Note on a nonlocal boundary value problem
with solutions positive on an interval

A. Guezane-Lakoud

Laboratory of Advanced Materials
Badji Mokhtar-Annaba University. Algeria
e-mail: a.guezane@yahoo.fr

Abstract
We reconsider the boundary value problem studied in [1] and prove the existence of sign changing solutions under more general conditions on the nonlinear term.

Keywords: Three-point boundary condition
2000 Mathematics Subject Classification: 34B10, 34B15

1 Introduction
The following problem is studied in [1]

\[u'' + g(t)f(u(t)) = 0, \quad 0 < t < 1 \] (1)
\[u(0) = \alpha u'(0), \quad u(1) = \beta u'(\eta) \] (2)

where \(\eta \in (0,1) \), \(g \in C([0,1],[0,\infty)) \), \(f \in C(\mathbb{R}, [0,\infty)) \). The parameters \(\alpha \) and \(\beta \) are such that \(\alpha > 0, \beta > 0 \) and \(1 + \alpha \neq \beta \). In a personal communication, Prof. J.R.L. Webb remarked that proper account was not taken of the fact that \(G \) is both discontinuous and changes sign, and, in fact, positive solutions may not exist under the given conditions, the main result in [1] is therefore not valid. We give a correction here and provide new results on existence of solutions that are positive on a sub-interval of \([0,1]\).

This type of problem has been studied by Infante-Webb in [2,3]. The case \(\alpha = 0, 0 \leq \beta < 1 - \eta \) was studied in detail in [2]. They established, using fixed point index theory, the existence of multiple nonzero solutions that are positive on a subinterval of \([0,1]\) but can change sign. Similar problems were
studied in [3] and in the interesting paper [4] which studied the model of a thermostat. In [4] the authors proved that there is loss of positivity as the parameter decreases, and proved a uniqueness result. For more results on this subject we refer to [3,5,6].

2 Preliminaries

Let $E = C[0,1]$, with the supremum norm $||y|| = \sup \{|y(t)|, t \in [0,1]\}$. To study the problem (1)-(2), we write it as an equivalent fixed point problem for the Hammerstein integral operator

$$Tu(t) = \int_0^1 G(t,s)g(s)f(u(s)))ds$$

where the Green’s function is defined by

$$G(t,s) = \frac{(t + \alpha)(1-s)}{1 + \alpha - \beta} \left\{ \begin{array}{ll} \beta \frac{t+\alpha}{1+\alpha-\beta}, & s \leq \eta \\ 0, & s > \eta \end{array} \right.$$ \(\tag{3}\)

We give a correction to [1] here and provide new results for the case for $\alpha > 0$ and $0 < \beta < 1 - \eta$. We replace the previous assumptions that f is either sublinear or superlinear by more general conditions and prove existence of sign changing solutions. The method used is to apply the theory of [2,3] which is based on the fixed point index for the compact map T defined on a cone in the Banach space E.

3 Main Results

Following the theory of [2,3], an important step is to show that

$$|G(t,s)| \leq \Phi(s), \forall (t,s) \in [0,1] \times [0,1],$$ \(\tag{3}\)

$$G(t,s) \geq c\Phi(s), \forall t \in [0,b], \forall s \in [0,1].$$ \(\tag{4}\)

Theorem 3.1 If $0 < \beta < 1 - \eta$ and $\alpha > 0$, then there exists a continuous function $\Phi(s) = \frac{(1+\alpha)}{1+\alpha-\beta} (1-s)$ on $[0,1]$, a real number $b \in (0,1 - \beta)$ and a constant $c = \frac{\alpha \min((1-b-\beta),(1-\eta-\beta))}{1+\alpha} \in (0,1)$ such that inequalities (3) and (4) hold.

Proof. We find upper and lower bounds of G.

Upper bounds. Case 1. $s > \eta$. If $t < s$ then $G(t,s) \geq 0$ and

$$G(t,s) = \frac{(t + \alpha)(1-s)}{1 + \alpha - \beta} \leq \frac{(1 + \alpha)}{1 + \alpha - \beta} (1-s) = \Phi(s)$$
If \(t \geq s \) then \(G(t, s) \geq 0 \) since

\[
G(t, s) = \frac{(t + \alpha)(1 - s)}{1 + \alpha - \beta} - (t - s) = \frac{(s + \alpha)(1 - t) + \beta(t - s)}{1 + \alpha - \beta} \geq 0
\]

and we have

\[
G(t, s) = \frac{(t + \alpha)(1 - s)}{1 + \alpha - \beta} - (t - s) \leq \frac{(t + \alpha)(1 - s)}{1 + \alpha - \beta}
\]

\[
\leq \frac{1 + \alpha}{1 + \alpha - \beta} (1 - s) = \Phi(s)
\]

Case 2. \(s < \eta \). If \(t < s \), then \(G(t, s) = \frac{(t + \alpha)(1 - s - \beta)}{1 + \alpha - \beta} \) and the function \(G \) is positive because we are taking \(\beta < 1 - \eta \). Consequently we have

\[
G(t, s) = \frac{(t + \alpha)(1 - s - \beta)}{1 + \alpha - \beta} \leq \frac{(1 + \alpha)}{1 + \alpha - \beta} (1 - s) = \Phi(s),
\]

(the case \(\eta > s > 1 - \beta \) is impossible since by hypothesis we have \(\beta < 1 - \eta \).)

