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Abstract

The purpose of this paper is to study common fized point theorems for six
(four single-valued and two set-valued) mappings in fuzzy metric spaces. with-
out assuming compatibility and continuity of any mapping on non complete
metric spaces. To prove the theorem, we use a non compatible condition, that
is, weak commutativity of type (Kh)in fuzzy metric spaces. We show that com-
pleteness of the whole space is not necessary for the existence and uniqueness
of common fized point. Also, we prove a common fixed point theorem for two
self mappings and two sequences set-valued mappings by the same weaker con-
ditions. Qur results generalize, extend and improve the corresponding results
given by many authors.

Keywords: Fuzzy metric, Common fixed point, single-valued and set-
valued mappings, weakly commuting of type (Kh) in fuzzy metric space.

1 Introduction

After introduction of fuzzy sets by Zadeh[11], many researchers have defined
fuzzy metric spaces in different ways such as Kramosil and Michalek[10]. The
concept of compatible mappings has been investigated initially by Jungck [2],
by which the notions of commuting and weakly commuting mappings are gen-
eralized. In the last years, the concepts of )-compatible and weakly compatible
mappings were introduced by Jungck and Rhoades [3]. In the last few decades,
the common fixed point theorems for compatible mappings have applied to
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show the existence and uniqueness of the solutions of differential equations,
integral equations and many other applied mathematics[4,6]. Note that com-
mon fixed point theorems for single and set-valued maps are interesting and
ply a major role in many areas. Abu-Donia, Abd-Rabou [7-8] studied com-
mon fixed point theorems for single and set-valued mappings in fuzzy metric
spaces.Abd-Rabou [9] studied common fixed point theorems for weakly com-
patible hybrid mappings. The purpose of this paper is to establish a common
fixed point for six mappings under weaker condition, that is, weakly commut-
ing of type (Kh) in fuzzy metric spaces. our results generalize, extend and
improve the corresponding results given by many authors.

2 Basic Preliminaries

In this section, we recall some notions and definitions in fuzzy metric.
Definition 2.1[1] A mapping * : [0, 1] x [0, 1] — [0, 1] is a continuous ¢ norm
if it satisfies the following conditions:

1) * is associative and commutative,

(1)

(2) * is continuous,

(3) a* 1 =a for every a € [0, 1]
(

4) axb < ¢xd whenever a < ¢ and b < d for each a,b,c,d € [0, 1].

Definition 2.2 [10] A triplet (X, M, ) is a fuzzy metric space if X is an
arbitrary set, * is a continuous ¢ norm and M is a fuzzy set on X x X x[0, 00) —
0, 1] satisfying, Vx,y € X the following conditions:

Note that M (y,z,t) can be thought of as the degree of nearness between x
and y with respect to t.

Definition 2.3 [12] A sequence {x,} in a fuzzy metric space (X, M, x) is
said to be convergent to a point x € X if lim,, oo M (x,, z,t) = 1,Vt > 0.

A sequence {z,} in a fuzzy metric space (X, M, ) is Cauchy sequence if
limy oo M (T p, T, t) = 1,V p > 0.
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A fuzzy metric space in which every Cauchy sequence is convergent is said to
be complete.

Definition 2.4 [3] The mappings [ : X — X and F : X — B(X)(The class
nonempty bounded subsets of X) are weakly compatible if they commute at
coincidence points. i.e. for each point v € X such that Iu € Fu, we have
FlIu = IFu. Not that the equation Fu = {Iu} implies that Fu is singleton.
Definition 2.5[7] The mappings I : X — X and F : X — B(X) are com-
patible if, for all ¢ > 0, lim, oo M (Flx,,[Fz,,t) = 1, whenever {z,} is a
sequence in X such that lim, oIz, =2 € A =lim,_ oo Fr,,A C X.
Definition 2.6 The mappings  : X — X and F': X — B(X) are R— weakly
commuting if, for all Rt > 0, M(Flz,[Fz,t) > M(Fz,Iz,t/R), such that
x € X,IFx € B(X).

Definition 2.7 The mappings [ : X — X and F' : X — B(X) are said
to be weakly commuting of type (Kh) at z if, for all R,t > 0,2z € X,
M(Ilz,Flz,t) > M(Fz,Iz,t/R).

Here I and F are weakly commuting of type (Kh) on X if the above inequality
hold for all z € X.

Remark 2.1 Every weakly compatible pair of hybrid maps is weakly commut-
ing of type (K h) but the converse is not necessarily true.

In the following example, we know that every metric induces a fuzzy met-
ric

Example 2.1 Let (X,0) be a metric space. Define a xb = ab,a € A,b € B
and for all A, B C X,t >0,

t
M(z,y,1) = 75045

We call M is a fuzzy metric on X induced by metric 9.

