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Abstract 

      Four new scaled  three-term memoryless VM methods for solving 

nonlinear unconstrained  problems are presented. The basic idea is 

to deal with Al-Bayati's (1991) and Biggs's (1983) self-scaling  VM-

updates in the frame of new scaled CG-methods. Birgin-Martinez 

(2001) and Abbo (2007) positive parameters are used to  scale these  

spectral CG-methods.  The new search directions are reset to the 

standard Steepest Descent (SD) direction when Powell's (1977) 

restarting criterion holds.  Andrei's (2010) acceleration scheme of  

the step-size parameter has been employed in the new proposed 

methods to improve the efficiency of such methods. Under common 

assumptions; the new methods are proved to be globally convergent. 

Computational results for a set consisting of 100 unconstrained 

optimization test problems show that the new methods substantially 

outperforms the scaled memoryless BFGS method. 

 

   Key words:    Scaled CG Method, Unconstrained Optimization, Convergence 

Property, Line Searches, Memoryless Self-Scaling VM-Updates, Scaled 

Memoryless BFGS  Method. 

 

AMS (2000) subject classification:    90C06, 90C26. 

 

http://www.i-csrs.org/


  

 

 

Abbas  Y. Al-Bayati   and   Khalil   Kh. Abbo                                                    104 

 

1. Introduction. 

 
 In this study, we consider the unconstrained optimization problem: 

 

 ,)(min nRxxf                                                                                                       

(1) 

 

where RRf n :  is a continuously differentiable function, and its gradient at 

point kx  is denoted by  kxg , or kg  for the sake of simplicity. n  is the number of 

variables, which is automatically assumed to be large. The iterative formula of 

nonlinear CG method is given by: 

 

,1 kkkk dxx                                                                                                         

(2) 

 

where k  is a step-length, and kd  is a search direction which is determined by: 
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(3) 

 

where k  is a scalar. The search direction kd  is generally required to satisfy: 

 

0

kk dg                                                                                                  

(4) 

 

which guarantees that kd  is a descent direction of )(xf at kx . In order to 

guarantee the global convergence property, we required some times that kd  

satisfies the sufficient descent condition:  

 
2

kkk gcdg                                                                                                     

(5) 

 

where 0c  is a constant. Moreover, we need to choose kd  to satisfy the angle 

property: 
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(6) 

 

where ]1,0(0   is a constant and kk dg ,  denotes the angle between the 

vectors kg and kd . 

 

The commonly used line search rules are as follows see [1, 19, 47, 48]: 

 

(a) Minimization Rule: At each iteration, k  is selected so that: 

 

       )(min)(
0

kkkkk dxfdxf 





                                                             

 (7)      

 

(b) Approximate Minimization Rule: At each iteration , k  is selected so 

that: 

 

       0 , 0)(min    kkkk ddxg                                                   

 (8) 

 

(c) Armijo  Rule: Set scalar  0,,,  Lsk with: 

 

        2

k

kk
k
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dg
s
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 (9) 

 

        Let k be the larges    in  ,...,, 2

kkk sss    then  

      kkkkk dgdxff   )(                                                                  

 (10) 

 

(d) Limited Minimization Rule:  

       

          if 0L ,  is a constant;  ks  is defined as in (9) then k  is defined by: 

  

              )(min)(
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s

kkk dxfdxf
k







                                                     

 (11)              

                

(e) Goldstein Rule: if a fixed scalar )2/1,0(   is selected then k   is 

chosen to satisfy:  
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Some important global convergent results for various method using the above 

mentioned specific line-search procedures have been given in [1] and [31]. In fact, 

the above mentioned line-search methods are monotone descent for unconstrained 

optimization see [19] and [22]. Non-monotone line-search methods have been 

investigated also by many authors see, for example [22] and [32].  Since 1952, 

there have been many well-known formulas for the scalar ,k  for example, 

Fletcher-Reeves (FR), Polak-Ribiere-Polyak (PRP), Hestenes-Stiefel (HS):  
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where ,11   kkk ggy  symbol .  denotes the Euclidean norm of vectors. Their 

corresponding methods generally specified as FR, PRP, and HS  CG-methods. If f 

is a strictly convex quadratic function, all these methods are equivalent in the case 

that an exact line search (ELS) is used. If the objective function is non-convex, 

their behaviors may be distinctly different. In the past two decades, the 

convergence properties of FR, PRP, and HS methods have been intensively 

studied by many researchers, see for example [3, 16, 27, 21, 23, 24, 42, 44, 51]. 

