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Abstract

In recent years, convex optimization solved wvery large practi-
cal engineering problems reliably and efficiently. In this paper,
we present an extension of an algorithm for convex quadratic pro-
grammaing using a new technique for finding a class of search direc-
tions and the strategy of the central path, for convexr optimization
under linear constraints. To solve the initialization problem, we
have introduced a weighted vector with the property that starting
from an initial feasible centred point, it generates iterates that si-
multaneously, gets closer to optimality and closer to centrality. Fi-
nally, the favorable polynomial complexity bound for the algorithm
is deserved namely, O (\/ﬁlog(x%z)) iterations.

Keywords: interior points methods, linearly constrained convexr optimiza-
tion, primal-dual target following algorithm, equivalent algebraic transforma-
tion, polynomial complexity.

1 Introduction

Interior point methods (I/PMs) are among the most effective methods for
solving wide classes of optimization problems because of their polynomial
complexity and their numerical efficiency. Since the seminal work of Kar-
markar [7] in 1984, many researchers have proposed and analyzed various
IPMs for linear optimization (LO) and a large amount of results have been
reported. The search directions play an important role in finding new algo-
rithms. Peng, Roos and Terlaky [8] have defined the notion of self regular
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functions and, using this concept, they have introduced a new class of search
directions for LO. They have extended their results also to complementar-
ity problems (CP), semidefinite optimization (SDO) and second order cone
optimization (SOCQO), and they have proved polynomial complexity of dif-
ferent large-update algorithms, which use self-regular functions to obtain new
directions. An alternative method has been introduced in [3, 5, 6] by applying
algebraically equivalent transformations to the nonlinear centering equation
of the system, which defines the central path, this method has been applied
with success to LO. Recently, the new technique for LO has been extended
also to convex quadratic optimization (CQP) by Achache [1] and to monotone
mixed linear complementarity problems (LCPs) by Wang, Cai and Yue [9].
The method of algebraically equivalent transformation has been generalized
also to weighted path following algorithms. The first results for (LO) have
been given in [3]. Later on, Achache [2] generalized this algorithm to standard
LC'Ps. The above mentioned algebraic transformations, followed by a Newton
step, resulted in small-update feasible algorithms, and for all of them the best
known iteration bounds were obtained.

In this paper we extend the weighted path following algorithms to linearly
constrained convex optimization (LC'CO).

The paper is organized as follows: in Section 2 the statement of the problem
is presented. In Section 3, we deal with the new search directions and the
description of the algorithm. In Section 4 we state its complexity analysis.
Finally, we present some conclusions in Section 5.

The notations used in this paper are the following: R" is the set of n
dimentional vectors and R"™*" is the set of m x n matrices. Moreover, R, is
the set of strictly positive real numbers.

2 Statement of the problem

Let us consider the following problem

(P) Az =b
z =0

and its dual

maz by + f(x) — (Vf(z))'>
(D) Aly+2z—-Vf(z)=0
z > 0,ye ™
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Where A € R™*" rank(A) =m,be R ,ce R"and f: " - Risa
convex and twice continuously differentiable function.
we impose the following assumptions:
(H1): Ky = {x € "/ Ax = b, x > 0} the set of strictly feasible points
of (P) is non-empty,
(H2): Ty = {ye R,z e R"/A'y + 2 —Vf(x) =0, z > 0} the set of
strictly feasible points of (D) is non-empty.
In order to introduce an interior point method to solve (P), we associate
the following barrier minimization problem

min f(x) = pYoridn x5 = fu(x)
(P =1

“) Ax =0
z >0

where y1 > 0 be the barrier parameter and r = (r1,7s,...,7,) € R}, is a
weighted vector introduced to ensure that the initial point (2%, 2%, u°) verified
§(x%2°% %) = 0 < 1 (proximity measure which will be defined bellow), if r; =
1,V2 then the weighted central path coincides with the classical one. Hence,
this approach can be seen as a generalization of central path methods.

The resolution of (P,) is equivalent at that of (P) with that if 2*(x) is an
optimal solution of (P,) then z* = iz_% x*(p) is an optimal solution of (P).

