime ideal of R and R is a Keigher ring.

Definition 2.9 [5]. A differential ring R is called a d-MP ring if the radical of a differential ideal I of R is again a differential ideal. This is equivalent, see [2], [3], [8], to each of the following:

- (1) Prime ideals minimal over differential ideals are differential ideals.
- (2) If I is a differential ideal of R and S is a multiplicative subset of R disjoint from I, then ideals maximal among differential ideals which contain I and are disjoint from S are prime.

Theorem 2.10. Let R be a differential ring. Then R is a Keigher ring if and only if it is a d-MP ring.

Proof. See [7].

Let R be a differential ring. A differential ideal I is prime if and only if there is a multiplicative subset S of R such that I is maximal among ideals disjoint from S [6].

Let R be a differential ring. A differential ideal I is called quasi-prime ideal if there is a multiplicative subset S of R such that I is maximal among differential ideals disjoint from S. It is clear that every prime differential ideal is quasi-prime, and every quasi-prime ideal is prime if and only if R is a Keigher ring.

Theorem 2.11. Let R be a differential ring. If I is a prime ideal of R then $I_{(n)}$ is a quasi-prime.

Proof. Let I be a prime ideal of R and let S = R - I. It is clear that $I_{(n)}$ is a differential ideal disjoint from S and if J is any differential ideal disjoint from S, then $J \subset I$, so that $J = J_{(n)} \subset I_{(n)}$. Hence $I_{(n)}$ is maximal among differential ideals disjoint from S. Now let K be a quasi-prime ideal of R and let S be a multiplicative subset of R such that K is maximal among differential ideals disjoint from S. Then there exists a prime ideal I of R such that $K \subset I$ and $I \cap S = \emptyset$ [1]. Hence $K = K_{(u)} \subset I_{(u)}$ and $I_{(n)} \cap S = \emptyset$, so that $K = I_{(n)}$.

3 The Prime Spectrum of a differential ring

In the sense of ring theory, for any commutative ring R, $\operatorname{Spec}(R)$ denote the set of prime ideals in R with the Zariski topology [4]. The following two theorems show how to create a topological space from a commutative ring R.

This topological space is called the prime spectrum of R and the topology is called the Zariski topology.

Theorem 3.1. Let R be a commutative ring and let Spec(R) be the set of all prime ideals of R. For any subset A of R let V(A) be the set of all prime ideals of R that contain A. Then

- (1) V(A) = V((A)) for any subset A of R (where (A) is the ideal generated by A).
- (2) V(0) = Spec(R) and $V(R) = \emptyset$.
- (3) If $\{A_i\}_{i \in I}$ is a family of subsets of R, then $V(\bigcup_{i \in I} A_i) = \bigcap_{i \in I} V(A_i)$.
- (4) If A and B are two subsets of R, then $V(A \cap B) = V(A) \cup V(B)$.

Parts (2), (3) and (4) show that the sets V(A), as A runs over all subsets of R, satisfy the axioms for a collection of closed sets in a topological space. The subset V(A) of $\operatorname{Spec}(R)$ are called Zarisky closed sets. Henceforth, $\operatorname{Spec}(R)$ is considered to have the topology defined by taking the Zariski closed sets to be the closed sets – this is the Zariski topology on $\operatorname{Spec}(R)$.

Theorem 3.2. Let R and S be commutative rings and let $\varphi: R \to S$ be a ring homomorphism such that $\varphi(1) = 1$.

(1) If I is a prime ideal of S, then $\varphi^{-1}(I)$ is a prime ideal of R. Thus φ induce a map

 $\varphi^*: Spec(S) \to Spec(R)$ defined by $\varphi^*(I) = \varphi^{-1}(I)$ for all $I \in Spec(S)$.

- (2) For any ideal J in R, $\varphi^{*^{-1}}(V(J)) = V((\varphi(J)))$ (where $(\varphi(J))$ is the ideal generated by $\varphi(J)$ in S). Deduce that φ^* is a continuous map with respect to the Zariski topology on Spec (S) and Spec (R).
 - (3) If $\Omega: S \to T$ is also a homomorphism of commutative rings, then $(\Omega \circ \varphi)^* = \varphi^* \circ \Omega^*$.

Proof. The proof follows directly from the definitions, see [4].