Although the PRP scheme addresses both the jamming of the FR method and the 

possibility of convergence failure, it interferes with the n-step convergence 

property of the CG method for strongly convex quadratic functions. That is, when 

the CG-method is applied to a quadratic with an ELS, the successive iterates 

minimize f  over an expanding sequence of subspaces, leading to rapid 

convergence.  In this case, 0k  for each k, however, due to rounding errors we 

can have ,0PRP

k  which implies that .0PRP

k  Each time k  is set to zero, the 

CG method is restarted, and the expanding sequence of subspaces reinitiates with 

a one dimensional space, leading to slower convergence than would be achieved if 

there was no restart. 

 

Another important issue related to the performance of CG methods is the line 

search, which requires sufficient accuracy to ensure that the search directions 

yield descent direction [25]. Common criteria for the  line search accuracy are the 

Wolfe conditions  [45, 46]:  

 

    ,1111   k

T

kkkkkk dgxfdxf                                                                    

(14) 

 



 

 

107                                              New Scaled Three-Term Memoryless VM-Methods … 

 

 

  

        ,111   k

T

kk

T

k dgdg                                                                                  (15) 

 

where 10   . In the “strong Wolfe” conditions, (16) is replaced by 

111   k

T

kk

T

k dgdg  . It has been shown [17] that for the FR scheme, the strong 

Wolfe conditions may not yield a direction of descent unless 21 . In typical 

implementations of the Wolfe conditions, it is often most efficient to choose   

close to one. Hence, the constraint 21 , needed to ensure descent, represents a 

significant restriction in the choice of the line search parameters. For the PRP 

scheme, the strong Wolfe conditions may not yield a direction of descent for any 

choice of  )1,0( . However, in practical computation, the HS and PRP methods, 

which share the common numerator ,1k

T

k yg  are generally believed to be the most 

efficient  CG methods, and have got meticulous in recent years. One remarkable 

property of both methods is that they essentially perform a restart if a bad 

direction occurs [27]. However, Powell [39] constructed an example showed that 

both methods can cycle infinitely without approaching any stationary point even if 

an ELS is used. This counter example also indicates that both methods have a 

drawback that they may not be globally convergent when the objective function is 

non-convex. Therefore, during the past few years, much effort has been 

investigated to create new formulae for ,k  which not only possess global 

convergence for general functions but are also superior to original method from 

the computation point of view; see [6, 10, 13, 15, 26, 29, 43, 50]. An excellent 

survey of nonlinear CG methods with special attention to global convergence 

properties was made by Hager and Zhang [27]. 

 

The paper is organized as follows: In Section 2 we present some scaled CG 

methods. The outlines and the rate of convergence of these new methods for 

strongly convex functions with Biggs [12]; Al-Bayati's memoryless self-scaling 

VM updates [4]; Birgin-Martinez [13] and Abbo [2] positive parameters which 

are used to  scale these  spectral CG-methods are given in Section 3.  In  this 

section also, we have used an acceleration scheme of  Andrei's step-size parameter 

CG method [11]; the idea of this computational scheme is to take an advantage 

that the step lengths taken in CG methods are different from unity. In Section 4 

we have presented some computational results on a set of 100 unconstrained 

optimization problems from the CUTE [14] collection along with some other 

large-scale unconstrained optimization problems presented in [8].  Conclusion 

remarks are pointed out in Section 5.  In Section 6 certain open problems have 

been listed. Finally, in Section 7 details of the test problems are given.  

 

 

2. Preliminaries  
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2.1 Scaled CG Methods: 

 

The algorithm generates a sequence kx  of approximations to the minimum *x  of 

f , in which:  

 

,1 kkkk dxx                                                                                          

 (16) 

 

,111 kkkkk sgd                                                                                        

 (17) 

 

where k  is selected to minimize  xf  along the search direction kd , k  is a 

scalar parameter, ,1 kkk xxs    and 1k  is a scalar parameter. The iterative 

process is initialized with an initial point 0x  and 00 gd  .  Observe that if  

11 k ,  then we get the classical CG methods according to the value of the 

scalar parameter k . On the other hand, if 0k , then we get another class of 

methods according to the selection of the parameter 1k . Considering 0k , 

there are two possibilities for 1k : a positive scalar or a positive definite matrix. 