The problem (P,) is a convex optimization problem and then its first order
optimality conditions are:

Aly4+ 22—V f(x)=0, >0, 2>0
(1) Az =1
rz = pr

where xs denotes the coordinatewise product of the vectors  and s, hence
18 = (1121 TaZa, oo, TnZp) .
Under the assumptions H1, H2 and A has full rank the system (1) has a

unique solution. [10]

3 New search directions

The basic idea behind this approach is to replace the nonlinear equation:

xz = pr in (1) by an equivalent equation: ¥ (xz) = 1(ur )

where 9 is a real valued function on [0, +00) and differentiable on (0, +00)
such that ¢(t) and ¥/(t) > 0, for all ¢ > 0. Then the system (1) can be written
as the following equivalent form:
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Aly+2—-Vf(x)=0, >0, 2>0
(2) Az =b
U(zz) = (pr)

Applying Newton’s method for the system (2) we get

A'Ay + Az — V2f(x)Az =0
(3) AAz =0
2l (xz)Ax + xpl(xz) Az = Y(ur) — P(zz)

Now, the following notations are useful for studying the complexity of the
proposed algorithm.

Let (x, z) be a pair of primal-dual interior feasible solutions, we introduce
the scaled vectors v and d as follows:

v:\/ﬁ,d:\/g

Using d we can rescale both x and z to the same vector:

dlz =dz=v
we also use d to rescale Az and Az :p, = d 'Az, p, = dAz and p, = Ay
Now we may write

rAz + zAx = zd'dAz + zdd ' Az = v( p, + p.)
Hence, Newton’s direction is determined by the following linear system:

_ﬁpm ‘tAtpy +p.=0
(4) Ap, =0
Pz + Pz = Do

where D = diag(d), H = DV?f(z)D is symmetric and positive semidefinite
matrix, A = AD and p, = %f?(fz),
As in [3], we shall consider the following function:

U(t) =Vt

with ¢/(t) = 55 > 0 for all £ > 0.
We have from (4):

_Hpac ‘t/_ltpy +pz =0
(5) Ap, =0
Pe + D2 =2(y/pr — v)
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We define for all vector v the following proximity measure by:

_ — el v
O(wz, 1) = 6(v, p) = 2min(y/pr)  min(y/pr)
were ||| is the Euclidean norm (I3 norm) and min(z) = min {zy, xs, ..., x,}.

max(r)
min(r)

We introduce another measure o.(r) =

Now, we get the short-step primal-dual algorithm to solve (LCCO) :

Algorithm for linearly constrained convex optimization

e Input: (20,4, ) where (¥ is a strictly feasible solution of (P),

(y©, 2) is a strictly feasible solution of (D), 1”2 > 0 an initial barrier
parameter, 0 < 6 < 1 and ¢ is the accuracy parameter.

2(0) (0
g

e compute: r =

e begin:

—r =20 2 =20y = Jrzd=\/T, j = O

— while 7'z > ¢ do

— Solve the Newton system of equations in (5)

— compute Az = dp,, Az =d 'p, and Ay = p,
—compute r =x+ Az, y=y+ Ay, z=z+Azand u=(1—-0)u .

e end.

Remark 1 By construction, to guarantee that the next Newton iterate
T=x+4+a,Ar >0 and Z = z+ a,Az > 0 for any o € IR, it suffices to
set

o - { min (—x;/Ax;) si Az; < 0
T 1 si Ax; >0
o — { min (—z;/Az;) st Az; < 0
2 1 st Az; >0
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4  Complexity analysis

Let

Qv = Pz — P2

we have

Pz = %(Zl)v _IQ' QU)72 b = %(pv - QU)

pep: = 3(Py — ¢;) and ||q|| < [|poll

This last result follows directly from the equality

2 2 v

Ipoll® = llaull* + 4pTp. We have 6(v, ) > el

since B

pep= = pyHpy >0 )

because The function f is convex, thus the matrices V?f(x) and H are
symmetric and positive semidefinite.

In the following Lemma, we state a condition which ensures the feasibility
of the full Newton step. Let £ =z + Ax and Z = z + Az, be the new iterate

after a full Newton step.

Lemma 1 : Let 6 = §(v,u) < 1.Then the full Newton step is strictly
feasible, hence: & >0 and Z > 0.see [3]

In the next lemma we show that ¢ < 1 is sufficient for the quadratic con-
vergence of the Newton process.

