Int. J. Open Problems Comput. Math., Vol. 5, No. 4, December, 2012
ISSN 2074-2827; Copyright ©ICSRS Publication, 2012
WWW. 4-CSTS. 0Tq

On Hermite-Hadamard Type Inequalities
for (a, m)-Convex Functions

Shu-Hong Wang*!, Bo-Yan Xi*?, Feng Qi

*College of Mathematics, Inner Mongolia University for Nationalities,
Tongliao City, Inner Mongolia Autonomous Region, 028043, China.
E-mail: shuhong7682@163.com (Wang), baoyintu78Qqq.com (Xi).
"Department of Mathematics, School of Science, Tianjin Polytechnic
University, Tianjin City, 300387, China.
E-mail: qifeng618@gmail.com, qifeng618@hotmail.com.
URL: http://qifeng618.wordpress.com.

Abstract

In the paper, some new inequalities of Hermite-Hadamard
type for (o, m)-convex functions are obtained.
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1 Introduction

Throughout this paper, we use b* to represent a positive number and adopt
the following notations:

R = (—o00, 0), Ry = [0, +00), R, = (0,00),

0
a = min{a, mb}, b = max{a, mb}, |9l = sup |g(t)],
tela,b]

where a,b € R and m € (0, 1].
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Let f: 1 CR — R be a convex function on an interval I of real numbers
and a,b € I with a < b. Then

f(a;b)ébia/abf(w)dxéw. 1)

This inequality is well known in the literature as Hermite-Hadamard’s integral
inequality for convex functions. See [9] and closely related references therein.
We now recite two definitions.

Definition 1.1 ([10]). Let f : [0,b*] — R be a function and m € (0, 1]. If

Sz +m(1 = XNy) < Af(z) +m(l = A)f(y) (2)

holds for all x,y € [0,b*] and X € [0,1], then we say that the function f(x) is
m-convez on [0, b*].

Definition 1.2 ([8]). Let f : [0,b*] — R be a function and (o, m) € (0,1]2. If
fQz+m(1=Ay) < A f(z) +m(1 = A")f(y) (3)

is valid for all x,y € [0,b*] and X € [0,1], then we say that f(z) is an (o, m)-
convex function on [0, b*].

The following theorems are some known results obtained in recent years.

Theorem 1.1 ([6, Theorem 2.2]). Let f : I° C R — R be a differentiable
function and a,b € I° with a < b. If |f'(x)| is convex on [a,b], then

‘f(@;f(b) _bia/a f(x)dx' L b=a)(f (@) +10))

. Y

Theorem 1.2 ([5, Theorem 2]). Let f : Ry — R be m-convex and m € (0, 1].
If f € Lla,b] for 0 <a < b < oo, then

I . fla) +mf(b/m) mf(a/m)+ f(b)
b—a/a f(x)dxgmln{ 5 , 5 } (5)

Theorem 1.3 ([3, Theorem 2.2]). Let I D Ry be an open real interval and let
f 1 — R be a differentiable function such that f'(x) € Lla,b] for 0 < a <

b <oo. If | f'(x)|? is m-convex on [a,b] for some given numbers m € (0,1] and
q>1, then

(52) o

* min { (!f’(a)|" + m!f’(b/m)\") " (m\f’(a/m)!q + If’(b)|q> /} ©)

b—a

<

2 2
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Theorem 1.4 ([11, Theorem 1]). Let f : I C R — R be a differentiable
function and a,b € I witha < b. If|f'(x)|? is convez on |a,b] and g : [a,b] — R
is a continuous function, then for all x € [a,b] we have

]ﬂ@[%@m+ﬂ / w—/f 5)ds

y [(x —a)?+ (b—x>T 1/‘1[(31)—35 —2a)(z — a)® + (b — x)?

< [lglloo

. o /(@)

(x —a)* + (2b+ x — 3a)(b — z)?

R el
+ i ror] @

Theorem 1.5 ([11, Theorem 2|). Let f : I C R — R be a differentiable
function and a,b € I witha < b. If|f'(x)|? is convez on |a,b] and g : [a,b] — R
is a continuous function, then for all x € [a,b] we have

‘f( / ds—/f s)ds

<Hmwﬁx—®2;w—xvrlm

5 [ 3b—2x—a)6((:z:z)) +2(b—x) (o))"
2(x —a)® + (b+ 2z — 3a)(b— z)?

_|_

P ]
e ror| . ©

For more information on this topic, please refer to [1, 2, 4, 7, 9, 12, 13, 14,
15, 16] and plenty of references cited therein.

Our goal of this paper is to establish some new Hermite-Hadamard type
inequalities for («, m)-convex functions.

2 Lemmas

For establishing new integral inequalities of Hermite-Hadamard type for (o, m)-
convex functions, we need the following lemmas.