If 11 k , then we have the SD-method.  If   1

1

2

1



  kk xf , or an 

approximation of it, then we get the Newton or the Quasi-Newton (QN) methods, 

respectively.  Therefore, we see that in the general case, when 01 k  is selected 

in a QN manner, and for 0k , (17) represents a combination between the QN 

and the CG methods. However, if 1k  is a matrix containing some useful 

information about the inverse Hessian of function f , we are better off using 

,111   kkk gd   since the addition of the term kk s  in (17) may prevent the 

direction 
k

d  from being a descent direction unless the line search is sufficiently 

accurate.  As we know, when the initial point 0x  is close enough to a local 

minimum point 
*x , then the best direction to be followed in the current point 1kx  

is the Newton direction   1

1

1

2





 kk gxf . Therefore, our motivation is to choose 

the parameter k  in (17) so that for every  1k  the direction 1kd  given by (17) 

can be the best direction we know, i.e. the Newton direction. Hence, using the 

Newton direction from the equality: 

 

  kkkkkk sggxf   



 111

1

1
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yields: 
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Observing that if the line search is exact we get the scaled Daniel method [18]. 

For large-scale problems, choices for the update parameter that do not require the 

evaluation of the Hessian matrix are often preferred in practice to the methods that 

require the Hessian. Now, for QN methods an approximation matrix k  to the 

Hessian  kxf2  is used and updated so that the new matrix 1kB  satisfies the 

secant condition kkk ysB 1 . Therefore, in order to have an algorithm for solving 

large-scale problems we can assume that the pair  kk ys ,  satisfies the secant 

condition.  In this case,  Zhang et al. [49]  proved that if  ks  is sufficiently small, 

then: 
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T

kkk
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 (20) 

 

Birgin and Martínez [13] arrived at the same formula for k , but using a 

geometric interpretation of quadratic function minimization. The direction 

corresponding to k  given in (20)  is as follows: 
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 (21) 

 

The following particularizations are obvious. If 11 k , then (21) is the direction 

considered by Perry [34]. At the same time we see that (21) is the direction given 

by Dai and Liao [15] for t = 1, obtained this time by an interpretation of the 

conjugcy condition. Additionally, if ,01 j

T

j gs  kj ,...,1,0  then from (21) we 

get: 
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which is the direction corresponding to a generalization of the PR formula. Of 

course, if 11  kk   in (22), we get the classical PRP formula [35, 36]. If  

,01 j

T

j gs  kj ,...,1,0  and additionally the successive gradients are orthogonal, 

then from (21) we get: 

 

k
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111
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 (23) 

 

which is the direction corresponding to a generalization of the FR formula [20]. 

Therefore, (21) is a general formula for direction computation in a CG manner 

including the classical FR [20]  and PRP [35, 36] formulae. 

 

 

2.2  New Memoryless VM-Methods: 
 

The extension to the scaled CG is very simple. Using the same methodology as 

considered by Shanno [40] , we get the following new direction 1kd  in our new 

three-term Memoryless VM method: 

 

k

k

T

k

k

T

k
k

k

T

k

k

T

k

k

T

k

k

T

k
kkk

k

T

k

k

T

k
kkkk s

sy

yg

sy

sg

sy

yy
y

sy

sg
gd 






























 








1

1
1

1
1

1111         

(24a) 

 

   where 
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(24b)                                                                    
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(24d) 

                              



 

 

111                                              New Scaled Three-Term Memoryless VM-Methods … 

 

 

  

                 
k

T

kk

T

k

k

T

k

k
ysss

ss





1

                                    (Abbo [2] )               
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involving only four scalar products. Let us call these methods as: 

 

Equation (24) with  k = Al-Bayati  +  1k =Abbo                  (call New1) 

Equation (24) with  k = Al-Bayati  +  1k = Birgin-Martinez  (call New2) 

Equation (24) with  k =       Biggs  +  1k = Birgin-Martinez  (call New3) 

Equation (24) with  k =       Biggs  +  1k = Abbo                 (call New4) 

 

 

Again observe that if  01  k

T

k sg , then (24) reduces to: 
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1111
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(25) 

 

Thus, in this case, the effect is simply one of multiplying the HS [28] search 

direction by a positive scalar. In order to ensure the convergence of the new 

method with 1kd  given by (24), we need to constrain the choice of k . We 

consider line searches that satisfy the Wolfe conditions  [45, 46]  given in (14) and 

(15). 

 

Theorem 2.3 Suppose that k  in (16) satisfies the Wolfe conditions (14) and 

(15), then the directions 1kd  given by (24)  with ELS are  descent  directions. 

