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Abstract

In this paper, we constructed seventh splines of deficiency seven
used it for the solution of initial value problems. The convergence
analysis of the given method is investigated. Numerical illustrations
are given to show the applicability and efficiency of our
construction.
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1 Introduction

We consider the fifth order initial value problems of the form:

YO () = (% y(x), y'(x), y"(x), y"(x), (%)), % €[0, 1],

m

y(xo) =Y, ’y’(xo) = y;' y”(xo) = yé,’ ym(xo) =Y y(4)(X0) = yé4)
1)
With the help of lacunary spline functions of type (0, 1, 4) see Jwamer [9], by
using that f € C"™*([0,1] x R*), n > 2and that it satisfies the Lipschitz continuous
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D060 Ve V) = £ O, ¥ Y5 VM) < LYV = yE], 920, 1
i=1

n-1. 2)

for all x<[0, 1] and all real v,, y,, y;, y, form Gyorvari [ 3]. These conditions
ensure the existence of unique solution of the problem (1). The analytic solution
of (1) for arbitrary choices of f(x) cannot be found in general. We usually resort to
some numerical method for obtaining an approximate solution of the problem (1).
The standard numerical methods for the numerical treatment of (1) consist of
Taylor’s method, Euler’s method, finite difference methods, collocation methods.
A long list of references of all of these methods is given by [1-2]. Since then
many papers have appeared dealing with the continuous approximation of y(x)
satisfying (1) via cubic, quantic and sixth splines mainly (see [3-5]).

We recall the basics of brief description method in Section 2 as a
preliminary. The derivation of the difference schemes spline function has been
given in Section 3, and also, we have shown the convergence analysis are studied
and then prove that the interpolation problem is constructible with respect
theoreml . We have solved two numerical examples to demonstrate the
applicability of the methods with the new algorithm in section 4. In the last
section, the discussion on the results is given in Section 5.

2 The spline function §,(x)

Using these approximate values W) (q=0,14.,1=0,12,....m) and
Yo, Yo on the bases of Jwamer [ ], we construct the lacunary spline function
S,(x) of the type (0, 1, 4), (S,(x)=S,(x) if x, <x<x;,,) and denote by S?,

i+1
the class of seven degree splines S,(x) as the following:
S, ()=, when xe[x,, x],
S,(x)=4S59(x)=y®, when xe[x, x_,], q=14. (3)
SJ(%) = Ye,S{(%,) =ye and S, _,(x,), when xe[x ,, X,].

Where q=0, 1, 4, are known derivatives and i=0,1, 2, ....,m, the existence and
uniqueness of the above spline function have been shown in [ 7],

2

yg+ (X_XO)3 oM (X_XO)4 o(

+ Dy
5 Yo 2 Yo

(x- Xo)sao,s +(X= X0)6§0’6 +(X— X0)7§0’7

(X_Xo)

§o =Y +(X=X%,)¥p +

(4)

Let us examine now intervals[X;, X; ;1 ], i=1, 2, ..., n-2., Defined S,(x) as:
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§|(X) =¥ +(X=X%)Yi +(X—Xi)2§i‘2 +(x- Xi)aéi'3 + (x- Xi)4 A%

a T ©)

(x- Xi)sg‘iﬁ +(x- Xi)egi,s +(x~ Xi)7§i,7
Here from equation (4), (5) and the polynomial coefficients in [7], we can find the
following coefficients

21
2h°

@y _ 13 3 @

CARESA Ve g v

50,5 = (71_70) 2h4 (4y1 177(’))+240h

oo = (T~ Vo) + = (3% +1455) ~ o (7,9~ 115, + 5+ 2 980
;md
50,72%(71—%)— Vi +7Y)+ OhB(yl 0(4))_4h5y° 4?14)—/(()3)
also
o= R (5~ o)+ o B #1390+ T (7 a5, )+ Ly g
a‘1,3=;ﬁf( Vo) + s (10y1+25y0)+—(yl +2y°(4))+ﬁy° 71h;—és>

We can find the approximate coefficients in intervals [Xi , Xi+1] ,1=1,2, ...,n-2., to
defined S_I (x)as [9].

