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Abstract

In this paper, a new difference scheme based on C1-quintic
splines is derived for the numerical solution of the stiff de-
lay differential equations. Convergence results shows that the
methods have a convergence of order five. Moreover, the sta-
bility analysis properties of these methods have been studied.
Finally, numerical results illustrating the behavior of the meth-
ods when faced with some difficult problems are presented.
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1 Introduction

Delay differential equations (DDEs) are used to model a large variety of practi-
cal phenomena in the biosciences, engineering and control theory, and in many
other areas of science and technology, in which the time evolution depends not
only on present states but also on states at or near a given time in the past
(see, e.g., [1, 10]). If we restrict the class of DDEs to a class in which the high-
est derivative is multiplied by a small parameter, then it is said to be a stiff
delay differential equation (SDDEs). Such problems arise in the mathematical
modeling of various practical phenomena, for example, in population dynam-
ics [10], the study of bistable devices [2], description of the human pupil-light
reflex [13], and variational problems in control theory [14].
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In this paper we will be concerned with the numerical solution of the SD-
DEs:

εy′(x) = f(x, y(x), y(α(x))), x ∈ [a, b],

y(x) = g(x) for ã ≤ x < a,
(1)

where f ∈ C5([a, b] × R × R) is Lipschitz continuous with respect to y, ã =
inf [α(x)], 0 < ε ≤ 1 is the a positive small parameter. The function α(x) ≤
x, x ∈ [a, b] is usually called the delay function, g(x) is the initial function.

Several numerical methods that were originally designed for solving SD-
DEs, for example, El-Gendi [3] considered Chebyshev series for the numerical
solution of DDEs, with single delay. El-Gendi methods for solving SDDEs
were presented in [8], θ-methods for solving these equations were considered
in [7, 11, 12]. Spline collocation methods for solving delay and neutral delay
differential equations were considered by several authors (see, e.g., [4, 5, 6, 9]).
Quintic C2-spline integrating method for solving second-order ordinary ini-
tial value problems were studied in [15]. More detailed analysis for both the
convergence and absolute stability was also given.

The outline of this paper is as follows: Section 2 contains an investigation
of the existence, uniqueness, and the precise definition of spline collocation
methods. Convergence results are given in Section 3 and it turned out that
the method is fifth order. Section 4 is devoted to the stability analysis. In
Section 5 three numerical results for both SDDEs and the system of SDDEs
cases are given to illustrate the efficiency of our method. The last section is
conclusion.

2 Description of the methods

Consider the initial value problem for the SDDEs (1). The basic idea is to
generate a quintic spline s ∈ C1[a, b] which satisfies Eq. (1) at the interior knots
xi−3/4, xi−1/2, xi−1/4 as well as at xi, where Ii = [xi−1, xi] with xi = a + ih, i =

1(1)n, n = (b − a)/h, h is the stepsize. Let S
(1)
n,5 = {s(x) : s ∈ C1[a, b], s ∈ Π5,

for x ∈ Ii, i = 1(1)n}, where Π5 denotes the collection of all polynomials of
degree ≤ 5. Using the notations

s′i−1 = s′(xi−1), s′i−3/4 = s′(xi−3/4), s′i−1/2 = s′(xi−1/2),

s′i−1/4 = s′(xi−1/4), s′i = s′(xi), i = 1(1)n,

a quintic spline functions s ∈ S
(1)
n,5 can be represented on each Ii by

s(x) = si−1 + hA(t)s′i−1 + hB(t)s′i−3/4 + hC(t)s′i−1/2 + hD(t)s′i−1/4 + hE(t)s′i,
(2a)
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with