 

Proof. Since 00 gd  ,  we have 0
2

000  gdgT .  By ELS (24) reduces to 

(25). Multiplying (25) by  T

kg 1 , we have: 
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Applying the inequality  22

2

1
vuvuT   to the second term of the right hand 

side of the above equality, with   1 kk

T

k gysu  and    kk

T

k ysgv 1  we get: 
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But, by Wolfe condition (15),  0k

T

k sy .  Therefore, 011  k

T

k dg ,  for every 

...,1,0k   . We have observed that the second Wolfe condition (15) is crucial for 

the descent character of direction (25). Besides, we see that the estimation (26) is 

independent of the parameter 1k . Usually, all CG algorithms are periodically 

restarted. The Powell restarting procedure [37, 38] is to test if there is very little 

orthogonality left between the current gradient and the previous one. At step k  

when: 

 
2

11 2.0   kk

T

k ggg                                                                                           

(27) 

 

we restart the algorithm to the  SD-direction. 

 

3. Step-Size Accelerations:  

 

In the CG methods the search directions tend to be poorly scaled and as a 

consequence the line search must perform more function evaluations in order to 

obtain a suitable step-length 
k

 . In order to improve the performances of the CG 

methods the efforts were directed to design procedures for direction computation 

based on the second order information. Jorge Nocedal [33] pointed out that in CG 

methods the step lengths may differ from unity  in a very unpredictable manner. 

They can be larger or smaller than unity depending on how the problem is scaled.  

Numerical comparisons between CG methods and the limited memory QN 

method, by Liu and Nocedal [30], show that the latter is more successful [5]. 

Here, we have pointed out Andrei's [11] acceleration scheme; basically, this 

modifies the step length in a multiplicative manner to improve the reduction of the 

function values along the iterations [7, 9]. 

 

 

3.1 Outline of the New Proposed Algorithms. 

 
Having in view the above developments and the definitions of  kg , ks  and ky , as 

well as the selection procedure for 1k  computation, the out lines of the following 

proposed new algorithm can be presented as follows: 
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Step 1.   Initialization. Select  nRx 0 , and the parameters 5. , 10   . 

             Compute  0xf  and  00 xfg  . Set 00 gd   and 00 1 g . Set 

0k . 

 

Step 2.   Acceleration scheme of  Andrei's [11] line search:     

           Compute k  satisfying  Wolfe's conditions (14) and (15). 

           Update the variables kkkk dxx 1 . 

          Compute  1kxf , 1kg     and set     k

T

kk dga  ;     k

T

kkk dggb 1 .  

          If 0kb , then set kkk ba  and update the variables as  

kkkkk dxx 1 . 

           Compute  1kxf , 1kg , ks  and ky . 

         Otherwise,  if 0kb , then compute  ks , ky . 

 

Step  3.   Test for convergence, i.e. if   ( )10,10(max 0

106






 ggk )  is 

               satisfied then the iterations are stopped. 

 

Step 4.   If  Powell restarting criterion  (27)  is satisfied, then (Do a restart step  

              by a  SD-direction); otherwise continue. 

 

Step 5.  Compute the new three-term search direction kd  as in (24), with saved 

and 

             different values of the parameters   ,  , s  and y . 

 

Step 6.  Set 1 kk  and go to Step 2. 

 

 

 

3.2 Convergence Analysis for Strongly Convex Functions: 

 
Throughout this section we assume that f  is strongly convex and f  is Lipschitz 

continuous on the level set: 

 

    0: xfxfRxS n                                                                                            

(28) 

 

That is, there exists constants 0   and L  such that 
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       2
yxyxyfxf

T
                                                                             

(29) 

 

and 

 

    yxLyfxf                                                                                           

(30) 

 

for all  x  and  y   from S . For the convenience we include here the following 

lemma [26]. 

 

 

Lemma 3.3. Assume that kd  is a descent direction and f  satisfies the 

Lipschitz condition 

 

    kk xxLxfxf                                                                                        

(31) 

 

for every x  on the line segment connecting  kx  and 1kx , where L  is a constant. 

If the line search satisfies the second Wolfe condition (15), then 

 

2

1

k

k

T

k

k

d

dg

L





                                                                                                         

(32) 

 

Proof. 
Subtracting k

T

k dg  from both sides of  (15)  and using the Lipschitz condition we 

have 

 

    2

1

T

kg1 kkk

T

kkk dLdggd                                                                     

(33) 

 

Since kd  is a descent direction and 1 , (32) follows immediately from (33). 