Lemma 2.1. Let f : I € R — R be a differentiable function, a,b € I with
a<b, me (0,1, a#mb, and g : [a,b] — R. If f',g € Lla,b], then, for all
x € |a,b], we have

T mb mb
ﬂ@/“a@d&+ﬂmw/’gwnw— £(s)g(s)ds

a / " / fdsdt. (9)
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Lemma 2.2. Let f : I C R — R be a differentiable function, a,b € I with
a<b me (0,1, a# mb, and g : [a,b] — R. If f',g € Lla,b], then for all
x € [a,b], we have

mb mb

1@ [ a@ds= [T e ds= [T swroa o

a a

where

t (s)ds, t€la,x), _ _
S,(t) = /&g- and sl<t):{t_“’ tela,o),

—/t g(s)ds, te€ [z,b

b—t, t€lxb.

Proof of Lemmas 2.1 and 2.2. These lemmas can be deduced directly from in-
tegrating by part the right-hand sides of (9) and (10) respectively. O

3 Some new integral inequalities of Hermite-
Hadamard type for (a, m)-convex functions

Now we are in a position to establish some new integral inequalities of Hermite-
Hadamard type for functions whose derivatives are (a, m)-convex.

Theorem 3.1. Let f : [0,b] — R be a differentiable function, a,b € [0, "]
with a < b, (o, m) € (0,1%, a # mb, and f' € Lla,b]. If |f'(x)|? for ¢ > 1 is
(cr, m)-convex on [0,b], g : [a,b] — R is a continuous function, and z € |a, b,
then

mb

‘f(a) [ asras+ o) | " g@as— [ f)ls) ds

{(m — a)? +2(mb - I)Q} 1-1/a {m(‘” — a)? +2(mb — 1)?

* |f/((§)4|f 1_)(7;1’_{/;?‘(1 [Q(mb — 1)° (Zz — z)a

< [lgllse

TROIE

1/q
+ (mb—a)[(a+1)(x —a) — (mb — :13)]} } . (11)

Proof. Using Lemma 2.1, Holder inequality, and the (o, m)-convexity of | f’|%,
it follows that

mb

‘f(a) [ atsras+ s [ " g ds— [ f)g(s)ds

a
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g/ab /;Q(S)ds |f'(t)|dt < (/” /xtg<8)d8 dt)l—l/q
. (/b [ atas \f’(t)!th)l/qg Hg"m{/&b’t—xldt} 1/
gl - ol e (TR 1
[ (fi o i) ]
< [ £ {
+m(1‘(m5 t) )|f<>|q} )
i

= gl [t

w st [ - (=) a }/q

2+ (mb— )% and

m|f/® [ |t —x|dt

for x € [a,b]. Substituting f; it —z|dt = 3[(z — a)

/j [t =<l (Zfi Z)adt T lat 1)1(oz 12)

X {Q(mb - x)Z(ZLZ - z)a+(mb —a)(a+1)(z —a) — (mb— x)]}

into the above inequality leads to (11). Theorem 3.1 is thus proved. O

Remark 3.2. The inequality (7) is a special case of (11) applied tom =« = 1.

Corollary 3.1. Under the conditions of Theorem 3.1, if ¢ = 1, we have

< [lglle

s [ atsras+ o) | " g@as— [ f)ls) ds

a

X {m(x —a)*+ (mb—x)° | (b)| + {2(mb —z)? (Zz : z)a

2
+ (mb—a)[(a+1)(z — a) — (mb— g;)]] ‘f&“ﬂ 1_)(7;”1'(2(;)’ } (12)

Theorem 3.3. Let f : [0,0"] — R be a differentiable function, a,b € [0,b]
with a < b, (a,m) € (0,1)%, a # mb, and f' € Lla,b]. If |f'(x)|? for ¢ > 1
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52
is (o, m)-convez on [0,b], g : [a,b] — R is a continuous function, then, for all
x € [a,b], we have

mb

@ [ aras s s | " g — [ f(s)a(s) ds

a

-1 1-1/q
< ”gHoo{ d [|:1: — a|(2q71)/(q71) + |mb — x|(2q1)/(q1):|}

29 — 1
m 1/q
A=t amlror ) a3

Proof. By Lemma 2.1, Holder inequality, and the (a, m)-convexity of | f'|?, for

x € [a,b], it follows that

mb

@ [ atsras+ o) | Caras [T s as

S/b /t (s)ds||f/(t)|dt < (/b /t ()dsq/(q_l)dt)l_l/q
(/ 7 \th) <ngoo[/ - |q/<q1dt]11/q[/ 7 |th} :

1 1-1/q
_ q— q— q— q—
Hg“oo(q (|2 — a|@a=D/@=D 4 b — | a1/ 1)])

29 — 1
b q 1/q
1l :

