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Abstract

In this paper, we want to establish the existence, unique-
ness and regularity of the solution is obtained with Dirich-
let boundary conditions, for this aim we use Galerkin method
which allow us to used the fixed point theorem of Brouwer
for establish the existence of the solution, the variational in-
equalities are used to establish the uniqueness of solution, and
establish the regularity of the solution. we introduce a fi-
nite difference scheme approximating Poisson equation in one,
two, three-dimensional domain with Dirichlet boundary con-
ditions, Gaussian elimination is undoubtedly the most widely
used method for solving linear equations, Matlab is proposed
for obtaining solutions for this problem
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1 Introduction

The fundamental partial differential equations that govern the equilibrium
mechanics of multi-dimensional media are the Laplace equation and its inho-
mogeneous counterparts,the Poisson equation. In this paper, we concentrate
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on the Poisson equations in a n-dimensional domain. Their status as equi-
librium equations implies that the solutions are determined by their values
on the boundary of the domain. In particular, the introduction of Dirich-
let conditions can improve the qualitative and quantitative characteristics of
the problem which lead to good results concerning existence,uniqueness and
regularity of the solution. In recent years much attention has been paid to
this problem in many directions. The existence result will be a consequence of
Brouwer fixed point theorem in[5], The uniqueness result will be a consequence
of variational inequalities of [5] and Regularity Result of the solution will be
a consequence of [5] and [12] and [6] and [7] and [10]. Many authors have
studied the Laplace and Poisson equations For example in [4] and [3] and [1].
Many physical phenomena can be modeled by Poisson equation with Dirichlet
conditions, In varies applications arise For example in fluid flow, flow in porous
media, and electrostatics. Motivated by the above applications we study here
the Poisson equation

—Au(z) = f(z),x € Q, (1)

under the Dirichlet boundary conditions
u |oa= 0, (2)

The Poisson equations arise as the basic equilibrium equations in a remarkable
variety of physical systems. For example, we may u as the displacement of a
membrane, the inhomogeneity f in the Poisson equation represent an external
forcing. Suppose ©Q = (]0,1[)" is an open, bounded and connected set in R”
the boundary of Q will be denoted 02, we denoted by D(2) the space of real
C® function on §2 with a compact support in 2. we seek a solution u € V =
the closure of D(Q) in H'(2), such that H'(2) is the Sobolev space

ou

HY(Q) = {ue L*Q), B

€ L*(Q),i=1,2,...,n}
then V = H}(Q) and f € V = H"1(Q), V the dual space of V = H}(Q), we
use || - ||« to indicated the norm in V = H~(Q) defined by

(£, )|

14| = sup
HUHHS(Q)

such that v € V, v # 0, { € V. In the application to Poisson equation, the
space H = L?(Q) is provided such that, V' C H, L*(Q) is a Hilbert space for
the scalar product and the corresponding norm

SIS

Julloor = ({0} = ([ o) o

Q
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we multiplying (1) by v € V = HJ(2) and integrate in Q by using integration
by parts and the Dirichlet boundary conditions, we obtain V' be a Hilbert
space for the scalar product and the corresponding norm

el gy = (s, w))? = ( / (V)2 da)

Q

we can associate a bilinear continuous form a on V' = HJ(2) by setting
a(u,v) = (—Au,v),Yu,v € V

where (., ) is the scalar product between V = HL(Q) and V = H~1(Q), Let the
application r — ¢(r) defined from R™ into R* is continuous,monotonous,and
strictly increase such that ¢(0) = 0, ¢(r) — oo as r — oo, the operator
A = —A defined from V = H}(Q) into V = H Q) is called < the dual
operator>> is related by ¢ if satisfies the following conditions:

HI. (—Au, ) = || — Aulllul g, Yo € H(S)

H2. | = Aull, = ¢(1Jull ). Yu € HY(Q)

and it satisfies the following properties:

B3. A = —A is monotonous, that is (—Au—(—Av),u—v) > 0,Vu,v € H}(Q);

B4. A = —A is hemicontinuous, that is, for each u, v, w € H}(Q) the function
A — (=A(u+ A\v),w) is continuous from R into R.

Since the scalar product a is a bilinear coercive form on V = H} () then —A
is an isomorphism from V = H}(Q) into V = H-(Q).

The basic idea of almost any numerical method for solving Poisson equation
is to approximate the Poisson equation by a system of algebraic equations.
In mathematics, Science and engineering linear systems has very important
place. Many applications involve solving linear systems. Therefore, there have
been great efforts to solve or approximate solutions to such systems. Several
enhancements can be done in Algorithms that solve such linear systems. The
objective of this paper is to provide a numerical method to solve a linear sys-
tem of equations with Matlab.

the Poisson equation is solved numerically by the finite difference approxima-
tion in one, two, three-dimensional domain with Dirichlet boundary conditions.
The numerical examples of the present study show that numerical solution of
linear systems is obtained in generally, by Matlab.