A(t) = t− 25

6
t2 +

70

9
t3 − 20

3
t4 +

32

15
t5, B(t) = 8t2 − 208

9
t3 + 24t4 − 128

15
t5,

C(t) = −6t2 +
76

3
t3 − 32t4 +

192

15
t5, D(t) =

8

3
t2 − 112

9
t3 +

56

3
t4 − 128

15
t5,

E(t) = −1

2
t2 +

22

9
t3 − 4t4 +

32

15
t5,

(2b)

and x = xi−1 + th, t ∈ [0, 1]. Since s ∈ S
(1)
n,5, we have

si = si−1 +
7

90
hs′i−1 +

16

45
hs′i−3/4 +

2

15
hs′i−1/2 +

16

45
hs′i−1/4 +

7

90
hs′i, i = 1(1)n,

(3a)

and hence s is uniquely determined in [a, b]. Scheme (2a) can be exploited
to generate successively a quintic spline s ∈ C1[a, b] to find an approximation
to the exact solution of Eq. (1). Since f satisfy the Lipschitz condition in
([a, b]×R×R) then the approximate spline solution s(x) to the exact solution
y(x) of Eq. (1) will be constructed as follows: for i = 1(1)n

si−3/4 = si−1 +
251

2880
hs′i−1 +

323

1440
hs′i−3/4 −

11

120
hs′i−1/2 +

53

1440
hs′i−1/4 −

19

2880
hs′i,

si−1/2 = si−1 +
29

360
hs′i−1 +

31

90
hs′i−3/4 +

1

15
hs′i−1/2 +

1

90
hs′i−1/4 −

1

360
hs′i,

si−1/4 = si−1 +
27

320
hs′i−1 +

51

160
hs′i−3/4 +

9

40
hs′i−1/2 +

21

160
hs′i−1/4 −

3

320
hs′i.

(3b)

It is easy to observe that s(α(xj)) = g(α(xj)), j = i−3/4, i−1/2, i−1/4, i,
when α(xj) ≤ a, and if α(xj) ∈ [xk−1, xk], k = 1(1)i then s(α(xj)) can be
calculated from Eq. (2):

s(α(xj)) =sk−1 + hA(ξ)s′k−1 + hB(ξ)s′k−3/4 + hC(ξ)s′k−1/2

+ hD(ξ)s′k−1/4 + hE(ξ)s′k,
(4)

where

A(ξ) = ξ − 25

6
ξ2 +

70

9
ξ3 − 20

3
ξ4 +

32

15
ξ5, B(ξ) = 8ξ2 − 208

9
ξ3 + 24ξ4 − 128

15
ξ5,

C(ξ) = −6ξ2 +
76

3
ξ3 − 32ξ4 +

192

15
ξ5, D(ξ) =

8

3
ξ2 − 112

9
ξ3 +

56

3
ξ4 − 128

15
ξ5,

E(ξ) = −1

2
ξ2 +

22

9
ξ3 − 4ξ4 +

32

15
ξ5, ξ =

α(xj)− xk−1

h
∈ [0, 1].
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We can write Eq. (1) as follow:

εs′j = f(xj, s(xj), s(α(xj))), j = i− 3/4, i− 1/2, i− 1/4, i, (5)

in each subinterval [xi−1, xi], i = 1(1)n. From Eqs. (3) and (4), system (5) can
be solved for s′i−3/4, s

′
i−1/2, s

′
i−1/4, s

′
i by any numerical method.

Theorem 2.1. If f satisfies Lipschitz condition, and if

h <
144

179L
, (6)

then there exists a unique spline approximation solution of Eq. (1) given by
system (3).

Proof. It is sufficient to prove that Si = (si−3/4, si−1/2, si−1/4, si)
T can be

uniquely determined for an arbitrary given si−1. Since, we can write system
(3) as follows:

Si = M0si−1 + hM1fi−1 + hM2f i
, (7)

where

M0 = (1, 1, 1, 1)T , M1 = (
251

2880
,

29

360
,

27

320
,

7

90
)T ,

M2 =




323
1440

− 11
120

53
1440

− 19
2880

31
90

1
15

1
90

− 1
360

51
160

9
40

21
160

− 3
320

16
45

2
15

16
45

7
90




,

f
i
= (fi−3/4, fi−1/2, fi−1/4, fi)

T , from Eq. (7), we have

Si,1 = M0si−1 + hM1fi−1,1 + hM2f i,1
,

Si,2 = M0si−1 + hM1fi−1,2 + hM2f i,2
.