If R is a differential ring, the set of prime differential ideals in R will be denoted by $\operatorname{Spec}_d(R)$ and will be called the prime differential spectrum of R. As a topologi- cal space, the set $\operatorname{Spec}_d(R)$ has the subspace topology from

Spec (R). So that the closed sets in $\operatorname{Spec}_d(R)$ are defined by the form $V_*(A) = V(A) \cap \operatorname{Spec}_d(R)$, where A is a subset of R.

Denote by $r_d(I)$ the differential radical of differential ideal I of R and I is called a differential radical ideal if $I = r_d(I)$.

For an element $a \in R$ denote by [a] the smallest differential ideal containing a.

Some of properties of differential radical ideals are given in the following theorems.

Theorem 3.3 [8]. For a differential ring R the following conditions are equivalent:

- (1) Every differential ideal of R is differential radical ideal.
- (2) $I.J = I \cap J$ for all differential ideals I,J in R.
- (3) $[a]^2 = [a]$ for all $a \in R$.

If r((A)) denotes the radical of the ideal in R generated by A, $r_d(A)$ denotes the differential radical of A, and $r_d(A)$ can be defined as following:

Theorem 3.3[8]. For any subset A of a differential ring R, the differential radical of A, $r_d(A)$ is the intersection of all differential prime ideals in R containing A.

It is clear that $A \subset r((A)) \subset r_d(A)$ and $r_d(r_d(A)) = r_d(A)$, where A is a subset of A. If Y is a subset of A is a subset of A. It is easy to show that A is a subset of A. It is easy to show that A is a subset of A.

- (1) $V_d(Y)$ is a differential ideal of R, and the map from $\operatorname{Spec}_d(R)$ to R given by $Y \mapsto V_d(Y)$ is order reversing with respect to the partial ordering by inclusion in $\operatorname{Spec}_d(R)$ and R.
 - (2) $V_d(\emptyset) = R$.
- (3) If $\{Y_i\}_{i \in I}$ is a family of subsets of $\operatorname{Spec}_d(R)$, then $V_d(\bigcup_{i \in I} Y_i) = \bigcap_{i \in I} V_d(Y_i)$.

Theorem 3.4. Let R be a differential ring, A a subset of R, and Y a subset of

 $Spec_d(R)$. Then

- (1) $V_*(A)$ is closed in $\operatorname{Spec}_d(R)$ and $V_d(Y)$ is a differential radical ideal of R.
- (2) $V_d(V_*(A))$ is the differential radical of A and $V_*(V_d(Y))$ is the closure of Y in $Spec_d(R)$.

Proof. The proof follows from the definitions and the notes above.

Now let R and S be differential rings and $\psi: R \to S$ be a differential ring homo-

morphism . Then ψ induce a continuous map $\psi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ given by

 $\psi^*(P) = \psi^{-1}(P)$ for all $P \in \operatorname{Spec}(S)$. It follows from Theorems 1.2, 3.2 that ψ^* restricts to give a continuous map $\psi_d^* : \operatorname{Spec}_d(S) \to \operatorname{Spec}_d(R)$. If $\phi : S \to T$ is another differential ring homomorphism, then it is clearly that $(\phi \circ \psi)_d^* = \psi_d^* \circ \phi_d^*$.

REFERENCES

- [1] Bourbaki N. (1961) "Elements de mathematiques, Algebre commutative chap. III, Graduation, Filtration et topologie", Hermann, Paris.
- [2] Cassidy P.J. (1972) Differential Algebraic Groups, American J. of mathematics, 94, pp. 891-954.
- [3] Delautre C. (1975) Seminaire d'algebre differentielle, Publication interne de l'U.E.R de Mathematiques Pure et Appliquees, Universite des Science et Techniques de Lille I, $N^{\circ}55$.
- [4] Dummit D. and Foote R. (1999) "Abstract Algebra" 2nd Edition, JohnWiley and Sons, Inc., New York.
- [5] Gorman H. (1971) Radical regularity in differential rings, Canad. J.Math 23, pp. 197-201.
- [6] Kaplansky I.(1957) "An introduction to differential algebra", Hermann, Paris.
- [7] Keigher W.F. (1978) Quasi prime ideals in differential rings, Houston J. Math. 4, pp. 379 388.

[8] Khadjiev D. and Callialp F. (1998) ON THE DIFFERENTIAL PRIME RADICAL OF A DIFFERENTIAL RING, Tr. J. of Mathematics 22, pp. 355 - 368.

- [9] Kolchin E.R. (1973) "Differential Algebra and Algebraic Groups" Academic Press, New York.
- [10] Kovacic J. J. (2005) Differential Schemes, KSDA website :www.sci.cuny.edu/ksda .