174 H.Bennour and M.S.Said

2 Existence and uniqueness of solutions

Existence theorem is proved by using the Brouwer fixed point theorem, in this
case we have the next Lemma plays a central role in the proof of the existence
theorem.

Lemma 2.1 Suppose that & — P(&) is a continuous from R™ into R™, sat-
1sfy the following conditions for any p real-positive, there exist :

(P(£),&) > 0,Y¢,  such that ||&|| =p
where if € = {&},n = {m} € R™:

(6 =S &m ]l = (6,6}

then there is &, ||€]| < p, such that P(§) = 0.

Proof 2.2 Let us argue by contradiction we assume that P( ) # 0 in the ball

={&| €|l < p} we consider that function § — —p(§ e s continuous
from K into K by using the Brouwer fixed point theorem, the're exist a & such
that

_ Y
=20 @

then we have ||&|| = p and multiplying & by §,we obtain

@@zmwzfz—pp<m&@

Then
(p(§),€) = —pllp()l <0

then we obtain a contradiction with the fact that (p(§),&) > 0 for all &, then
we obtain p(§) = 0.

by using the preceding Lemma, we obtain the following existence theorem.

Theorem 2.3 Let f € H'(Q), be given then the problem (1)-(2) admit solu-
tion.

Proof 2.4 The solutions of Poisson equation with Dirichlet boundary condi-
tions can be obtained as limits of approximate solutions calculated by Galerkin
method.
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Approximate Solutions: Let wy, ..., Wy, ... is a basis in H} () for exam-
ple that wy, ..., Wy, ... functions of the space D(Q)) we seek an approrimate
solution Uy, € [wi,...,wy] where [wy,...,wy] is the subspace of all linear
Combinations of elements wy, ..., w,, such that

(=AU, w;) = (f,w;),i=1,...,m. (3)
we can prove that (3) admit solution. by using the preceding Lemma, Since
E={&},i=1,2,...,m we can associate

Up, = B2 &wi, and - 0 = (—Aty, wi) — (f, w;
putting
P ={n}, i=12,---,m,
Then
(P(§),8) = XL &mi = (= A, tm) — (f, tm)
By using integration by parts and the dirichlet boundary conditions, we obtain

(P(€),8) = IVumll o) — {f, tm) (4)

By using the Cauchy-Schwartz inequality and Poincar inequality,

(s umd ] < AFIIVUmll ) < IV umll2 @)
Then
(P(€),6) = Vumllz2) — il Viumll 2
then (P(£),&) > 0, if ||Vumllr2) = 1, condition satisfying if ||&]| = p, p
sufficiently large. Another, if u,, is a solution, then we have P(§) = 0 then
from (4), we obtain

IVumlZa) = (f, um) < e Vil 2
and
|Vum |2 < e1 whereas ¢ >0 (5)

Pass to the limit: we deduce from (5) that u,, still in a bounded set of
Hg (), then we have there is a subsequence u,, of u,, such that u,, tending to
u weakly in Hg(Q), and the injection of H}(Y) in L*(Q) is compact, then u,
tending to u strongly in L*(Q), we obtain

Let i is fixed, pu > i, we have:

passing to the limit in (6), we obtain
(=Au,wi) = (f, wi) (7)
and
(—Au — f,w;) =0, for all u € Hy(Q) (8)

Then u satisfying (1), and the existence theorem is provide.
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Naturally: the equation (3) admit a unique solution if
(—=Au — (=Av),u —v) > 0,Yu,v € Hy(Q),u # v
There is in the sense the main result, Uniqueness theorem

Theorem 2.5 Let V = H}(Q) is a banach space reflexive separable, let A =
—A is a operator from H}(Y) into H1(Q) satisfies the following conditions:

D1. A= —A is bounded and satisfies B3 and B4

D2. Let =2%0 4 400 as vl g1 () — +o0
H’UHH&(Q) 0

D3. the norm ||v|| gy (q) s strictly convex on the unit sphere in V = H} ()
D4. —Au = —Av this implies that |[ul| g1 ) = vl g1 @), Yu,v € Hg(Q)
then the equation (1) admit a unique solution.