Therefore, satisfying the Wolfe line search conditions   is bounded away from 

zero, i.e. there exists a positive constant  , such that   .  
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Lemma 3.4.  Assume that f  is strongly convex and f  is Lipschitz 

continuous on S . If 1k  is selected by  either (24d) or (24e), then the direction 

1kd  given by (24) satisfies: 

 

13

2

21

22
 








 kk g

LL
d


                                                                                

(34a) 

Or  

  13

2

2
1

)1()1(

2

1

2
 





















 kk g

LL
d


                                                   

(34b) 

Where   and   are small positive scalars 

 

Proof. 
 
By Lipschitz continuity (30) we have 

 

    kkkkkkkkk dLxfdxfggy   1                                                                                              

       ksL                                                                                                                 

(35) 

 

On the other hand, by strong convexity (29) 

 
2

kk

T

k ssy                                                                                                              

(36) 

 

Selecting 1k  as in (24d), it follows that 

 




1
2

2

1 

k

k

k

T

k

k

T

k
k

s

s

sy

ss
                                                                                         

(37a) 

Selecting 1k  as in (24e), it follows that 

 





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1

1
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(37b)  
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Now, using the triangle inequality and the above estimates (35)–(37), after some 

algebra on 
1kd , where 

1kd  is given by (24), we get (34). The convergence of 

the scaled CG method when f  is strongly convex is given by:  

 

 

Theorem 3.5.  Assume that f  is strongly convex and f  is Lipschitz 

continuous on the level set S . If at every step of the CG direction given in (16) 

with 
1kd  given by (24) and the step length k  selected to satisfy the Wolfe 

conditions (14) and (15), then either 0kg  for some k , or 0lim 


k
k

g . 

 

Proof. 
 

Suppose 0kg  for all k . By strong convexity we have 

 

  2

1

T

k kkk

T

kkk ddggdy                                                                                

(38) 

 

By Theorem 2.3, 0k

T

k dg . Therefore, the assumption 0kg  implies 0kd . 

Since 0k , from (38) it follows that 0k

T

k dy . But f is strongly convex over S , 

therefore, f  is bounded from below. Now, summing over k  the first Wolfe 

condition (14) we have:  

 




0k

k

T

kk dg  

 

Considering the lower bound for k  given by (32) in Lemma 3.3 and having in 

view that  kd  is a descent direction it follows that: 

 




1
2

2

k
k

k

T

k

d

dg
                                                                                          

(39) 

 

Now, from (26), using the inequality of Cauchy and (36) we get for (24d) and 

(24e) respectively: 
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Therefore, from (39) it follows that 

 




0
2

4

k
k

k

d

g
                                                                                           

(40) 

 

Now, inserting the upper bound (34), for 
kd  in (40) yields 

 




0

2

k

kg                                                                                                    

 

which completes the proof.  

 

 

4. Numerical  Results: 

 
The main work of this section is to report the performance of the new proposed 

scaled memoryless VM methods on a set of (50) test problems. The codes are 

written in FORTRAN 77 and in double precision arithmetic. All the tests are 

performed on a PC. Our experiments are performed on a set of (50) nonlinear 

unconstrained problems that have second derivatives available. These test 

problems are contributed in [14] and [8] and their details are given in the 

Appendix. For each test function we have considered 2 numerical experiments 

with number of variables n = 100 and 1000.  In order to assess the reliability of 

our new proposed methods, we have tested it against the standard scaled 

memoryless BFGS method using the same test problems. All these methods 

terminate when the following stopping criterion is met: 
If   ( )10,10(max 0

106






 ggk                                                                      

(41) 
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We also force these routines stopped if the iterations exceed 1000 or the number 

of function evaluations reach 2000 without achieving convergence. We use 

δ=10
−4

, σ=0.1 in the line search routine (14) and (15). Table 4.1 compares some 

numerical results for the new methods (namely; New1 and New2) against the 

scaled memoryless BFGS method; this table indicates for (n) as a dimension of 

the problem; (NOI), number of iterations; (NOFG), number of function and 

gradient evaluations; (TIME), the total time required to complete the evaluation 

process for each test problem. Table 4.2 compares some numerical results for the 

new methods (namely; New3 and New4) against the scaled memoryless BFGS 

method. In Tables 4.3 and 4.4 we have compared the percentage performance of 

the new methods (New1, New2, New3 and New4) against  the standard scaled 

memoryless BFGS method taking over all the tools as 100%. 