If \(t \geq s \) then

\[
G(t, s) = \frac{(t + \alpha)(1 - s - \beta)}{1 + \alpha - \beta} - (t - s) = \frac{(s + \alpha)(1 - t - \beta)}{1 + \alpha - \beta}
\]

the function \(G \) is positive if \(t \leq 1 - \beta \), in this case we get

\[
G(t, s) = \frac{(s + \alpha)(1 - t - \beta)}{1 + \alpha - \beta} \leq \frac{(1 + \alpha)}{1 + \alpha - \beta} (1 - s) = \Phi(s)
\]

if \(t > 1 - \beta \) then \(G(t, s) \leq 0 \) and

\[
-G(t, s) = \frac{(s + \alpha)(-1 + t + \beta)}{1 + \alpha - \beta} \leq \frac{(1 + \alpha)}{1 + \alpha - \beta} (1 - \eta)
\]

\[
\leq \frac{(1 + \alpha)}{1 + \alpha - \beta} (1 - s) = \Phi(s)
\]

therefore \(|G(t, s)| \leq \frac{1 + \alpha}{1 + \alpha - \beta} (1 - s) = \Phi(s)\).

Lower bounds. Let \(b \in (0, 1 - \beta) \) and \(\alpha > 0 \), then for \(t \in [0, b] \) and \(s \in [0, 1] \) it yields: **Case 1.** \(s > \eta \), if \(t < s \) then

\[
G(t, s) = \frac{(t + \alpha)(1 - s)}{1 + \alpha - \beta} \geq \frac{\alpha(1 - s)}{1 + \alpha - \beta} = \frac{\alpha}{1 + \alpha} \Phi(s)
\]

If \(t \geq s \) then

\[
G(t, s) = \frac{(s + \alpha)(1 - t) + \beta(t - s)}{1 + \alpha - \beta} \geq \frac{\alpha(1 - t)}{1 + \alpha - \beta}
\]

\[
\geq \frac{\alpha(1 - b)}{1 + \alpha - \beta} (1 - s) = \frac{\alpha(1 - b)}{1 + \alpha} \Phi(s)
\]
Case 2. $s < \eta$. If $t < s$ then
\[
G(t, s) = \frac{(t+\alpha)(1-s-\beta)}{1+\alpha-\beta} \geq \frac{\alpha(1-\eta-\beta)}{1+\alpha-\beta} (1-s) = \frac{\alpha(1-\eta-\beta)}{1+\alpha} \Phi(s).
\]

If $t \geq s$ then
\[
G(t, s) = \frac{(s+\alpha)(1-t-\beta)}{1+\alpha-\beta} \geq \frac{\alpha(1-b-\beta)}{1+\alpha} \Phi(s). \square
\]

Define the operator $T : E \to E$ by $Tu(t) = \int_0^1 G(t, s)g(s)f(u(s))ds$.

Notations. Let K be the cone $K = \left\{ u \in C[0, 1] : \min_{t \in [0, b]} u(t) \geq c \|u\| \right\}$ and define the following subsets of K,

$K_r = \{ u \in K : \|u\| < r \}$, $K_r = \{ u \in K : \|u\| \leq r \}$,

$K_{\rho, r} = \{ u \in K : \rho \leq \|u\| \leq r \}$, where $0 < \rho < r < \infty$.

We also let
\[
f^0 = \limsup_{u \to 0} \frac{f(u)}{u}, \quad f^\infty = \limsup_{|u| \to \infty} \frac{f(u)}{|u|}, \quad f_0 = \liminf_{u \to 0^+} \frac{f(u)}{u}, \quad f_\infty = \liminf_{u \to \infty} \frac{f(u)}{u},
\]

and
\[
f^{-\rho, \rho} = \sup_{u \in [-\rho, \rho]} \frac{f(u)}{\rho}, \quad f_{cp, \rho} = \inf_{u \in [cp, \rho]} \frac{f(u)}{\rho}.
\]

Let $m = \left(\max_{0 \leq t \leq 1} \int_0^1 |G(t, s)| g(s)ds\right)^{-1}$ and $M = \left(\min_{t \in [0, b]} \int_0^1 G(t, s)g(s)ds\right)^{-1}$.