Proof 2.6 Let wy, -+ , Wy, -+ is a basis in V = HY(Q) since, V = HL(Q) is
a separable space then that basis ezisting we seek a solution u € [wy, -+ , Wy
satisfies, u = X" &w; and

(—Au,w;) = (f,w;), i =1,2,--- 'm 9)

The existence of solutions u can be obtained by using the preceding Lemma,
multiplying (9) by & add these relations for i =1,2,--- ,m which gives

(=Au,u) = (f,u) (10)

by using the Cauchy-Schwartz inequality, we obtain

(=Au,u) = (f,u) < fllllullme

Then
[ull gy < @ (11)

and the function uw — (—Au,u) is continuous from [wy, - wy] into R.
First we can prove the next main result plays a central role in the study of the
variational inequalities,

1. w is solution to the equation (1) if and only if
(=Av — f,v—u) > 0,Yu,v € Hy(Q)
we assume u is a solution of (1), then since

(—Av— fv—u) = (—Au— f,v—u) + (—Av — (—Au),v — u)
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we obtain

(—Av — fiv—u) = (—Av — (—Au),v —u) >0

conversely, if we have

(—Av—fo—u) >0

then by taking v = u+ Aw, A > 0, w € V. = H}(Q) we have from Lebesque
theorem:

(—A(u+ w) — f,w) >0 (12)

taking A — 0 in (12), we obtain
(—Au — f,w) >0, for all u,w € H}(Q) (13)

since that passing to the limit A\ — 0 is satisfied in the estimate (12) if the
monotonicity and hemicontinuous conditions are satisfied with the element of
minimal of estimate (13) then we obtain, (1)

2. Consider a set E = {u € V | —Au = f} is a closed convez, then for all
v €V define the set

Sy, ={ueV|{(-Av— fv—u) >0}

from H2 :
E=()5,
veV

and since S, 1s a closed half space of V', we have the following result

8. by the condition D4 the set B C {u | ||ullgyq) = p}, p convenient; from 2.
the set E is a closed and convex and, since that the norm v — ||v|| is strictly
convex, then to formulate that main result the set E is coincide to a point.

then the equation (1) admit a unique solution. we can prove that D1, we note
that if V.= H}(Q) and if v € L*(Q) then

| = Aulls < [|vl 220

where we identify L*(Q) C HY(Q) as indicated. then that A = —A is a
bounded operator. we can also prove that D2 by using integration by parts
and the Dirichlet boundary conditions, we obtain (—Av,v) = ||v||§{5(9),then to
divide with ||v|| g1 () 15 equal to ||[v|| gy tending to +oo as [[v][gyq) tending
to +00. To prove D3, we define the norm on the unit sphere K in' V- = Hj ()
such that

K={veV||vlgeq <1}

the set K C V 1s nomempty and convex and the norm on K satisfying

[0u + (1 = 0)v|l g3y < Oullmz) + (1 =)ol q)



178 H.Bennour and M.S.Said

for all u,v € K, for all 0 € [0,1] then .|| g1y is strictly convexr on K C V.
To prove D4. we assume that —Au = —Av this implies that A(u — v) = 0,
multiplying —A(u — v) by u — v, we obtain

(=A(u—v),u—v) =0,u,v € HY(Q),u#v

by using integration by parts and the Dirichlet boundary conditions, we obtain

/QN(U —v))2dz =0

using the poincar inequality,

/Q(u —0)Ydz < /Q(V(u — ) dz

we obtain that uw —v =0 then u = v this gives us |[ullg1 ) = |v[lg1). Then
the equation (1) admit a unique solution.

3 Regularity Result
we represent the sobolev space of order m,
H™(Q) ={v e L*Q)| D € L*(Q), |a] < m}

and this is a hilbert space for the scalar product and the corresponding norm

NI

lallzmey = {((t )} = (Bazm / (Du)? di)?,

we indicate one regularity result for the solution u. The weak form of the
problem (1)-(2) is : For f given in H = L*(Q), find u € V = H}(2) such that

a(u,v) = (=Au,v),Yv € Hy ()

we conclude that the domain of A = —A in L?(Q) is D(A) = D(-A) =
H?(Q) N HY(Q) we observe that

(f,v) = (f,v),Vf € L*(Q),Vv € Hy(Q).

Theorem 3.1 Let f € L*(Q), then there exists a unique solution u of (1)-(2)
such that uw € H*(Q) () HL ().

Proof 3.2 The solution of boundary value problem for Poisson equation can
be obtained as limits of approximate solutions calculated by Galerkin method



Numerical Solution of Poisson equation with Dirichlet Boundary Conditions 179

Existence theorem we define an approximate solution u,, such that

(U, w;) = (=AU, w;), 1 =1,2,--- 'm
where w;, i = 1,2,--+ ,m is a basis of the space H*(Q) (| Hy(Q) because H*(Q) (N HL ()
s a separable space, we can find an a priori estimate for u,, is to prove that

existence theorem and we can prove u € H*(Q) (| Hy(Q2) by using the equation
(1). we will treat this by steps:

Stepl. we seek an approximate solution u,, to the problem (1)-(2) as follows:

U = D10, QW (14)
where a;, 1 = 1,2, ,m are determined by the conditions:
a(umawi) = (_Aumawz)azz 1727"' , T (15)

where
ou Ov

a(u,v) = 3", /Q 9. 9. dx

then we have the equations (14)-(15) are equivalent to value problem for a linear
finite m-dimensional ordinary differential equation for the «;,these equations
guarantees the existence of solution of (14)-(15), Then a priori estimate is 0b-
tained as follows: multiplying (15) by «;, add these relations fori=1,2,--- 'm
which gives

(U, Upn) = (— AUy, Upy)
by using Cauchy Schwartz inequality, we obtain
wmll 2N a2 ) < @ (16)
it is easy to see that D(A) = H*(Q)( H} () is Hilbert space for norm, and

that A = —A is an isomorphism of D(A) into L*(Q).
Letting m — 400,

show thatu,, still in a bounded set of H*(£2) m H(Q) (17)

Pass to the limit From Dunford-Pettis theorem see [6], show that the space
H2*(Q)N Hg () be a given with dual H=2(Q)+H(Q). by a consequence there
is a subsequence u,, of u,, such that

u,, — u, weak star in H*(Q) ﬂ Hi(Q) (18)
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on the other hand, in particular from (17) show that u,, is a bounded in H} ()
Then in particular show that u,, still in a bounded set of H(Q), but from
Rellich-Kondrachoff theorem, see [6] we have

the injection of H' () in L*(2) is compact
Then we assume that subsequence u,, of u,, satisfying, (18)
u,, — u strongly in L*(Q) and almost everywhere

Pass to the limit in (15) to used for m = p, Let i is a fixzed and p > i, then
from (15):
aluy, wi) = (f, w;) (19)

but from (18)
au,, w;) — a(u, w;) weak star in Hy(Q)

then from (19) we conclude
a(u, w;) = (f, w;) (20)

this for i is a fixed arbitrary, multiplying (20) by «;, add these relations for
i =1,2,--- ,m and since that wy,--- ,w,, is a basis in H*(Q) () Hy(Q) we
deduce that

a(u,v) = (—Au,v), for allu,v € H*(Q) mHé(Q)
Then u satisfying (1) and, we have the ezistence theorem. In order to prove
that uw € H*(Q) for verifying u € H*(Q) () Hg ()
Step2. we can prove that uw € H*(Q2) we conclude from (1) that
Au=—f (21)
but f € L?(Q) we deduce from (21) that Au € L?(Q), putting
Au=nh

since A : HY(Q) — H1(Q) is an isomorphism with continuous inverse G =
AL, then we have :
u=Gh almost everywhere (22)

but from the regularity theory of solutions of linear elliptic boundary value
problems, see [7] and [6], we obtain

G € Z(L*(Q), H*(Q)) (23)

where L(L*(QY), H*(Y)) the space of linear continuous operator G from L?*(Q)
into H*(SY), then from (22) and (23), we obtain that u € H*(S).
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Uniqueness Theorem

Theorem 3.8 Assume that u,v € H*(Q)(HL(Q) are two solutions of the
problem (1)-(2), then u = v.

Proof 3.4 Let w=u—wv. Then
Aw = 0,w € H*Q)(| Hy ()

w 1s harmonic. furthermore, since u = v = 0, on 02, it follows that w = 0, on
%), then we derive from corollary 6.3 in A Mazimum Principles for Harmonic
Functions, see[11], that w = 0 in . Then we obtain Uniqueness theorem.

4 The Discretisation of the Problem

In this section, discrete the problem (1)-(2) we consider that a finite difference
approximation in a one,two, three-dimensional domain of Poisson equation
with Dirichlet boundary conditions. we let v; denote an approximation of u(z;)
and v; ; denote an approximation of u(z;, y;) and v; ; » denote an approximation
of u(z;,y;, 2x) we have the following approximations

_— u(z + h) — 2u(x) + u(z — h)

u(z + h,y) — 2u(z,y) + u(z — h,y)
h2

+ O(h?)

+ O(h?)

Uge =

U((L’,y, Z h’) — 2U(I,y, Z) + U(ZE,y,,Z - h)

Uzr = 72 + O(hQ)
These approximations motivate the following schemes:
In one-dimensional domain
i1 — 20; + U .
th:UH ity 1:f(xi) for i=1,2,---,n

h2

and vy) = v, =0

(24)

In two-dimensional domain
Vig1,j — 2055 + Vicj Vi — 2055 + i
h? h?
= f(z,y;), for 4,5=1,---.n
and Vo,j = Un+1,j = 0, vig=Vipy1 =0 (25)

LhU:—
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In three-dimensional domain

Low—  Vitlik = 205k + Vic1jk Vig+ik — 2Vijk + Vij-1k
U= — _

h? h?