Thus, Si,1 and Si,2 can be written in the form

Si,1 = Q
i,1

(si−3/4,1, si−1/2,1, si−1/4,1, si,1),

Si,2 = Q
i,2

(si−3/4,2, si−1/2,2, si−1/4,2, si,2).
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Applying ‖.‖1, Lipschitz condition, we get

‖Q
i,1
−Q

i,2
‖ = ‖(M0si−1 + hM1fi−1,1 + hM2f i,1

)

− (M0si−1 + hM1fi−1,2 + hM2f i,2
)‖

≤
{
‖M1‖h|fi−1,1 − fi−1,2|+ ‖M2‖h

(
|fi−3/4,1 − fi−3/4,2|

+ |fi−1/2,1 − fi−1/2,2|+ |fi−1/4,1 − fi−1/4,2|+ |fi,1 − fi,2|
)}

<
{ 95

288
hL1|si−1,1 − si−1,2|+ 179

144
h
(
L2|si−3/4,1 − si−3/4,2|

+ L3|si−1/2,1 − si−1/2,2|+ L4|si−1/4,1 − si−1/4,2|+ L5|si,1 − si,2|
)}

<
179

144
hL

{
|si−1,1 − si−1,2|+ |si−3/4,1 − si−3/4,2|

+ |si−1/2,1 − si−1/2,2|+ |si−1/4,1 − si−1/4,2|+ |si,1 − si,2|
}

where

L = max(L1, L2, L3, L4, L5).

Thus, the function Q
i
defines a contraction mapping, if (179

144
)hL < 1, which

satisfies Eq. (6). Hence there exists a unique Si that satisfies

Si = Q
i
(si−3/4, si−1/2, si−1/4, si)

which may be found by iteration

Sp+1
i = Q

i
(Sp

i ), p = 0, 1, 2, ...

The proof of Theorem 2.1 is now complete.

3 Error analysis and order of convergence

In this section the emphasis is on conditions for convergence of the proposed
method. It is shown that the method is a continuous extension of a multi-
step method, and its derivative reproduces the values given by the well-known
closed four-panel Newton-Cotes formula at the mesh points. A priori error
estimates in L∞-norm shows that the method is a fifth order as well as its first
derivatives, according to the following:

Lemma 3.1. Let f ∈ C6([a, b]×R×R), then

Ei = O(h5), i = 0(1)n, (8)

where Ei = ei + eαi
,

ei = si − yi, with yi = y(xi), and eαi
= sαi

− yαi
, with yαi

= y(α(xi)).
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Proof. Since

si = si−1 +
h

90
(7s′i−1 + 32s′i−3/4 + 12s′i−1/2 + 32s′i−1/4 + 7s′i),

which is the well-known closed four-panel Newton-Cotes formula, applied to
y′(x), if y ∈ C6[a, b], then it follows that

e′i = O(h5).

But

ei = ei−1 + δi,

where

δi =
h

90
(7e′i−1 + 32e′i−3/4 + 12e′i−1/2 + 32e′i−1/4 + 7e′i) + O(h6), e0 = 0,

thus

ei =
i∑

j=1

δj

or

ei = O(h5). (9)

Also, let α(xi) ∈ [xk−1, xk], k ≤ i, then

sαi
=sk−1 + h(A(ξ)s′k−1 + B(ξ)s′k−3/4 + C(ξ)s′k−1/2

+ D(ξ)s′k−1/4 + E(ξ)s′k),

e′αi
= O(h5).

But

eαi
= ek−1 + γk,

where

γk =h(A(ξ)e′k−1 + B(ξ)e′k−3/4 + C(ξ)e′k−1/2 + D(ξ)e′k−1/4

+ E(ξ)e′k) + O(h6), e0 = 0,

thus

eαi
=

k∑
j=1

γj
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or

eαi
= O(h5). (10)

From Eqs. (9) and (10), we get Ei = O(h5). The proof of Lemma 3.1 is now
completed.

