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Abstract

We say that the operators A,B on Hilbert space satisfy
the Fuglede-Putnam theorem if AX = XB for some X implies
A∗X = XB∗. We show that if A is k−quasihyponormal and B∗

is an injective p−hyponormal operator, then A,B satisfy the
Fuglede-Putnam theorem. As a consequence of this result, we
obtain the range of the generalized derivation induced by the
above classes of operators is orthogonal to its kernel.
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1 Introduction

Our aim is to extend the Fuglede-Putnam theorem [6]. Let H,K be complex
Hilbert spaces and B(H), B(K) the algebras of all bounded linear operators
on H,K respectively. The familiar Fuglede-Putnam Theorem is as follows:

Theorem 1.1 if A ∈ B(H), B ∈ B(K) be normal operators and AX = XB
for some X ∈ B(H,K), then A∗X = XB∗

An operator T is called p-hyponormal [1, 4, 5, 8, 9, 11] if (T ∗T )p ≥ (TT ∗)p.
Throughout this paper, we consider the case p ∈ (0, 1]. This class is denoted
p −H. A 1-hyponormal operator is called a hyponormal operator, which has
been studied by many authors and it known that hyponormal operators have
many interesting properties similar to those of normal operators (see [13]).
By definition, the restriction of p-hyponormal operator to its invariant sub-
space is always p-hyponormal. Also T is called k−quasihyponormal operator
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if T ∗k(T ∗T −TT ∗)T k ≥ 0 for a certain positive integer k, This class is denoted
Q(k). If k = 1, T is said quasinormal. The class Q(k) contain strictly the class
of hyponormal operators.

The organization of the paper is follows, in section 2, we recall some results
will be used in the sequel. In section 3, we study the orthogonality of certain
operators.

Let A,B ∈ B(H), we define the generalized derivation δA,B induced by A
and B by

δA,B(X) = AX −XB, for all X ∈ B(H).

If A = B, we note δA,B = δA. Given subspaces M and N of a Banach space
V with norm ‖ . ‖, M is said to be orthogonal to N if ‖ m + n ‖≥‖ n ‖
for allm ∈M and n ∈ N (see [2]).

J.H.Anderson and Foias [3] proved that if A,B are normal operators, S is
an operator such that AS = SB, then

‖ δA,B(X)− S ‖≥‖ S ‖, for allX ∈ B(H).

Where ‖ . ‖ is the usual operator norm. Hence the range of δA,B is orthogonal
to the null space of δA,B. The orthogonality here is understood to be in the
sense of the definition [2].

2 Preliminaries

The proof of the previous theorems proceeds through a number of steps, stated
below as lemmas.

Definition 2.1 Given A,B ∈ B(H). We say that the pair (A,B) has (FP )B(H)

the Fuglede-Putnam property if AC = CB for some C ∈ B(H), implies
A∗C = CB∗.

Lemma 2.2 ([1]) If T ∈ p − H and T = U | T | the polar decomposition of
T , then | T |1/2 U | T |1/2 is hyponormal for 1/2 ≤ p ≤ 1.

Lemma 2.3 ([12]) If T ∈ p − H and M be an invariant subspace of T for
which T |M is normal, then M reduces T .

3 Main results

In this section, we prove that the Fuglede-Putnam’s theorem holds when A is
k−quasihyponormal and B∗ ∈ B(K) is an injective p−hyponormal operator
(p ∈ (0, 1]). Before proving this result, we need the following lemmas which
be used in the sequel.
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Lemma 3.1 Let A ∈ B(H) be k−quasihyponormal and M ⊂ H invariant
subspace under A. If A|M is an injective normal operator, then M reduces A.

proof. Decompose A as

A =

(
S T
0 U

)
on H =M⊕M⊥

and E =

(
1 0
0 0

)
be the orthogonal projection of H onto M. Since A|M

is an injective normal operator, we have kerS = kerS∗ = {0}. Hence M =
[ranS] ⊂ [ranA]. Then

0 ≤ E(A∗A− AA∗)E = A|M =

(
S∗S − SS∗ − TT ∗ 0

0 0

)
.

Then T = 0. �

Lemma 3.2 Let A ∈ B(H) be k−quasihyponormal and B∗ injective p− hy-
ponormal operator. If AC = CB for some quasiaffinity C ∈ B(H,K), i.e., C
is injective and has a dense range, then A,B are unitarily equivalent normal
operators.