Vijk+1 — 2V 5k + Vijr—1
- 72 = f(xiayja %)

for 4,5,k=1,---,n and vyt = Vpt1,k =0

Viok = Ving1,k = 0

Vij0 = Vijnt1 =0 (26)

Definition 4.1 Let C(Q2) denote the set of continuous on the open 2 For an
integer m > 0, C™(Q) denotes the set of m-times continuously differentiable
functions on ) Similarly, we define

CH(Q) = {u e CHQ) [ C(Q) | u |oo= 0}

5 Numerical examples

Our goal in this section is to show that the discrete solution v will indeed
converge to the continuous solution u when the spacing h approaches Zero.
we present numerical examples for the Poisson equation for a positive integer
n = Nfixed € N where our abstract results apply.

In one-dimensional domain we consider the discretisation

1

iy L1 ) i:.hvh:—a
[ Tia], @i =1 Nl

i=0,1,--- ,N+1 of the interval [0,1]

we define the approximation {v;}~4' by requiring (24), the system (24) can

be rewritten as a system of equations in the form
Av =10 (27)

where A is a N x N matrix v and b are both N-dimensional vectors, we define
the following linear operator

A:RY — RY defined by A(vy, - ,ony) = (201 — va, -+ , —Un41 + 20p)

In fact that linear operator A is a bijection then the system (27) has a unique
solution that can be computed by solving (27) by using the method of com-
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pensation, then the solution v of the discrete problem is

oON 1 SN—1 . 2 1 N
O s RAG e Ry vy s A vy D o van N RAS oy 2
_ D 1 2p 2 N—-p+1 N
ovrnt = o ) Y v ) T e )
1 1 2 2 N N
ow = et/ Tt )

The domain  is given by Q =]0,1[, we let D, be a collection of discrete
functions defined at the grid points z; for ¢ = 0,1,--- ,n 4+ 1 Next, we let Dy,
be the subset of Dj containing discrete functions that are defined in each grid
point, but with the special property that are Zero at the boundary.we consider
a finite difference approximation of Poisson equation on 2 with homogeneous
Dirichlet boundary conditions:

0*u .
—@ = f7 1mn Q (28)
u = 0, on 0N (29)

we can formulate the discrete problem (24) as follows:Find a discrete function
v € Dy such that

Lpv(z;) = f(zy), forall ¢=1,---.n (30)
and for two discrete functions w,v in Dy, we define the scalar product to be
(u,v)p, = hX2 ju;

we shall give a bound for the error between the solution w of the continuous
Poisson problem (28)-(29) and the solution v of the discrete Poisson problem
(30). For different values of h we compute the error

en = max [u(z;) — vili_g ... i

Furthermore, these values are used to estimate the rate of convergence.then
to show that the discrete solution v will indeed converge to the continuous
solution v when the spacing h approaches zero,then we want to introduce the
concepts of truncation error and consistency. for any discrete function v € D),
we define this norm by

[v][n,00 = max |U(xi)|z':0,1,---,n+1
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Definition 5.1 Let f € C(]0,1]) and, let v € CZ(]0,1[) be the solution of
(28)-(29), then we define the discrete vector 1, called the truncation error de-
fined by
(i) = (Lpu) (i) — f(23), forall i=1,2,---n
we say that the finite difference scheme (30) is consistent with the differential
equation (28)-(29) if
Jim |73 [4,00 = 0

then that the truncation error is defined by applying the difference operator Ly,
to the exact solution u, thus a scheme is consistent if the exact solution almost

solves the discrete problem. we introduce a norm on the set C([0,1]) for any
function f € C([0,1]), let

[/ lloe = sup /()]

z€[0,1

Proposition 5.2 The solution v € Dy of (30) satisfies

1
Follice < gl Fllhoo
its proof can be found in [11].

Lemma 5.3 Suppose f € C*([0,1)), then the truncation error defined above
satisfies
1"l ; 2
o < W lepy
17llnee < =15
Proof 5.4 By using the fact that —% = f and —‘34771 = f", we derive
from the Taylor series expansion.Assume that u(x) is a four-times continuously
differentiable function. for any h > 0 we have

Ju(x) N h* 8%u n h3 u N ht d*u(x + hy)
ox 2 02 6 0x3 24 Ox* ’
where hy 1s some number between 0 and h. similarly,

ou  h*0*u  h*03u b oYw(r — hy)
ek =)yt S G T o

for 0 < hy < h. In particular, this implies that

u(x + h) —2u(z) +u(x —h)  0*u(x)
72 = a2 )

where the error term Ej, satisfies

u(x+h) =u(z)+h

M,h?
12

| En(2)] <
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Here the constant M, is given by

Otu(x)
ox?t

we observe that for a fived function wu, the error term Ej, tends to zero as h

tends to zero.Then we derive from the Taylor series expansion and the error
estimate above that