Lemma 2 : Let & = x4+ Ax and Z = z+ Az be the iteration obtained after
a full Newton step with v = \/xz and v = V12

Suppose 6 = d(v, ) < 1.Then §(v,pn) < Hj%
thus §(0, u) < §%(v, u), which means quadratic convergence of the Newton

step.
Proof:
We have:
(0)? = 22
= (z+ Az)(z + Az)
=02 +up, + & @
pQU p"’4 q24
=pr =R
= T ﬁ
H 4
we obtain

2
v

L > min(pr) — W > min(ur)(1 — §2)

min(0)? > min(pr) — 5= >

and this relation yields:
min(v) > min(,/ur)(v1 — 62)

Furthermore



A weighted target- following algorithm for (LCCP) 31

pur—=o

VHT+D
=]

— min/pr(min(y/pr+0))

[l |

— (min \/a7)2(1+v1-62)
Kl

(min \/p7)2(1+v1-62)

52

1+v1-42

In the next lemma we state an upper bound for the duality gap obtained
after a full Newton step.

5(@”) = minl T

IN

<

Lemma 3 : Let & = x + Az and zZ = z + Az. Then the duality gap is:

@7 - VAP - B,

hence )
AN\NT 2 ;L‘OZO
)z < .
Proof:
From
2
(0)? = pr — &
h a
we have 22 =pr— % .
. NTs _ T(asy — .. T g2
we obtain  (2)'2 =e" (22) = pe'r — =

this relation yields

2
~ ~ 2 0,0
@72 < plVrlP = |y /=5
The next lemma discusses the influence on the proximity measure of the

Newton process followed by a step along from the central path. We assume
the parameter p will be reduced by a constant factor (1 — 6).

Lemma 4 : Let 6 = 0(zz,u) < 1 and p™ = (1 — 0)p, where 0 < 6 < 1.

Then
_16\/0c +_(5UIU

Fth ifo<i 6= dn>4th t & <1
urthermore, i Sm and n en we get 0(0, 1) < 3
oo el _ | ||
oy IWar-s||  ||Var- e yar—
5(1}7”) T min \/E - min+/Aar
< iy Jlver—o]
min A/ putr miny/,u*r
_ 1-y1 llprll 1 N
o 179 (min(\/ﬁ)) + V1-0 5(2),,[1,)
< 8 nou(r) + A= 0(0, )
Now let § = —~2— observe that o.(r) > 1 and for n > 4 we obtain

54/noc(r)

0 < 1% if (v, p) < % then from lemma 2 we deduce §(v, p) < i. finally, the
above relation yields: §(v, 1) < 5
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In the next lemma we calculate an upper bound for the total number of
iterations performed by the algorithm.

($O)TZO

Lemma 5 :Assume that 2° and 2° are strictly feasible, u° -

0,r= mzz Moreover, let x* and 2% be the vectors obtained after k iterations.

Then the inequality (z*)T 2% < e is satisfied for k > [5 log —0): 0}

Proof:
after k ierations, we get u* = (1 — 0)*u°. using lemma 3 we find that

2
(Y725 < i I = (1= 0)4 |y = H\/u zlh
)k HWH — (1 _ k(xO)TzO
hence (z%)T2% < e hold if (1 — 0)*(2°)T2° < ¢
taking logarithms, we obtain
klog(1l —6) + log(z°)T2° < loge
Using the inequality —log(1 — 0) > 6 we deduce that the above relation
holds if

kO > log &= :>k>1log
For the default 0= ;

O)TZO

( We obtain the following Corollary.

(xO)Tzo

Corollary 1 : Suppose that 2° € K, 2° € Ty, and let u -
If 0= W then the algorithm requires at most [ Voe(r)nlog (2 TZO}

iterations. For the resulting vectors we have (x¥)T2F < ¢,

5 Conclusion:

We have introduced a new weighted algorithm for solving linearly constrained
convex optimization. The method of finding, an initial point close to the cen-
tral path is based on the introduction of the weighted vector and a new search
direction is based on an equivalent algebraic transformation of the centering
equation from the system, which defines the central path. Polynomial com-
plexity is proved, and the best known iteration bound is obtained.

6 Open problem

This method deserve some supplementary efforts to calculate, the initial point
close to the central path and the search directions. This, until now, is the
object of researchers aiming to reduce the iteration cost.
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