We now turn to prove the following main theorem, which provides estima-
tion for the global error for s(x)− y(x) and its first derivative.

Theorem 3.1. Let f ∈ C6([a, b]×R×R), then for all x ∈ [a, b], we have

|s(k)(x)− y(k)(x)| < Ckh
5, k = 0, 1, (11)

where Ck denote generic constants independent of h, but dependent on the
order of the various derivatives.

Proof. On [xi−1, xi] we have

E ′
i(x) = s′(x)− u′(x) + u′(x)− y′(x),

where u′(x) is the quartic interpolant of y′(x) at xi−1, xi−3/4, xi−1/2, xi−1/4 and
xi. It can be easily verified that

u′(x) = y′i−1A
′(t) + y′i−3/4B

′(t) + y′i−1/2C
′(t) + y′i−1/4D

′(t) + y′iE
′(t),

with A′(t), ..., E ′(t) be given from Eq. (2b).
But

s′(x)− u′(x) = E ′
i−1A

′(t) + E ′
i−3/4B

′(t) + E ′
i−1/2C

′(t) + E ′
i−1/4D

′(t) + E ′
iE

′(t).

Therefore

|s′(x)− u′(x)| ≤ |E ′
i−1||A′(t)|+ |E ′

i−3/4||B′(t)|+ |E ′
i−1/2||C ′(t)|

+ |E ′
i−1/4||D′(t)|+ |E ′

i||E ′(t)|
≤ |E ′

i−1|+ |E ′
i−3/4|+ |E ′

i−1/2|+ |E ′
i−1/4|+ |E ′

i|,
and using Lemma 3.1, it follows that

|s′(x)− u′(x)| = O(h5).

Also from the construction of u′(x), it follows that |u′(x) − y′(x)| = O(h5),
provided f ∈ C6([a, b]×R×R). Hence, |E ′(x)| ≤ C1h

5.
On [xi−1, xi], we have

E(x) =

∫ x

xi−1

E ′(t)dt + Ei−1,

or, using Lemma 3.1, we get

|E(x)| ≤ C0h
5.

This completes the proof of Theorem 3.1.
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4 Stability analysis

Let us consider the following linear DDEs:

y′(x) = λy(x) + qy(x− τ) (12)

as a stability test equation, where λ, q ∈ C arbitrary, the delay τ is positive
constant.

Definition 4.1. A numerical method, applied to Eq. (12) is said to be P-
stable if under the condition Re(λ) < −|q|, the numerical solution s(xi) −→ 0
as xi −→ ∞ for all h satisfying m̃h = τ, m̃ ∈ N . A region of P-stability is
the set of all points (hλ, hq) for which the method is P-stable.

Applying the methods to Eq. (12)

s′(xj) = λs(xj) + qs(xj−m), j = i− 3/4, i− 1/2, i− 1/4, i,

i = 1(1)n, m ≤ i,
(13)

where τ = mh, s(xj−m) = s(xj−mh) and xj−m ∈ [xj−m−1, xj−m], we get from
system (3):

si−3/4 = si−1 +
251

2880
(zsi−1 + vsi−1−m) +

323

1440
(zsi−3/4 + vsi−3/4−m)

− 11

120
(zsi−1/2 + vsi−1/2−m) +

53

1440
(zsi−1/4 + vsi−1/4−m)− 19

2880
(zsi + vsi−m),

si−1/2 = si−1 +
29

360
(zsi−1 + vsi−1−m) +

31

90
(zsi−3/4 + vsi−3/4−m)

+
1

15
(zsi−1/2 + vsi−1/2−m) +

1

90
(zsi−1/4 + vsi−1/4−m)− 1

360
(zsi + vsi−m),

si−1/4 = si−1 +
27

320
(zsi−1 + vsi−1−m) +

51

160
(zsi−3/4 + vsi−3/4−m)

+
9

40
(zsi−1/2 + vsi−1/2−m) +

21

160
(zsi−1/4 + vsi−1/4−m)− 3

320
(zsi + vsi−m),

si =si−1 +
7

90
(zsi−1 + vsi−1−m) +

16

45
(zsi−3/4 + vsi−3/4−m)