13 9

a . 4y! | —17y)) + V. -yP-—a,-——a

|,5 2 h5 (y|+l yl) 2h4 ( y|+l y|) 240h (y|+1 ) 2h3 i,2 2h2 i,3
-1, 1 ., @ 5
Qi = F(YM - yi)+F(3yi+l +11yi)_120h2 (y|+1 —11y, )+_a +t—= e 33
and

5 3

a. v o 4
ai,? 2h7 (y|+l yl) 2h6 (2y|+1 +7y )+ 2 Oh3 (y|+1 i ! )_ﬁaii - 2h4 aiv3
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also
_ _ _ -21, _ _ h?
2ai+1,2 -7, _Shai,S = h_z(yHl - Vi) +— (8yl+l +13y; )"‘ (yl+l i(4))
45 -105 h? _ _
6a;,,; — 214 h &= " — Via Y )+ (2y|+1 +5Y; )+ (yi+1(4) +4yi(4))

Similarly for the last interval[x, ,, x,], we can define approximate values
of S, (X).

3 Theoretical Scheme

The new approximate spline function S, (x) given in the section before to
the exact solution of the fourth order initial value problem (1) and corresponding
to the values of y,(i=0,12,...,m) of a problem (1), and prove the following

theorem:

Theorem 1: Let ¥y (q=0,1, 4;i=0,1,2..,m) be the approximate values

defined above. Then the following estimates of spline function S, (x) are valid:
G,h** @, (h);for q=0,1....8, i=0.

T,h* %@, (h);for q=0,1,....,8, i=1..,m-2.

where €q and Tq denote the difference constants dependent of h.

(i) ‘S(q)(x) S(q)(x)‘ {

(i) [y ()-S5 (x)| <U, h** @, (h);for q=0,....,8 where y(x)is a solution of
problem (1) and D, denote the difference constants dependent of h .

Proof: (i) From theorem 1 of [8] and equation (3), we have

Se(X)=So(X) = (X—X,)* (g5 —Fy5) + (X—X;)* (g —8g5) + (X—%,) (Bg; —Fy;)  (6)
Where

= 21 _ 2 1 ) |
:ﬁ(yl - yl)_F(yl — yl)+m(y1(4) _ (4)) :

implies that
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g5 — 35| < (C, +480C, +2520C, w, (h)

20h5

1

=mHo w,(h)

where H, =C, +120C, +2520C, and C, , C, andC, are constants dependent
of h.

- -14

O _
Ay — Qg :F(yl - Y1)+F(y1 - V1) - 120h2 (y(4) y1(4))
implies that
‘aoye—a_oye‘ﬁ 2(:)Lh6 (C +360C, +1680C )W7(h)
1
=——H,w,(h
120 ()

where H, =C, +360C, +1680C, and C, , C, andC, are constants dependent
of h.

_ 9
Qo7 —dy7 = W

= 1,, _, =
(yl_yl)_F(yl_yl) 240 h3 (y(4) y1(4))

implies that
_ 1
B0~ 807|555 (C, +240C, +1080C, )w (h)

1
=——H,w,(h
240 )

where H, =C, +360C,; +1680C, and C, , C, andC, are constants dependent
of h.

And hence
So(x) = Sy ()] <1l s 8| + N[ s — 0| + [y, — 07|
<G, w,(h)
Where G, = H, +H, + H,, dependent of h.
By taking the derivatives of equation (4), we obtain the following:

15(x) = S5 (x)| = yi - i
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which clear that from (3) is known,
vy -9

<1_(C +2520C, +960C,) e, () = ;0(; a)7(h)

S2(x)-S(x)| < hzIy1 Vil + Iyl y1|+120

105

‘S(ga)(x)_s_o(s)(x)‘ |y1 y1| |y1 y1|+_‘y(4) yl(A)‘

_ %(q +840C, + 240C_:3)co7(h) _ géz@(h)
and by successive differentiations obtain
S52(x) - 8§ (x)| <G, h? @, (h);for q=3,4, ...,8.