As in [5] define the continuous function $q : E \to \mathbb{R}$, $q(u) = \min_{t \in [0, b]} u(t)$ and the set $\Omega_\rho = \{ u \in K : q(u) < c\rho \}$. It is clear that if $u \in \partial \Omega_\rho$, (the boundary relative to K) then $c\rho \leq u(t) \leq \rho$ for all $t \in [0, b]$. The set Ω_ρ was introduced in [5] for cones of positive functions, the case here was used in [2], for further properties of Ω_ρ see [5].

Now we state the existence results from [2] specialized to our case.

Theorem 3.2 Assume that $0 < \beta < 1 - \eta$, and let $b \in (0, 1 - \beta)$ and suppose that $\int_0^b \Phi(s)g(s)ds > 0$. Then for $\alpha > 0$, the problem (1)-(2) has at least one nonzero solution, positive on $[0, b]$, if either

- **H1** $0 \leq f^0 < m$ and $M < f_\infty \leq \infty$, or
- **H2** $0 \leq f^\infty < m$ and $M < f_0 \leq \infty$,

and has two nonzero solutions, positive on $[0, b]$, if there is $\rho > 0$ such that either

- **S1** $0 \leq f^0 < m$, $f_{cp, \rho} \geq cM$, $u \neq Tu$ for $u \in \partial \Omega_\rho$ and $0 \leq f^\infty < m$ or
- **S2** $M < f_0 \leq \infty$, $f^{-\rho, \rho} \leq m$, $u \neq Tu$ for $u \in \partial K_\rho$ and $M < f_\infty \leq \infty$.

Example 3.3 Consider the following BVP

\[u'' + 1 = 0, \quad t \in (0, 1), \quad u(0) = u'(0), \quad u(1) = \frac{1}{3} u'(\frac{1}{2}). \]

Here \(\alpha = 1, \eta = 1/2, \beta = 1/3, \ g(t) = 1 \) on \([0, 1] \) and \(f = 1 \) on \(\mathbb{R} \). Then \(f_0 = \infty, \ f^\infty = 0 \) so this is a sublinear case. Choosing \(b = \frac{3}{5} < 2/3 \), then \(\int_0^1 \Phi(s)g(s)ds > 0 \), \((H_2) \) holds and the Theorem gives that the BVP has at least one solution which is positive on \([0, 3/5] \). In fact, the solution is easily found to be \(u(t) = \frac{1}{5} + \frac{1}{5} t - \frac{t^2}{2} \) which is positive on \([0, (1 + \sqrt{11})/5] \approx [0, 0.863] \).

Example 3.4 Let \(f(u) = \begin{cases} 10^3 u^2, |u| < 1 \\ -999u + 1999, 1 \leq |u| < 2 \\ 1, |u| \geq 2 \end{cases} \)

Choosing \(g = 1, \alpha = 1, \eta = 1/2, \beta = 1/3 \) and \(b = 3/5 \) as in Example 2.4, then \(f^0 = 0 \). \(f^\infty = 0, \ c = \frac{1}{30}, \ M = \frac{1250}{79} \approx 15.823 \). Let \(\rho = \frac{1}{2} \) then \(f_{c\rho, \rho} = \frac{10-10}{18} \approx 0.5556 \geq cM = \frac{1250}{79 \times 30} \approx 0.52743 \). Assume that there exists \(u \in \partial \Omega_\rho \) such that \(u = Tu \), then for \(t \in [0, 3/5] \) it yields by property of \(\Omega_\rho \),

\[
\int_0^t G(t,s)f(u(s))ds \geq \frac{3}{5} \int_0^3 G(t,s)f(u(s))ds
\]

\[
= 10^3 \int_0^\frac{3}{5} G(t,s)u^2(s)ds \geq 10^3 c^2 \rho^2 \int_0^\frac{3}{5} G(t,s)ds.
\]

Taking the minimum over \(t \in [0, \frac{3}{5}] \), we get

\[c\rho \geq 10^3 c^2 \rho^2 / M, \text{ that is } c\rho \leq M/10^3. \]

Since \(c\rho = 1/60 > M/10^3 \), this is a contradiction, consequently \((S1) \) holds and the BVP has at least two nonzero solutions positive on \([0, \frac{3}{5}] \).

4 Open problem

In the present note we have established the existence of nonzero solutions changing sign and positive on a subinterval of \([0, 1] \), in the case \(\alpha > 0, 0 < \beta < 1 - \eta \) and under more general conditions on \(f \). The existence of nonzero solutions for problem (1)-(2) could be investigated for other cases such as \(\alpha > 0 \) and \(\beta < 0 \).

Acknowledgement. The author thanks Professor J.R.L. Webb for bringing her attention to several works on this type of problem.
References