(b=t t—a-
! (E—anrl_)—ab)
q— 1 1-1/q
< gl (2q — [z — @]/ @D 4 b — x|(2q_1)/(q_1)}>
T(mb—t\° mb — 1/q
!/ q . q
L v (32 o

q—1 (20-1)/(g1) ety |
= ll9llq 5 1[Iﬂﬁ—al =DM 4 |mb — g|e D]
q_

m 1/q
. {' 0o )I"+am|f’(b)lq]} |

The proof of Theorem 3.3 is complete. O]

Corollary 3.2. Under the conditions of Theorem 3.3, if m = o = 1, we have

‘f(a) [ atass g0 " gls)ds - / " F()g(s) ds




On Hermite-Hadamard Type Inequalities 53

1-1/q
qg—1 V(e o
< HgHoo{2q 1 [(gy — a)(2q 1/(g=1) 4 (b— x)(2q 1)/(q 1)}}

b—a 1/q
ALt r@rron) . a
Theorem 3.4. Let f : [0,0*] — R be a differentiable function, a,b € [0,b*]
with a < b, (a, m) € (0,1]*, a # mb, and f" € Lla,b]. If |f'(x)|? for ¢ > 1 is
(ov, m)-convex on [0,b], g : [a,b] — R is a continuous function, and x € [a, b,
then

< Iyl [ b =P

‘f(l’) /ambg(s) ds — mbf(s)g(s) ds 5

a

| = e oo — 0 — (042

mb— 2\ | 1S (@l —mlf (b))
x(mb—az)(x—a)](mb_a> —|—(mb—a)] e+ Dt } . (15)

Proof. Using Lemma 2.2 yields |S,(t)] < ||g]leS1(t) for ¢ € [a,b]. By Holder
inequality and the (o, m)-convexity of |f'|%, it follows that

mb

mb b
‘f(m) / g(s)ds— [ fs)gls)ds|< / 15,0117 (1) dt

<lall [ s 0] h JECORY )
[(m —a)? +2(mb - x)2] 1_1/q{m|f’(b)|q /az S0

(@ = mly e [ 5.0 = t)“dt}”q

mb— a

S o ff s o

< [lglle

Lo

Tlar 1)1(a +2) KZZ - Da[a(mb —a)’
(@t 2)mb ) = )] + (mb - ] (@l - mlf’(b)|‘1)}1/q-

The proof of Theorem 3.4 is complete. O]
Remark 3.5. The inequality (8) is a special case of (15) applied tom = a = 1.
Corollary 3.3. Under the conditions of Theorem 3.4, if ¢ = 1, we have
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SHMR{mr$_@2+WW—xV]

‘ﬂwlmﬂ@w— " f(s)()ds

a

1
(a+1)(a+2)

< (220) = a2 (17@] - mir oD} (19

2

x (D)) + [[a(mb — )’ = (a+2)(mb - a)(z — a)]

mb—a

Theorem 3.6. Let f : [0,0*] — R be a differentiable function, a,b € [0,b*]
with a < b, (o, m) € (0,1]*, a # mb, and f' € Lla,b]. If |f'(x)|? for ¢ > 1 is
(ov, m)-convex on [0,b], g : [a,b] — R is a continuous function, and x € [a, b,
then

‘KMAMM$®— " f(s)()ds

a

< ||9Hoo{ 2q — 11 [l — a|Ce/G
q J—
1/q

1-1/q mb— a
sy b Iy gl o b an

|9, for

Proof. By Lemma 2.2, Hélder inequality, and the (a, m)-convexity of | f*
x € |a, b], it follows that
mb mb b 1-1/q
‘f(f)/ g(s)ds— [ f(s)g(s)ds|< ||g||oo{/ EGI dt}

b 1/q g 1 o 1
X {/ If/(t)|th} < Hg”‘”{zq_ - (|2 — a|2=V/ta=D)

SVap ebyrp g\ |7, 1Y
i) | e )

qg—1 B B - B 1-1/q
= |9/l 5 1[‘x_a‘(2q D/(a=1) 4 |mb—:z;\(2q 1)/(q 1)]
q_

mb—a La
A=t aml o}

The proof of Theorem 3.6 is complete. O]

Corollary 3.4. Under the conditions of Theorem 3.6, if m = a = 1, we have

‘ﬂ@LZ@M&i[f@ﬂﬁm

q—1 e
= Hglloo{Qq_ [(z — a) /=Y

ey a 1/q
+o-aere @ rop) L as)
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4

Two open problems

Finally, we would like to pose two open problems as follows.

1. When the function g is symmetric with respect to the midpoint %} of the

interval [a, b], can one simplify the inequalities (11), (13), (15), and (17)
in Theorems 3.1, 3.3, 3.4, and 3.6 respectively?

Can these inequalities established in this paper be applied to construct
inequalities of special means of two positive numbers, as done in [6, 14]
and other papers?
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