+
2

15
(zsi−1/2 + vsi−1/2−m) +

16

45
(zsi−1/4 + vsi−1/4−m) +

7

90
(zsi + vsi−m),

(14)

where z = λh, v = qh.
We can write the system (14) as follows:

A1Si − A2Si−m = A3Si−1 + A4Si−1−m, (15)

where Si = (si−3/4, si−1/2, si−1/4, si)
T , A1 = (I − zB), A2 = vB,
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B =




323
1440

− 11
120

53
1440

− 19
2880

31
90

1
15

1
90

− 1
360

51
160

9
40

21
160

− 3
320

16
45

2
15

16
45

7
90




,

A3 =




0 0 0 1 + 251
2880

z

0 0 0 1 + 29
360

z

0 0 0 1 + 27
320

z

0 0 0 1 + 7
90

z




, A4 =




0 0 0 251
2880

v

0 0 0 29
360

v

0 0 0 27
320

v

0 0 0 7
90

v




,

and hence we get

W (z, v)Mi = G(z, v)Mi−1, (16)

where

Mi = (Si, Si−m)T , Mi−1 = (Si−1, Si−1−m)T ,

W (z, v) = [A1| − A2], G(z, v) = [A3|+ A4].

Thus by definition, z = hλ, v = hq belongs to the region of P-stability (SP )
of our methods. It is clear that (z, v) ∈ SP if the eigenvalues µ`(z, v), ` = 1(1)4
of the generalized eigenvalue problem

µW (z, v).x = G(z, v).x, x 6= 0 (17)

lie inside the unit disc, that is, if

|µ`(z, v)| < 1, ` = 1(1)4. (18)

Now, let

Π(µ, z, v) = det(µW (z, v)−G(z, v)) =
µ3

3840

[
(µ− 1)

(
3(z4 + v4)

+ (z2 + v2)(12zv + 420) + 18z2v2 + 840zv + 3840
)

− (µ + 1)
(
50(z3 + v3) + (z + v)(150zv + 1920)

)]
= 0

(19)
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be the characteristic equation of Eq. (17), then we have

µ`(z, v) =0, ` = 1(1)3,

µ4(z, v) =
[
3(z4 + v4) + 50(z3 + v3) + (z2 + v2)(12zv + 420)

+ (z + v)(150zv + 1920) + 18z2v2 + 840zv + 3840
]/

[
3(z4 + v4)− 50(z3 + v3) + (z2 + v2)(12zv + 420)

− (z + v)(150zv + 1920) + 18z2v2 + 840zv + 3840
]
.

(20)

From Eq. (20) we get |µ`(z, v)| < 1, ` = 1(1)4 for all values of z and v
which satisfies v < −z, see Figure 1. Since the roots (20) of the characteristic
equation (19) are inside the unit circle for v < −z, then under the condition
Re(z) < −|v| the numerical solution Si −→ 0 as i −→ ∞. Hence, the meth-
ods are P-stable, and a region SP of P-stability was obtained by determining
{(z, v) : |v| < −Re(z)}. See some region of P-stability in Figure 2.

-200 -100 0 100 200

-200

-100

0

100

200

z

v

Fig. 1. Some region for values of z, v which satisfies Eq. (18).

5 Numerical examples

To illustrate our discussion, three test examples will be considered. We can
compute their actual error and compare the performance of the above men-
tioned method. The computer application program MATLAB 7.1 was used to
execute the algorithms that were used to solve the given examples.
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-200 -100 0 100 200

-200

-100

0

100

200

z

v

Fig. 2. Some region of P-stability.

Example 5.1. [7, 12]

εy′(x) = −5y(x) + 4y(x− 1), x ≥ 0.

y(x) = e−x, −1 ≤ x ≤ 0.