This proves (i) for k=0 and xe[Xx,, x,]. Further more in the interval
[Xi—l’ Xi]

S, y ! 23 35 (X_Xi)4 o @
S;(X) =¥ +(X=x)y{ +(X=X) &, +(X~X;) ai’3+Tyi

(X_Xi)sai,s +(X_Xi)6§i,6 +(X_Xi)6ai,6

Similarly, it's clear that, to show the following:
_ _ _ 21 -
2081, — ) =7(a, - ,)+3h(a,—-a ;) - n? (Vi —Yi)

(y|+1 + yH—l) +— (yffl) - yl(fl))

120
implies that
i, — 81, 2 0 2a0n7 ———(C,,+120C,, +360C,, + 2520C,, +480C,, )w,(h)
1
=——H,w,(h
240 ()
Where H, =C,,+120C,, +360C,, + 2520C,, + 480C,,, and

C,,C,,C,,C andC,, are constants dependent of h.
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_ _ 45 _ 105 _
G(am,a - ai+l,3) = 21(ai,3 - ai,s) + r(ai,z - ai,z) _?(Yiu _Yi+1)

30 ’ o _
+ h_z(yi+l - yi+l) _(yffl) - y|(fl))

120
implies that
Qs — Fppag < 72(1)h3 (C,s +2520C,, +5400C,, +12600C,, + 3600C,, )W, (h)
1
=—H,w,(h
=20 ,(h)

where H, =C, . +2520C,, +5400C,, +12600C,, +3600C,,
and C,., C,,C,,,CandC, are constants dependent of h.

_ 1
a's‘ 240h°
1

=——H, w,(h
240 ()

——(C,, +1560C,, +1080C,, + 2520C,, + 480C,, ), (h)

‘ai,s

where H,and C,,,C,,, C,,,C,, and C,, be a constants dependent of h.

And also

‘ai,e _ai,e‘ <H; o, (h);

‘am —a‘”‘s H, @,(h), where H,,H, ,H, and H, are dependent of h.

and by taking the successive differentiation, we can find 'Fq whereq=0,1,....,8;
similarly as before

‘Si(q)(x) —&Ti(q’(x)‘ <T,h*?aw(h);for q=0,1,...,8. Which is prove (i) for
i=1...m-2.

We can repeat the same manner in above for i=m-—1.

Proof of theorem 1 (ii):

Y00 =82 0] <]y () = S5 (9| +[S{” (9 - S5 (x)
From theorem 2 of [5], the following estimates are valid

V() =S (%) <C;h* e, (h) (7)
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Using equation (7) and estimate in (i), we have

VP (x) = S (x)| <Ch* e, (h) + T,h* e, (h)
= (Cy +T)h" e, (h) ,
=U, h*“w, (h)

where q=0,1,....,8, Which is proves (ii).

Theorem 2: If the function f in problem (1) satisfies conditions (2) and (3), then
the following inequalities are hold:

S50 = %5, (%), S5 (0] <T,, @,(h) where Ty, is constants dependent of h
and x e[X,, x,],

S/(x)- f[xS, (x),S/ (x)]‘ <T.,, w,(h) where T, is constants dependent of h and

xe[X4 %1,

S .(x)— f[x,S, ,(x), §,;H(x)]‘ <T..,®s(h) where T_,is constants dependent
ofhand xe[x, ;, X,,].

Proof: Using condition (1), (2) and (3), we have

S1(x) = F[x,5,(x),Sx (0 <[S20x) + y"(x) = y"(x) = F[x,5,(x), S} ()]
S2(x) = y" ()| +]y"(x) - F[x,5,(x),Ss ()]
5700 - y" (0| + LIS, () - (0| +[3.(x) - y' ()}

That is proves theorem 2 with the help theorem 1.

<

<

Note: Similar manner to theorem 2 was proved under different conditions by
Saxena [9], and Gyorvari [3].

4 Numerical Results

Finally, we proceed to show numerical tests of the described algorithms. We
want to analyze the local regularity of the derivatives method; we now consider
two numerical examples illustrating the comparative performance of spline
method. All calculations are implemented by Matlab program [1-2]. For the sake
of comparisons we also tabulated the results seen that the present method is better
than method [5].

Algorithm:
Step 1: Partition [a,b] into N subintervals I.

Step 2: Set
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S=y, (i=0,1,2,..,N), S§;=y, (i=0,1,2,...,N)
5 =y® (i=0,1,2, ...,N-1)

"

and with initial condition S"=y7'.

Step 3: Use (Theorem 1 (i)) to find S, -S;, i=1,2, ...,N.