 

 

 Table (4.1). Comparison between New1; New2 against scaled memoryless  

BFGS method for the total of (50) different test problems with dimensions   

                                                  n= 100 and 1000  
 

Prob. 
New1 Method 

 
NOI/NOFG/TIME 

New2 Method 
 

NOI/NOFG/TIME 

Scaled BFGS 
Method 

 
NOI/NOFG/TIME 

1 90/126/0.02 92/126/0.00 23/45/0.00 

2 164/223/0.12 138/180/0.17 39/78/0.03 

3 176/246/0.02 198/275/0.02 55/103/0.00 

4 93/170/0.01 95/185/0.01 47/93/0.02 

5 38/74/0.02 64/111/0.02 23/43/0.00 

6 22/46/0.00 33/61/0.00 8/24/0.00 

7 273/329/0.09 252/304/0.10 469/603/0.06 

8 376/411/0.20 373/412/0.25 319/448/0.08 

9 13/26/0.00 13/26/0.00 8/18/0.02 

10 248/306/0.11 241/285/0.08 240/336/0.06 

11 96/188/0.06 99/355/0.07 270/6557/1.41 

12 59/96/0.02 54/96/0.02 44/93/0.00 

13 32/76/0.00 37/69/0.00 18/42/0.00 
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14 43/76/0.02 25/59/0.02 15/28/0.02 

15 139/191/0.03 234/276/0.02 112/175/0.01 

16 10/28/0.00 10/57/0.00 7/14/0.00 

17 18/48/0.01 18/48/0.02 7/16/0.00 

18 63/108/0.02 78/130/0.00 14/30/0.00 

19 32/80/0.02 41/70/0.01 13/28/0.00 

20 39/93/0.01 48/137/0.02 43/80/0.00 

21 416/634/0.05 405/757/0.05 100/204/0.01 

22 12/16/0.00 12/16/0.00 24/26/0.02 

23 178/214/0.04 181/216/0.03 831/1147/0.09 

24 274/315/0.05 270/325/0.04 406/527/0.09 

25 36/153/0.02 36/69/0.00 16/41/0.00 

26 145/293/0.12 255/432/0.24 44/99/0.01 

27 8/52/0.00 10/56/0.00 4/10/0.00 

28 66/101/0.00 69/112/0.02 66/102/0.01 

29 21/69/0.00 31/79/0.00 19/133/0.00 

30 26/87/0.00 26/86/0.00 20/37/0.00 

31 32/91/0.00 38/112/0.02 12/26/0.00 

32 21/53/0.00 22/61/0.00 12/24/0.00 

33 21/62/0.00 22/64/0.00 21/37/0.02 

34 24/59/0.00 25/62/0.00 27/49/0.02 

35 196/230/0.08 204/236/0.06 283/386/0.15 

36 245/301/2.08 230/276/1.84 358/563/2.27 

37 141/186/0.03 203/247/0.01 66/117/0.00 

38 275/332/0.03 257/298/0.05 402/530/0.05 
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39 291/352/0.05 289/350/0.05 481/618/0.08 

40 54/93/0.00 61/99/0.01 50/98/0.01 

41 342/399/0.04 242/315/0.02 27/50/0.00 

42 13/26/0.00 13/26/0.00 8/18/0.00 

43 329/390/0.11 350/412/0.11 281/384/0.06 

44 234/261/0.07 223/252/0.06 307/409/0.06 

45 258/292/0.09 230/264/0.08 280/369/0.07 

46 297/363/0.09 346/403/0.11 307/428/0.06 

47 212/243/0.07 223/270/0.06 272/371/0.07 

48 73/119/0.01 80/130/0.00 125/2426/0.12 

49 35/89/0.02 32/89/0.02 27/124/0.02 

50 29/63/0.00 25/70/0.01 11/24/0.00 

Total 6328/8879/3.83 6553/9446/3.72 6661/18231/5 

 

Table (4.2). Comparison between New3; New4 against scaled memoryless  

BFGS method for the total of (50) different test problems with dimensions   

n= 100 and 1000  
 

Prob. 
New3 Method 

 
NOI/NOFG/TIME 

New4 Method 

 
NOI/NOFG/TIME 

Scaled BFGS 
Method 

 
NOI/NOFG/TIME 

1 27/63/0.01 29/75/0.00 23/45/0.00 

2 111/155/0.13 79/131/0.03 39/78/0.03 

3 74/182/0.01 80/204/0.00 55/103/0.00 

4 70/154/0.00 70/163/0.02 47/93/0.02 

5 39/86/0.01 34/68/0.00 23/43/0.00 

6 14/35/0.00 13/34/0.00 8/24/0.00 

7 285/324/0.09 290/335/0.11 469/603/0.06 

8 346/377/0.11 337/368/0.11 319/448/0.08 



 