M, = sup
xz€(0,1]

u(xi—y — 2u(z;) + u(wiqq) Ou(z;) OMu, R
[T (s)| = 2 + flzi)| < 5 + f(xi) +||@Hoo§
e Pulz) Pu B
u(z; u - o
gz )| Flggllets = 75
ther 17 h?
()] < 1—;
i 1o h?
< IJ e ™

by using this bound on the truncation error, we can prove that the numerical
solution converges towards the exact solution as the grid size tends to zero

Theorem 5.5 Assume that f € C*([0,1]) is given, let u and v be the corre-
sponding solutions of (28)-(29) and (30), then

f" oo ;2
- o < ———h
|2 — v]|ho0 < 9%
and I
=96

Proof 5.6 Define the discrete error function e € Dy by e(z;) = u(z;) —v(z;)
fori=1,--- n. Observe that

Lhe = Lhu — th = Lhu — fh = Th,

where fy, denotes the discrete function with elements (f(xy1), -, f(x,)). Then
it follow from Proposition above that

1 1F"llch?
< (= < 4 TR
lellnoe < (oo < =0
we say the sequence {ey,} is of order {h?}, and we write
en = o(h?)

this theorem guarantees that the error measured in each grid point tends to
zero as the mesh parameter h tends to zero Moreover, the rate of convergence
15 2.
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In two-dimensional domain The system (25) can be rewritten as a system
of equations in the form

Av = b, (31)

where A is a N? x N? matrix v and b are both N2-dimensional vectors, our
goal is to solve the system Av = b, the key idea on which most direct method
are based is that if A is an upper-triangular matrix, then that system (31) has
a unique solution, indeed say A is an upper-triangular matrix, thus what we
need is a method for transforming a matrix to an equivalent in upper-triangular
form, this can be done by Elimination. we describe the method of Gaussian
Elimination applied to a linear system Av = b, and we give some numerical
examples.

Example 5.7 we consider the discretisation

1
(i, xi1], x; = ih,h = g,i =0,1,2 of the interval, [0,1]

1
[Yjs Yj+1],y5 = jh, h = §,j =0,1,2 of the interval, [0,1]

we define the approrimation {’Ui’j}ij:() by requiring (25), we obtain the solution
v of the discrete problem is

1 11
V11 = %f(? 5)

Example 5.8 we consider the discretisation

[T, Tiy1], s =ih,h = =1 =0,1,2,3 of the interval, [0,1]

o |

1
[, Yj+1l,y; = jh,h = Z,j =0,1,2,3 of the interval, [0,1]
we define the approzimation {v;}; ;o by requiring (25), the system (25) can
be rewritten as a system of equations in the form

Av = b, (32)

where A is a 4 X 4 matriz v and b are both 4-dimensional vectors. Gaus-
sian Elimination is a numerical method for solving linear system (32), there
are several operations that one perform on a system of equation (32) without
changing its solution, In the matriz language the operations we apply on aug-
mented matriz [A | b] then (32) which being an upper triangular system, and
can be rewritten as a system of equations in the form AX = b by taking X = v
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is readily solved by back substitution given in Algorithm below, in [8] proposed
the algorithm as follows

by
Ty = —
Q4 4
For 7 = 3,21
1
Tr; = —[bi—E?:iJ’_l(li,jfbj

then the solution v of the discrete problem is

i = G+ G 3 + 5l Gog) S 2)
o = ol ) + o f(53) s f(a )+ a2 2))
- (A N G R L
vy = sl DG )+ BG4 G + TG 3)]

The complezity of the linear systems varies with the size of matriz A and b we
can find A large enough matriz our method can be difficulty obtained, but can
be easily reproduced by the interested reader with the aid of the Matlab, in the
case n = N is an integer fived € N we can find A very large matriz then our
method does not hold, but can be easily reproduced by the interested reader with
the aid of the Matlab.

Example 5.9 we consider the discretisation

[, xiy1], x; = ih, h = ,i=0,1,2,--- /N +1 of the interval, [0,1]

N +1

1
N +1

the system (25) can be rewritten as a system of equations in the form

[, Yi+1), y; = jh,h = , J=0,1,2,--- /N+1 of the interval, [0,1]

Av = b, (33)

where A is N2 x N? matriz v and b are both N?-dimensional vectors by using
Matlab, Form augmented matriz M = [A | b] and place the augmented matriz
in upper- triangular form with the command triu(M) which being an upper-
triangular system is readily solved. the command > B = triu(A) builds a
matrix B with the matrix A, we can select to exact the upper-triangular part
of the A matriz, but assign to all the lower triangle elements the value zero.
and since (z;,y;)fived € R this implies f(x;,y;)fired e R, i,j =0,1,--- ,N+1
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then the command > ¢ = triu(b) builds a matriz ¢ with the matriz b, we can
select to extract the upper-triangular part of the b matrixz, but assign to all the
lower triangle elements the value zero: ¢ = triu(b) produces