Example 2.2 Let X = [1,10]. Define I : X — X and F': X — B(X) by
. l,2], ifl<z<?
sz{& iéiii?o F(z)={ [2,2], if2<z<5
47 - 2,2, if5<a <10
d(A, B) = maz{d(a,b) :a € A,b € B}, A, B € B(X), where d(a,b) = |a — |
Let x, = 5+ %,n = 1,2,.... Then, lim Iz, = 2 and lim Fz, = {2}. Also
[Fz, € B(X) and M(FIz,,[Fx,,t) = M([2,2+ £],[2,24+ &],t) = 1, as
n — oo.
Hence, I and F' are §-compatible and hence weakly compatible. On the other
hand if we take x = 2, then [Tz = 2, Flx = [1,2] and clearly I and F are
weakly commuting of type (Kh) for x = 2.
Example 2.3 Let X = [1,00). Define I : X — X and F' : X — B(X) by
Ix =2z and Fz = [1,z] for all z € X, 0(A, B) = max{d(a,b) : a € A,b €
B}, A, B € B(z), where d(a,b) = |a —b|. Then Ilx = 4z, Flx = [1,2z] and

Y
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for R > 3 we can see that M (IIx, Flz,t) > M(lz,Fz,t/R) for all x € X.
Thus I and F' are weakly commuting of type (Kh) on X but there exists no
sequence x,, in X such that condition of - compatibility is satisfied.
Example 2.3 Let X = [1,00). Define I : X — X and F : X — B(X) by
Iz =2z and Fo = [l,x + 1] for all z € X. Then [lz = 4z, Flx = [1,2z + 1]
and for R > 3 we can see that 6(/ [z, Flz,C) < Ré(Iz, Fz,C) for all x € X.
Thus I and F are weakly commuting of type (Kh) on X. On the other hand
if we take x =1, thus I(1) =2 € F(1) = [1,2], IF (1) # FI(1). Then I and F
are not weakly compatible.

3 Main Results

Now we can introduce our main theorems, let C'B(X) be the class of all
nonempty bounded closed subset of X and §(A, B) = sup{d(a,b) : a € A,b €
B}.

Theorem 3.1 Let S, R, H and T be four self mappings of a fuzzy metric space
(X, M,*) and A,B : X — CB(X) set-valued mappings satisfying following
conditions:

(1) UA(X) C SR(X) and |JB(X) C TH(X) |

(2) {A,TH} and {B, SR} are weakly commuting of type (Kh) at coincidence
points in X,

(3) aM(THzx,SRy,t) +bM(THz, Ax,t) + cM(SRy, By, t)
+ max{M(Ax,SRy,t), M(By, THx,t)} < ¢M(Azx, By,1),

for all z,y € X, where a,b,c > 0 with 0 < g < a+ b+ ¢ < 1 and if the range
of one of the mappings A, B, SR and T'H is complete subspace of X. Then
A, B,S, R, H and T have a unique common fixed point.

Proof. Let zq be an arbitrary point in X. From the condition (1), we chose a
point 7 in X such that SRz, € Axq. For this point x; there exist a point x»
in X such that THz, € Bx; and so on. Inductively, we can define a sequence
{Z,} in X such that

SRxopt1 € Axop = Zop, THXop19 € Bropi1 = Zopi1,Vn=0,1,2, ...

We will prove that {Z,} is Cauchy sequence.

Now, we prove that M (Zsy 11, Zon,t) > M(Zopn, Zon_1,t). Using inequality (3),
we obtain

qM(ZQn, Z2n+17 t) = qM(A.IQn, BZL‘QTL_H, t)

> aM(THzxoy, SRxon11,t) + DM (T Hxoy, Axon,t) + cM(SRx2,41, Bropy1,t)
+ max{ M (Axsn, SRT2,11,t), M(Bxoyi1, THxopn, t)}
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> aM(Zon—1, Zonst) + bM(Zon—1, Zon, t) + cM(Zon, Zons1,t)

+ max{M(Z%m ZQru t)a M(ZZnJrla Z2n717 t)}

Then M(Zsn, Zons1,t) > BM(Zan-1, Zan, t), where § = “H0H > 1
Since § > 1, we obtain

M(Zaypi1, Zon, t) > M(Zop, Zon-1,t)
Similarly
M(Z2n+27 Z2n+1> t) > M(Z2n+1> Z2n7 t)

Now for any positive integer p,

M(Zy,, Zypip, t) > M(Z,,, Zia, é) « M(Zps1, Zno, %) .. x M(Znsp-1, Znip, %)
As n — oo, we get M(Z,, Zpip, t) — 1.