Proof.(Case 1
2
≤ p ≤ 1)

Let B∗ = U∗ | B∗ | be the polar decomposition of B∗ and B̃∗ =| B∗ | 12 U∗ |
B∗ | 12 . Then B∗ is an injective hyponormal operator by lemma 2.2 and | B∗ | 12
is a quasiaffinity. Then AC = CB implies

AC | B∗ |
1
2 = CB | B∗ |

1
2 = C | B∗ |

1
2 D,

where D =| B∗ | 12 U | B∗ | 12 and D∗ = B̃∗ is hyponormal. Since C | B∗ | 12
is a quasiaffinity, A,D are unitarily equivalent normal operators by [4]. Then

D∗ =| B∗ | 12 is normal and B∗ = B̃∗ by [8]. Thus A,D = B are unitarily
equivalent normal operators.

(Case 0 < p ≤ 1
2
). Put p′ = p + 1

2
, where p′ ∈ (1

2
, 1]. By using Aluthge

transform, the proof follows from (Case 1
2
≤ p ≤ 1). �

Theorem 3.3 Let A ∈ B(H) be k−quasihyponormal and B∗ injective p−
hyponormal operator. If AC = CB for some C ∈ B(H,K), then A∗C = CB∗,
[ranC] reduces A, (kerC)⊥ reduces B, and A|[ranC], B|(kerC)⊥ are unitarily
equivalent normal operators.



4 A. Bachir

Proof. Decompose A,B,C as

A =

(
A1 A2

0 A3

)
on H = [ranC]⊕ kerC∗

B =

(
B1 0
B2 B3

)
on K = (kerC)⊥ ⊕ kerC

C =

(
C1 0
0 0

)
: (kerC)⊥ ⊕ kerC → [ranC]⊕ kerC∗.

Then AC = CB implies A1C1 = C1B1 where A1 is k− quasihyponormal,
B∗1 is an injective p−hyponormal operator and C1 is a quasiaffinity. Then
A1, B1 are unitarily equivalent normal operators by lemma 3.2 and A∗1C1 =
C1B

∗
1 . Since B∗1 = B∗|(kerC)⊥ is injective, A1 = A|[ranC] is an injective normal

operator. Hence [ranC] reduces A by lemma 2.2, and (kerC)⊥ reduces B∗ by
[12]. The rest follows from [9]. �

Remark 3.4 The assumption B∗ is injective in Theorem 3.3 cannot be relaxed
to insure the Fuglede-Putnam property. For, if we take dimH = 3 and

A = C =

 1 0 0
0 0 1
0 0 0

 and B∗ =

 1 0 0
0 0 0
0 0 0

 · Then

A∗2(A∗A− AA∗)A2 = C =

 1 0 0
0 0 0
0 0 0

 ≥ 0·

Hence A is 2-hyponormal and B∗ is not injective. On the otherhand, B∗ is
normal and

AC =

 1 0 0
0 0 0
0 0 0

 = CB

but

A∗C =

 1 0 0
0 0 0
0 0 1

 6= C =

 1 0 0
0 0 0
0 0 0

 = CB∗

Theorem 3.5 If A ∈ B(H) is k−quasihyponormal and B∗ is an injective p−
hyponormal operator in B(H), then ran δA,B is orthogonal to ker δA,B.

Proof. The pair (A,B) has the (FP )B(H) property by Theorem 3.3. Let
C ∈ B(H) be such AC = CB. According to the following decompositions of
H.
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H = K = ranC ⊕ (ranC)⊥, H = L = (kerC)⊥ ⊕ kerC.

We can write A, B, C and X

A =

[
A1 0
0 A2

]
, B =

[
B1 0
0 B2

]
, C =

[
C1 0
0 0

]
, X =

[
X1 X2

X3 X4

]
,

where A1 and B1 are normal operators and X is an operator on K to L. Since
AC = CA, we obtain A1C1 = C1A1. Hence

AX −XA− C =

[
A1X1 −X1B1 − C1 A2X2 −X2B2

A1X3 −X3B1 A2X4 −X4B2

]
·

Since C1 ∈ ker δA1,B1 , A1 and B1 are normal, it follows by [3]

‖AX −XB − C‖ ≥ ‖A1X1 −X1B1 − C1‖ ≥ ‖C1‖ = ‖C‖ ,∀X ∈ B(H)

This implies that ran δA,B is orthogonal to ker δA,B. �

4 Open Problem

The open problem here is to find classes of nonnormal of operators satisfying
the Fuglede-Putnam Property and consequently we obtain the range kernel
orthogonality results.
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