— 1 1 1
C1 = (N+1)2f(N+17 N+1)7
Co =0

CN2:O

by taking X = v the system (33) can be written in the form Bx = c that can
be computed by back substitution given in Algorithm below, In [8] proposed the
algorithm as follows:

CN2
Iny2 =

bN2,N2

For i = N?—1,---,1
1 2

_ N
xr; = F[Ci_zj:i—i—lbﬁjx]‘]

1,0

then the solution v of the discrete problem is

1 f( 1 1 )
v =
b AN+12'N+1 N+17
V12 = 0,
UNN = 0

The domain § is given by Q = (]0,1[)*, we let Dy denote the set of all grid
functions defined on €2,

Dy ={v|v:Q, — R}
while Dy, is the subset
Dh70 = {U e Dy, | v ’th: 0}

we consider a finite difference approximation of Poisson equation on €2 with
homogeneous Dirichlet boundary conditions
Pu  u

—=fin Q (34)

Lu=—22—
“ ox?  OJy?

u=20, on (35)
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we recall that the finite difference approzimation of the problem (34)-(35) can
be formulated as follows: Find v € Dy, such that

th(xhyj) = f($zay]) fO?" all (xz7y]) € Qh,U € Dh,O (36)

and for two discrete functions u and v in Dy, o, we define the scalar product to
be

(u, U)h = hzﬁzjzlui7jvi,j
and for different values of h we compute the error

en = max |u(z,y) —v(z,y)|
(z,y)€Qn

Furthermore,these values are used to estimated the rate of convergence, we shall
giwe a bound for the error between the solution u of the continuous Poisson
problem (34)-(35) and the solution v of the discrete Poisson problem (36),
then to show the discrete solution v will indeed converge to the continuous
solution u when the spacing h approaches zero. then we want to introduce the
concepts of truncation error and consistency as in one-dimensional domain.
we will assume that the solution w of Poisson problem (34)-(35) is four-times
differentiable u € C*(Q). Let: o be the finite constant given by

Oitiy,

= max Haxiayj oo (37)
where, as usual

[ulloc = sup_[u(z,y)]

(z,y)EQ

and for any discrete function v € Dy, we define this norm by

[0][hoe = sup_|v(z,y)|
(x,y)GQh

as in one-dimensional domain we introduce the truncation error
(i, y5) = (Lpu — f)(xi,y;)  for all  (z4,y;) €
the following result is a generalization of Lemma 5.2.

Lemma 5.10 Assume that u € C*(QQ) the truncation error 7, satisfies

ah?

|h,oo S 6

| 7h

where « is given by (37).

by using its bound on the truncation error, we can prove that the numerical
solution converges towards the exact solution as the grid size tends to zero.
the following error estimate for the finite difference method (36) is a general-
ization of theorem 5.4.
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Theorem 5.11 Let u and v be corresponding solutions of (34)-(35) and (36)
respectively. if u € C*(Q), then
ah? ah?

oo<_7 th < —
TR T

|lu—wv

where « is given by (37).
we say that the sequence {Ey} is of order {h*}, and we write

en = o(h?)

this theorem guarantees that the error measured in each grid point tends to
zero as the mesh parameter h tends to zero. Moreover, the rate of convergence
18 2.

In three-Dimensional Domain The system (26) can be rewritten as a
system of equations in the form

Av =1, (38)

where A is a N? x N2 matrix v and b are both N3-dimensional vectors, then
Matlab is proposed for obtaining solutions for this system (38) and we give
some numerical examples.

Example 5.12 we consider the discretisation

[T, xip1],x; =ih,h = =, i =0,1,2 of the interval [0,1]

Y, Yi+1),y5 = jh,h ==, j=0,1,2  of the interval 0, 1]

= N = N

2k, 2k11], 2k = kh,h = =, k=0,1,2 of the interval [0, 1]

we define the approximation {Uz‘,j,k}?,j,kzo by requiring (26), we obtain the so-
lution v of the discrete problem (26) is
1,111
V1,11 = ﬂf(ﬁ’ 9 5)

Example 5.13 we consider the discretisation

[z, ki), ®i=1ih, h= =, 1=0,1,2,3 of the interval [0, 1]

[YjsYjs1), y; =7h, h= =, j=0,1,2,3 of the interval [0,1]

Wl W=



Numerical Solution of Poisson equation with Dirichlet Boundary Conditions 191

1
[2k, Zks1], 2k = kh, h = 3 k=0,1,2,3 of the interval [0,1]

we define the approzimation {’Uid"k}?’j’k:o by requiring (26), the system (26)
can be rewritten as a system of equations in the form

Av =1, (39)

where A is a 8 X 8 matrix v and b are both 8-dimensional vectors, by using
Matlab above-mentioned on (39) which being an upper triangular system is
readily solved, by taking X = v then the system (39) can be written in the
form