Hence {Z,} is a Cauchy sequence. Suppose that SRX is complete, therefore
by the above, {SRxs,1} is a Cauchy sequence and hence S Rxo, 11 — 2 = SRv
for some v € X. Hence, Z, — z and the subsequences T Hxg, 2, Axs, and
Bxgy, 1 converge to z.

We shall prove that z = SRv € Bv, by (3), we have

qM (Axoy, Bu,t) > aM (T Hxy,, SRu, t)+bM (T Hxy,, Axopn, t)+cM(SRv, Bu,t)

+maz{M (Axg,, SRv,t), M(Bv, THxop,,1)}.
As n — 00, we obtain
gM (z, Bv,t) > aM(z, z,t)+bM (z, z,t)+cM(z, Bu, t)+max{M(z, z,t), M(Bv, z,t)}
M(z, Bu,t) > (%) > 1,
which yields {z} = {SRv} = Buv.
Since | JB(X) € TH(X), thus, there exist u € X such that {THu} = Bv =
{z} = {SRv}.
Now if Au # Bv,we get
qM (Au, Bv,t) > aM(THu, SRv,t) + bM (T Hu, Au,t) + cM(SRv, Bv, t)

+maz{M (Au, SRv,t), M(Bv,THu,t)},
qM (Au, z,t) > aM (z, z,t)+bM (z, Au, t)+cM(z, z, t)+max{ M (Au, z,t), M(z, z,1)},
M(Au, z,t) > (%) > 1,
which yields Au = {2} = {THu} = {SRv} = Bwv.
Since Au = {THu} and {A,TH} is weakly commuting of type (Kh) at co-
incidence points in X, M(THTHu, ATHu) > RM(THu, Au) which gives
Az ={Tz}.
On using (3), we obtain
qM(Az, Bv,t) > aM(THz,SRv,t) + bM(THz, Az, t) + cM(SRv, B, t)

+maz{M(Az,SRv,t), M(Bv,THz,t)},
gM (Az, z,t) > aM(Tz, z,t)+bM (2, Az, t)+cM(z, z, t)+max{M(Az, z,t), M(z, z,t) }.
Hence, Az = {2} = {T'Hz}. Similarly, Bz = {z} = {SRz} where {B, SR} is
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weakly commuting of type (Kh) at coincidence points in X. Then,

Az ={THz} = {2} = {SRz} = Bz. Now, we prove that Rz = z. In fact, by
(3), it follows that

gM(Az, BRz,t) > aM(THz, SRRz, t)+bM(THz, Az,t)+cM(SRRz, BRz,t)

+max{M(Az, SRRz,t), M(BRz,THz,t)}.
Since Bz = {2z} = {SRz} and R: X — X, thus BRz = {Rz}, SRRz = Rz.
Then, the above inequality become
qM (z, Rz,t) > aM(z, Rz, t)+bM (z, z,t)+cM(Rz, Rz, t)+max{ M (z, Rz,t), M(Rz, z,t)}.
Thus, we have Rz = 2. Hence Rz = SRz = Sz = 2. Similarly, we get
Tz= Hz=z. Thus
Az ={Tz} ={Hz} = {2} = {52} = {Rz} = B=z.
i.e.,z is the common fixed point of A, B, S, R, H and T have a unique.
To see z is unique, suppose that p # z such that Ap = {T'p} = {p} = {Sp} =
Bp.
On using (3), we get
qM(Az, Bp,t) > aM (THz,SRp,t) + bM(THz, Az, t) + cM(SRp, Bp,t)

+max{M(Az, SRp,t), M(Bp,THz,t)},
M(zp,t) > (22,
which is impossible, z = p.Then A, B, S, R, H and T have a unique common

fixed point.

Remark 3.1 Theorem 3.1 is generalized,extended and improved for results
of Abd-Rabou [9] in fuzzy metric space.

Theorem 3.2 Let S and T be two self mappings of a fuzzy metric space
(X, M, %) such that

(aM(Tx, Sy, t) + bM(Tx,x,t) + cM(Sy,y,t)
+ maz{M(z, Sy,t), M(y, Tz, t)} < qM(x,y,t),

for all z,y € X, where a,b,¢ > 0 with 0 < ¢ < a+b+c < 1 and if the range of
one of the mappings S and 7' is complete subspace of X. Then S and T have
a unique common fixed point.

Proof. If we set A= B = H = R = I(:the identity mapping)in Theorem 3.1,
then it is easy to check that the pairs (I,S) and (I,7T) are weakly commuting
of type (Kh). Hence, by Theorem 3.1, S and T" have a unique common fixed
point.