Step 4: Use (Theorem 1 (i)) to find the derivatives of s —S, at N equally spaced
points in each subinterval X € [X; ;,X;] go to step 5, else i=i+1 and repeat this
iteration to find a proper i.

Step 5: Stop.
Problem 1: [6] Consider that the fifth order intial value problem
yO —y® _y 4 y=0 where x €[01] ,

y(0) = y'(0) = y"(0) = y"(0) = y* (0) =1 , and the exact solution is y(x) = e*.
Problem 2: [10] Consider that the third order value problem
y"+2y"+y+2y =0 where te[01], y(0)=3,y'(0)=-2, y"(0) =3 the exact

initial

solution is y(x) =e™ +cos(t) +1.

Table 1 Absolute maximum error for the derivatives S (x).

5700 -y,

[s"C)=y" ().,

[s® 00 -y® )|

0.1

8.4768x10°®

4.2537 x10°°

5.2x107°

0.01

4.7657 x10™*

2.38571x107°

5.6x107°

0.001

1.3892x10718

2.0839x107*

8.3354x1077

0.0001

1.38.96x1072°

2.0844 %1078

8.3378x1077

00y

[s™ 00 -y )|

0.1

10.38x1072

10.45x107?

0.01

28.047 x1071

505.68x10°

0.001

25x107°

35.009x10!

0.0001

2.5013x107*

3.5019x10°
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Table 2 Absolute maximum error for the derivatives S (x).

s 0=y @, | 5700 =y ", | [F@0 -y
0.1 1.0314x10°° 5.1209x10™* 6.027 x10™"
001 | 6.6183x10™ 3.3061x10°° 1.12x107
0.001 | 1.7769x107™® | 2.6653x107* 1.0661x10*
0.0001 | 1.7762x10™"* 6.661x10"" 1.3323x10°°

o s90-y@m)| | F700-y? )|,
01 11.902x10° 117.3x10°
0.01 36.76x10™" 559.01x10°

0.001 3.198x10" 447.77 x10°
0.0001 6.3949x10° 111.91x10°

6 Conclusion

As we expected, the maximum absolute errors in the solution of the fifth and
third order initial value problems given by our construction are smaller than the
errors in the constructions in [5,7 and 8], also we can using this model to find the
approximate solution for all order initial value problems with a good result even
for small h. Moreover, we found new construction, gives more accurate results in
comparison with sixth and seventh spline used in [7].

7 Open Problem

112

In this work, we present a numerical method for solving the higher order initial
value problems; we can develop the idea for boundary value problems, system of
differential equations and partial differential equations difference type of

boundary conditions.

References

[1] Atkinson, K.E., An Introduction to Numerical Analysis, Wiley, 1978.
[2] Conte, S.D., Elementary Numerical Analysis, McGraw Hill, 1980.



113 On Optimality of Lacunary Interpolation ...

[3] Gyovari, J., Cauchy problem and Modified Lacunary Spline functions,
Constructive Theory of Functions, VVol.84 (1984), 392-396.

[4] Howell, G. and Varma, A.K., Best Error Bounds for Quantic Spline
Interpolation, Approximation Theory, Vol.58, N0.1(1989).

[5] Jwamer , K.H-F. and Karim R.G., On Sixtic Lacunary Spline Solutions of
fourth Order Initial Value Problem, Asian Journal of Mathematics and
Statistics, Pakistan, VVol.3, No.3, (2010), 119-129.

[6] Lyman M. Kells, Elementary Differential Equations. Sixth Edition, (1960),
ISBN 07-033530-3.

[7] Jwamer, K.H-F., Approximation Solution of Second Order Initial Value
Problem By Spline Function of Degree Seven, International Journal of
Contemporary Mathematical Sciences, Bulgaria, Vol. 5, No. 46, (2010), 2293
- 2309.

[8] Jwamer,K.H-F. and Hama Salh, F.K., Cauchy problem and modified spline
model For Solving initial value problem, International Journal Open
Problems Computers and Mathematic,, Vol.4, No.1, (2011), 191-200.

[9] Saxena, A., Interpolation by Quantic Splines, in Ganita, (1987), 76-90.

[10] S. S. Saatry, Engineering Mathematics, Volume 2, Third Edition, 2005.