BX =, (40)

and write a procedure based on algorithm above that solve the system (40), then
the solution v of the discrete problem is

1 111
U111 = ﬁf(gjgg),
V112 = 0,
V222 = 0,

Example 5.14 we consider the discretisation

(i, xi1], x; =1h, h = i=0,1,2,--- ,N+1 of the interval [0,1]

N+1’
Wiyl ys = jhy h =~ G = 0,12, N+1 of the interval [0, 1]
Yis Yj+1l, Yj = I, _N—i—l’j_ 1,2, ) of the interva ,
1
[2ks Zky1], 21 = kh, h = NIl k=0,1,2,---  ,N+1 of the interval [0, 1]

we define the approximation {Ui,j,k}ﬁvﬁlzo by requiring (26), the system (26)
can be rewritten as a system of equations in the form

Av =1, (41)

where A is a N3 x N3 matriz v and b are both N3-dimensional vectors, by
using Matlab above-mentioned on (41) which being an upper triangular system
is readily solved, by taking X = v then the system (41) can be written in the
form

BX =, (42)
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and write a procedure based on a algorithm above that solve the system (42),
then the solution v of the discrete problem is

1 f( 1 1 1 )
v
Lhl 6(N+12'N+1'N+1' N+1"
V112 = 0,
vy = 0

the domain Q is given by Q = (]0,1[)*, we let Dy denote the set of all grid
functions defined on §2,

Dy ={v|:Q, — R},
while Dy is the subset
Dh70 = {U e D, ’ v ’agh: 0}

we consider a finite difference approximation of Poisson equation on 0 with
homogeneous Dirichlet boundary conditions

Pu 0*u  O*u ‘
Lu = o ap 02 =f,in Q (43)
u=0, on (44)

we recall that the finite difference approximation (43)-(44) can be formulated
as follows: Find v € Dy such that

(th)<xi7yj7 ’Zk) = f(xla y]7 Zk)7 fOT all (xivij zk) c Qha v E Dh,O (45)

and for two discrete functions u and v in Dy, we define the scalar product to
be
2y
(u,v)p, =h Ez‘,j,k:1ui,j,k“i,j7k

and for different values of h we compute the error

e, = max |u(z,y,z) —v(z,y,2)|

(2,5,2)€Qn
Furthermore,these values are used to estimated the rate of convergence, we shall
giwe a bound for the error between the solution u of the continuous Poisson
problem (43)-(44) and the solution v of the discrete Poisson problem (45),
then to show the discrete solution v will indeed converge to the continuous
solution u when the spacing h approaches zero,then we want to introduce the
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concepts of truncation error and consistency as in one-dimensional domain.
we will assume that the solution w of Poisson problem (43)-(44) is four-times
differentiable u € C*(Q).

Let « be the finite constant given by

i+j+k
0 U (46)

R | 0xt 0yl 0zF e

where, as usual

[ullo = sup__|u(z,y, 2)|
(x7y7z)eﬂh

and for any discrete function v € Dy, we define this norm by

[ollheo = sup_ |o(z,y,2)]
(ijyuz)eﬂh

as in one-dimensional domain, we introduce the truncation error

Th(l’i, Yy, Zk) - (Lhu - f)('ru Yij, Zk) fOT a’ll7 (Ih Yj, Zk) € Qh
the following result is a generalization of Lemma 5.2.
Lemma 5.15 Assume that u € C*(Q), the truncation error T, satisfies

ah?

|h,oo S A

|7n

where « is given by (46).

by using this bound on the truncation error, we can prove the numerical solu-
tion converges towards the exact solution as the grid size tends to zero.

the following error estimate for the finite difference method (45) is a general-
1zation of theorem 5.4.

Theorem 5.16 Let u and v be corresponding solutions of (43)-(44) and (45)
respectively, if u € C*(Q), then
ah? ah?

oo<_> th < =5
huoo = Tgom ME = gy

lu—v
where a is given by (46).
we say that the sequence {ey} is of order {h?*}, and we write
en = o(h?)

this theorem guarantees that the error measured in each grid point tends to
zero as the mesh parameter h tends to zero, Moreover the rate of convergence
15 2
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6 Conclusion and Open Problem

In this paper, we have studied a Poisson equation in n-dimensional domain
with Dirichlet boundary conditions we establish the existence, uniqueness and
regularity of the solution. we were interested in the numerical solution of
the Poisson equation by finite differences schemes in one, two, three- dimen-
sional domain.Numerical examples are presented to see the performance of
the method. In generally, Matlab is proposed for obtaining solutions for this
problem for a positive integer n = N fixzed € N the numerical results shows
that Matlab can be easily realized and is quite effective. For the future works,
we propose to study numerical solution based on finite element analysis for
the Poisson equation in n = N-dimensional domain with Dirichlet boundary
conditions.
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