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Abstract

In this paper, new integral inequalities of Hermite-Hadamard type involving
several differentiable log-convex functions are given.
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1 Introduction

The following inequality is well known in the literature as the Hermite-Hadamard
inequality (see [5,p.137]):

f<a+b) <b1aa/bf(x)dx<M

2 2 ’

where f : I — R is a convex function on the interval I of real numbers and
a,b e I with a < b.

It is well known that the Hermite-Hadamard’s inequality plays an impor-
tant role in nonlinear analysis. Over the last decade, this classical inequality
has been improved and generalized in a number of ways; there have been a
large number of research papers written on this subject, see ( [1]-[8], [11], [12])
and the books [5],[9],[10] where further references are given.
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In [6], Dragomir has established the following interesting refinements of
Hadamard’s inequalities for log-convex functions:

Let f: I — (0,00) be a differentiable log-convex function on the interval of
real numbers I° (the interior of ) and a,b € I° with a < b. Then the following
inequalities hold:
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Recently in [11], Pachpatte has proved the general versions of the inequal-
ities (1) and (2) involving several differentiable log-convex functions.

In this paper , we prove another new integral inequalities Hermite-Hadamard
type involving several differentiable log-convex functions. The method em-
ployed in our analysis is based on the basic properties of logarithms and the
application of the well known Jensen’s integral inequality.

2 Main Results

Now, we start with the following our main theorem.

Let f,g: 1 — (0,00) be differentiable log-convex functions on the interval
of real numbers I° (the interior of I) and a,b € I° with a < b. Then, the
following inequalities holds:
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¢ jg(y)dy
+(/f<y>dy) /g(x)exp 1+(x_b)f§)b)_<$_a)f(a) do
’ ‘ [ fy)dy

Let f, g be diffrerentiable log-convex functions. Then

log f (x) —log f (y) > dily (log f ) ( — v)

logg(z) —logg(y) > d%(logg(y))(fﬂ—y)

for all ,y € I°, which implies that

log

That is

[ (y)
) y)] @

9w,

Multiplying both sides of (4) and (5) by g (z) and f (x) respectively and adding
the resultant, we obtain,

f (@) zf(.y)exp{

~—

g (z) Zg(y)eXp{

2f () g (x) (6)

> g(2) f () exp [J; f;’)) (o - yﬂ F(2)g(y)exp [9 @), yﬂ |

9(y)
Integrating (6) the above inequality with respect to y on [a, b].
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2(b—a) f () 9 () G
> guy/f@Nnﬁﬁggw—yﬂdy+f@y/g@mmﬂzgg@—yﬂdy

Now, for integrals in right hand side of (7), using Jensen’s integral inequality
for exp (.) functions, we have
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and similarly we get,
/ g W,
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Writing (8) and (9) in (7), it follows that
2(b—a) f(z)g(z) (10)
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Integrating (10) the above inequality with respect to « on [a,b], we get the
required inequality in (3).
Under the asumptions of Theorem 2, we have

20-01 (5 )a () 1)
> 1 (%) a/g(y)dy exp 1?5%“)
+g(a;€> jf@ﬁ@/em>1j(§f b-o)

S PRVZCTSTCYANN IO FRTCESTC P B

If we take x = “;’b in Theorem 2, we get the required inequality in (11). By

using inequality (1) in (11), then we obtain the required inequality in (12).

a+b

Under the asumptions of Theorem 2 and with y = , we have

2 / f(2) g (x) de (13)

N (oo L i -e-af@]
> f(2 ) !9()1) b= 7 () ]d

(1) a/bf($>exp1 <x—b)g<b>—<x—a>g<a>]d$

a+b
(b—a)g(*3?)
The proof is obvious by the above theorem 2.
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3 Open Problem

It is well known that if f is a convex function on the interval I = [a, b] with
a < b, then the Hermite-Hadamard inequality holds for the convex functions.
It has already been proved a lot of this type inequalities for several convex
functions. So, there are two questions as follows:

1) How can be established the general versions of the inequalities (3), (11)
and (13) involving several differentiable log-convex functions.

2) How to obtain similar results without using Jensen’s inequality in the
proof of theorem 2.
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