 

121                                              New Scaled Three-Term Memoryless VM-Methods … 

 

 

  

9 13/35/0.00 13/26/0.00 8/18/0.02 

10 236/289/0.10 262/311/0.10 240/336/0.06 

11 132/1668/0.34 183/3264/0.67 270/6557/1.41 

12 46/95/0.02 45/94/0.01 44/93/0.00 

13 31/62/0.00 24/63/0.00 18/42/0.00 

14 25/64/0.02 26/67/0.04 15/28/0.02 

15 74/111/0.01 86/129/0.01 112/175/0.01 

16 7/30/0.00 10/55/0.00 7/14/0.00 

17 18/48/0.01 15/48/0.02 7/16/0.00 

18 29/86/0.00 23/49/0.00 14/30/0.00 

19 31/77/0.02 33/68/0.02 13/28/0.00 

20 32/98/0.01 36/96/0.00 43/80/0.00 

21 133/352/0.02 120/295/0.00 100/204/0.01 

22 12/16/0.01 12/16/0.00 24/26/0.02 

23 214/257/0.03 181/225/0.03 831/1147/0.09 

24 304/348/0.07 303/356/0.04 406/527/0.09 

25 96/2320/0.15 25/65/0.00 16/41/0.00 

26 78/237/0.10 78/190/0.05 44/99/0.01 

27 10/56/0.00 8/52/0.00 4/10/0.00 

28 65/104/0.02 66/106/0.02 66/102/0.01 

29 23/69/0.00 26/77/0.00 19/133/0.00 

30 25/68/0.00 25/75/0.00 20/37/0.00 

31 27/84/0.02 23/68/0.00 12/26/0.00 

32 16/39/0.01 20/54/0.00 12/24/0.00 

33 21/61/0.02 21/63/0.00 21/37/0.02 

34 24/60/0.02 24/60/0.02 27/49/0.02 

35 233/267/0.11 240/275/0.08 283/386/0.15 
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36 254/307/2.14 267/331/2.25 358/563/2.27 

37 78/128/0.02 82/144/0.01 66/117/0.00 

38 315/365/0.04 271/337/0.05 402/530/0.05 

39 263/317/0.05 264/306/0.05 481/618/0.08 

40 50/146/0.02 60/108/0.00 50/98/0.01 

41 41/80/0.01 48/97/0.00 27/50/0.00 

42 15/45/0.00 15/45/0.02 8/18/0.00 

43 527/557/0.22 231/265/0.06 281/384/0.06 

44 490/515/0.16 242/276/0.08 307/409/0.06 

45 250/285/0.11 230/264/0.08 280/369/0.07 

46 522/552/0.19 234/270/0.08 307/428/0.06 

47 296/322/0.09 222/262/0.09 272/371/0.07 

48 57/203/0.02 55/238/0.01 125/2426/0.12 

49 27/89/0.01 28/92/0.02 27/124/0.02 

50 19/58/0.02 16/57/0.00 11/24/0.00 

Total 6125/12346/4.57 5125/10717/4.18 6661/18231/5 

 

Table 4.3.  Percentage performance of the New1, New2 methods against the 

scaled memoryless  BFGS method for the total of (50) test problems. 

 

Tools 

Scaled  

BFGS New1 New2 

NOI 100% 95% 98% 

NOFG 100% 49% 52% 

TIME 100% 77%          74% 

 

Table 4.4.  Percentage performance of the New3, New4 methods  against the 

scaled  memoryless  BFGS  method for the total of (50) test problems. 

Tools 

Scaled  

BFGS New3 New4 

NOI 100% 92% 77% 
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NOFG 100% 68% 59% 

TIME 100% 91%          84% 

 
From Tables (4.3) and (4.4) we have obtained the following results: 

  New1 saves  05% NOI; 51% NOFG and 23% TIME, compared with scaled 

BFGS. 

New2 saves  02% NOI; 48% NOFG and 26% TIME, compared with scaled 

BFGS. 

New3 saves  08% NOI; 32% NOFG and 09% TIME, compared with scaled 

BFGS. 

New4 saves  23% NOI; 41% NOFG and 16% TIME, compared with scaled 

BFGS. 

     

  

5. Conclusions: 

 
We have presented four new three-term CG methods which they are assumed to 

be an accelerations scheme of Al-Bayati's [4]  and Biggs's [12] VM updates. The 

acceleration scheme is simple and proved to be robust in numerical experiments. 