In the following theorem, we prove a common fixed point theorem for four
self mappings without the continuity assumption of the mappings in Pathak
and Singh [5] and Som [13]. Also, we replacing complete fuzzy metric space
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(X, M, x) by the range of one of the mappings is complete subspace of X.
Theorem 3.3 Let A, B, S and T are four self mappings of a fuzzy metric space
(X, M, %) such that

(1) A(X) C S(X) and B(X) C T(X) |
(2) {A,T} and {B, S} are weakly commuting of type (Kh),

(3) aM (Tx,Sy,t) + bM (Tx, Ax,t) + cM(Sy, By, t)
+ max{M(Ax, Sy,t), M(By,Tx,t)} < ¢M(Ax, By,t),

for all z,y € X, where a,b,c > 0 with 0 < ¢ < a+b+c < 1 and if the range of
one of the mappings A, B, S and T is complete subspace of X. Then A, B, S
and T have a unique common fixed point.

Proof. If we set A, B: X — X in Theorem 3.1. Hence proof.

Remark 3.2 Theorem 3.3 is generalized,extended and improved for results
of Pathak and Singh [5] in fuzzy metric space.

Remark 3.3 Theorem 3.3 is generalized,extended and improved for results
of Sharma and Tiwari [13] in fuzzy metric space.

Theorem 3.4 Let S be a self mapping of a fuzzy metric space (X, M, %)
and A : X — CB(X) set-valued mappings satisfying following conditions:

(1) UA"(X) € s™(X) |
(2) the pairs {A™, 5™} are weakly commuting of type (Kh),

(3) aM(S™z, 8™y, t) + bM (S™x, A"z, t) + cM(S™y, Ay, t)
+ max{M(A"x, S™y,t), M(A™y, S™z,t)} < qM(A"x, A"y, t),

for all x,y € X, where a,b,c¢ > 0 with 0 < ¢ < a+ b+ ¢ < 1 and if the range
of one of the mappings A" and S™ is complete subspace of X. Then A and §
have a unique common fixed point.

Proof. If weset A= B = A" and SR =TH = S™ in Theorem 3.1, we get A"
and S™ have a unique common fixed point in X. That is, there exists z € X
such that A™(z) = {S™(z)} = {z}. since A"(Az) = A(A"z) = Az, it follows
that Az is a fixed point of A” and S™ and hence Az = 2. Similarly, we have
Sz =z

Theorem 3.5 Let S and T be two self mappings of a fuzzy metric space
(X, M, *) and two sequences set-valued mappings A;, B; : X — CB(X) for all
1,7 € N satisfying following conditions:
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(1) there existsig, jo € N such that J A;,(X) C S(X) and | Bj,(X) C T'(X)

Y

(2) {A;,, T} and {B;

Jo>

S} are weakly commuting of type (Kh) pairs,

(3) aM(Tx, Sy, t) + bM(Tx, Ajz,t) + cM(Sy, Bjy, t)
+ max{M(A;x,Sy,t), M(By, Tz, t)} < gM(A;z, By, t),

for all x,y € X, where a,b,c > 0 with 0 < ¢ < a+ b+ ¢ < 1 and if the
range of one of the mappings A;, B;, S and T for all 4,5 = 1,2, ... is complete
subspace of X. Then A;, B;, S and T" have a unique common fixed point for
alli,j=1,2,..

Proof. By Theorem 3.1, the mappings A, B;,, S and T for some g, jo € N
have a unique common fixed point in X. That is, there exists a unique point
z € X such that

{Sz} ={T=2} = {z} = Aiyz = Bj,=.

Suppose that there exists ¢ € N such that ¢ # ig. Then, we have ¢M (A4;z, z,t) =
qM(A;z, Bjyz,t)

>aM(Tz,Sz,t) +bM(Tz, Az, t) + cM(Sz, Bjyz, 1)

+ max{M(A;x, Sz, t), M(B;yz,Tz,1t)}

>aM(z,z,t) + bM(z, Az, t) + cM(z, 2, t)

+ mazx{M(A;x,z,t), M(z,z,t)}

>(a+b+c+1)M(z, Az t),

which is a contradiction. Hence, for all ¢ € N, it follows that A;z = z. Simi-
larly, for all j € N, we have B;z = z. Therefor, for all 7,j € N, we have
Aiz=Bjz=z={Sz} ={T=z}.

4 Open Problem

We can study common fixed point theorems for six hybrid mappings in fuzzy 2-
metric spaces, without assuming compatibility and continuity of any mapping
on non complete fuzzy 2-metric spaces. we can use a non compatible condition,
that is, weak commutativity of type (Kh) in fuzzy 2-metric spaces. We can
show that completeness of the whole space is not necessary for the existence
and uniqueness of common fixed point. Also, we can prove a common fixed
point theorem for sequences of mappings by the same weaker conditions.
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