The reference solution is: y(10) = 0.227442715416 for ε = 1, y(10) =
0.131413236978 for ε = 0.1 and y(10) = 0.10954547852 for ε = 0.01. In
Table 1, we give the errors between the reference solution at x = 10 and the
computed solution obtained by various methods for Example 5.1. In Figure 3,
we plot the numerical solutions obtained with our present method for Example
5.1 with h = 0.1 and different values of the parameter ε.

Example 5.2. [7]

εy′(x) + y(x) +
1

5
y(

x

2
) =

1

5
e−x/2ε, 0 ≤ x ≤ 1.

y(0) = 1, −1 ≤ x ≤ 0.

Which has the exact solution y(x) = e−x/ε. In Table 2 we give the absolute
error between the exact solution and the numerical results by the present
method at the end point x = 1.

Example 5.3. [8, 11]

εy′1(x) = −1

2
y1(x)− 1

2
y2(x− 1) + f1(x),

εy′2(x) = −y2(x)− 1

2
y1(x− 1

2
) + f2(x), x ∈ [0, 5],
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Table 1: Absolute errors for the solution of Example 5.1
ε h [7] present method
1 1/20 9.37E-05 6.6323E-12

1/30 4.14E-05 5.6518E-13
1/40 2.32E-05 8.6070E-14

0.1 1/20 2.51E-04 5.5844E-14
1/30 1.17E-04 5.8952E-14
1/40 9.69E-05 4.6518E-14

0.01 1/20 5.12E-05 4.9081E-10
1/30 3.25E-05 6.1971E-11
1/40 2.32E-05 6.1962E-11

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
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Fig. 3. The numerical solutions of Example 5.1 for ε = 1, ε = 0.1, ε = 0.01.

with the initial functions

y1(x) = e−x/2ε, for − 1

2
≤ x ≤ 0,

y2(x) = e−x/ε, for − 1 ≤ x ≤ 0,

and

f1(x) =
1

2
e−(x−1)/ε, f2(x) =

1

2
e−(x−1/2)/2ε.

The exact solution is given by

y1(x) = e−x/2ε, y2(x) = e−x/ε.
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Table 2: Test results for Example 5.2
ε n = 16 n = 32 n = 64

1/16 6.987E-09 1.061E-10 1.648E-12
1/32 1.244E-07 1.460E-09 2.215E-11
1/64 5.592E-07 2.505E-08 2.969E-10

In Table 3, the numbers referred to the maximum absolute error between
the exact solution and the approximate solution for different values of x, n, ε.

Table 3: Maximum absolute errors for the solution of Example 5.3
ε xi n = 16 n = 32 n = 64 n = 128

1/16 1 1.636E-09 2.580E-11 4.040E-13 6.244E-15
3 1.241E-08 2.043E-10 3.233E-12 5.063E-14
5 1.135E-08 1.790E-10 2.803E-12 1.612E-14

1/32 1 6.162E-09 9.518E-11 1.482E-12 2.315E-14
3 1.994E-07 3.142E-09 4.920E-11 7.692E-13
5 1.181E-07 1.980E-09 3.147E-11 4.939E-13

1/64 1 3.518E-10 4.989E-12 7.604E-14 1.180E-15
3 1.481E-08 2.194E-10 3.386E-12 5.274E-14
5 5.671E-08 8.848E-10 1.383E-11 2.162E-13

1/128 1 2.308E-14 8.806E-17 1.219E-18 1.848E-20
3 4.755E-13 4.104E-15 5.919E-17 9.084E-19
5 1.187E-11 7.304E-14 1.027E-15 1.564E-17

6 Conclusion

In this paper, we have developed a collocation method with quintic C1-splines
as basis functions to solve the stiff delay differential equations. Our present
methods have convergence of order five. Analysis of stability was also consid-
ered. The proposed method is applied to solve two examples of SDDEs with
single delay and one example of SDDEs with several delay terms to test the
efficiency of the proposed method. Numerical examples have also been used
to demonstrate the efficiency and accuracy of the proposed method.
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7 Open Problem

We can introduce the analysis of convergence and the stability analysis prop-
erties of quintic C1-spline collocation methods for solving delay partial differ-
ential equations.
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