For general functions the convergence of the methods is coming from Theorem 

3.5 and the restart procedure. Therefore, for strongly convex functions and under 

inexact line searches (ILS) the methods are very close to the Shanno 

computational scheme [40, 41] which are the scaled memoryless BFGS method 

where the scaling factor is the inverse of a scalar approximation of the Hessian. If 

the Powell restart criterion (27) is used, for general functions f  bounded from 

below with bounded second partial derivatives and bounded level set, using the 

same arguments considered by Shanno in [40] it is possible to prove that the 

iterates converge to a point *x . Under certain conditions we have proved that the 

new methods are globally convergent. For uniformly convex functions the 

reduction in the function values is significantly improved for a set of 100 test 

unconstrained optimization problems with dimensions 100 and 1000 variables. 

 

6. Open Problems: 

 
1- The new proposed methods, given in (24),  may be implemented by an 

initial scaling parameter for example, 1k 10  k . Shanno [40] proved 

that the CG methods are exactly the BFGS VM-method, where at every 

step the approximation to the inverse Hessian is restarted as the identity 

matrix. Now we extend this result for the new method defined in  (24) by:  
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(42) 

 

           Thus, the effect is simply multiplying the search direction by a positive 

initial  

             scaling parameter 0 ;  gd ,  denotes the values of the next direction and 

             next gradient  respectively. 

  

2- Another new estimation for the parameter k   may be implemented in our 

new proposed methods (24) as follows:  

                         k
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kkk
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k ggxfxf
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(43) 

            If   k  0;  set   k = k ;  otherwise set 

               k  k

T

kkkkk
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T
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ggxfxf
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)5.0()()()/1(
2

1
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7. Appendix.  
The details of  the test functions, used in this paper, can be found in [14]. The 

numbers (1-50) in  our tables  indicate to: 

 (1)-Extended Freudenstein &amp; Roth Function. 

  (2)-Extended Trigonometric Function. 

  (3)-Extended Rosenbrock Function 

  (4)-Extended White &amp; Holst function 

  (5)-Extended Beale Function  U63 (MatrixRom) Function. 

  (6)-Extended Penalty Function.  

  (7)-Perturbed Quadratic function. 

  (8)-Raydan 1 Function.  

  (9)-Raydan 2  Function. 

(10)-Diagonal2 Function. 

(11)-Hager Function.     

(12)-Generalized Tridiagonal-1 Function. 

(13)-Extended Tridiagonal-1 Function.  

(14)-Extended 3-Exp. Terms Function. 

(15)-Generalized Tridiagonal-2 Function.  

(16)-Diagonal4 Function. 
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(17)-Diagonal5 Function.                                       

(18)-Extended Himmelblau Function. 

(19)-Extended PSC1 Function.  

(20)-Extended Block Diag. BD1 Function. 

(21)-Extended Maratos Function. 

(22)-Extended Cliff Function. 

(23)-Quadratic Diagonal Perturbed Function. 

(24)-Quadratic Function QF1 Function. 

(25)-Extended Quadratic Penalty QP1 Function. 

(26)-Extended Quadratic Penalty QP2 Function.          

(27)-Extended EP1 Function. 

(28)-Extended Tri-diagonal  2 Function. 

(29)-ARWHEAD (CUTE)-Function. 

(30)-NONDIA (Shanno-78)  (CUTE) Function. 

(31)-DQDRTIC Function. 

(32)-DIXMAANA (CUTE)-Function.  

(33)-DIXMAANB (CUTE)-Function. 

(34)-DIXMAANC (CUTE)-Function.  

(35)-DIXMAANE  (CUTE) Function. 

(36)-Partial Perturbed Quadratic Function. 

(37)-Broyden Tridiagonal Function. 

(38)-Almost Perturbed Quadratic Function. 

(39)-Tridiagonal Perturbed Quadratic Function. 

(40)-EDENSCH (CUTE)-Function. 

(41)-LIARWHD (CUTE) Function. 

(42)-DIAGONAL 6 Function. 

(43)-DIXMAANF (CUTE) Function. 

(44)-DIXMAANG  (CUTE) Function. 

(45)-DIXMAANI  (CUTE) Function. 

(46)-DIXMAANJ  (CUTE) Function. 

 (47)-DIXMAANK  (CUTE) Function. 

(48)-ENGVAL1 (CUTE) Function. 

(49)-COSINE (CUTE) Function. 

(50)-DENSCHNB  (CUTE) Function. 
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