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Abstract

We reconsider the boundary value problem studied in [1]
and prove the existence of sign changing solutions under more
general conditions on the nonlinear term.
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1 Introduction

The following problem is studied in [1]

u" +g(t)f(ut) =0, 0<t<l1 (1)
u(0) = au’ (0), w(l) = pu’(n) (2)
where n € (0,1), g € C([0,1],[0,00)), f € C(R,[0,00)). The parameters «

and (8 are such that o« > 0, 8 > 0 and 1+« # 5. In a personal communication,
Prof. J.R.L. Webb remarked that proper account was not taken of the fact
that G is both discontinuous and changes sign, and, in fact, positive solutions
may not exist under the given conditions, the main result in [1] is therefore
not valid. We give a correction here and provide new results on existence of
solutions that are positive on a sub-interval of [0, 1].

This type of problem has been studied by Infante-Webb in [2,3]. The case
a=0,0<p < 1—n was studied in detail in [2]. They established, using
fixed point index theory, the existence of multiple nonzero solutions that are
positive on a subinterval of [0, 1] but can change sign. Similar problems were
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studied in [3] and in the interesting paper [4] which studied the model of a
thermostat. In [4] the authors proved that there is loss of positivity as the
parameter decreases, and proved a uniqueness result. For more results on this
subject we refer to [3,5,6].

2 Preliminaries
Let E = C'|0, 1], with the supremum norm ||y|| = sup{|y (¢)|,t € [0,1]}. To

study the problem (1)-(2), we write it as an equivalent fixed point problem for
the Hammerstein integral operator

1
Tu(t) = [ Glt.9)g(5)(u (5)ds
0
where the Green’s function is defined by

G(t )_(t—i_Od)(l_S)_ 1i—;iﬂa8§7] . (t—S),SSt
T 14a-p 0,8 >n 0,s >t

We give a correction to [1] here and provide new results for the case for a > 0
and 0 < g < 1 —1n. We replace the previous assumptions that f is either
sublinear or superlinear by more general conditions and prove existence of
sign changing solutions. The method used is to apply the theory of [2,3] which
is based on the fixed point index for the compact map T defined on a cone in
the Banach space E.

3 Main Results

Following the theory of [2,3], an important step is to show that
Glt,5)] < @ (), ¥ (1,5) € (0,1] x [0,1], 3)
G(t,s) > cP(s), Vte[0,b],¥s €[0,1]. (4)

Theorem 3.1 If0 < 8 <1—mn and o > 0, then there exists a continuous

function ®(s) = % (1—3s) on [0,1], a real number b € (0,1 — ) and a

constant ¢ = amin((l_bﬂ@’(l_"_m) € (0,1) such that inequalities (3) and (4)
hold.

Proof. We find upper and lower bounds of G.
Upper bounds. Case 1. s > 1. If t < s then G(t,s) > 0 and

(t+ ) (1 —s) < (14 «)

Glt,s) = lta—B8 —1+a-8

(1-5)=a(s)
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If t > s then G(t,s) > 0 since

G(t,s) = (t fj‘)a(l_—;) (t—s) = (s+a) (11;;)_;6 (t=3) .,
and we have
Gits) = DU < (=)
1+«
Tra_pgl 5 =20

Case 2. s < n. If t < s, then G(t,s) = % and the function G is

positive because we are taking < 1 — 7. Consequently we have

(t+a)l—s—5) _ (1+a)

Glt.s) = l+a—-0 “l+a-p

(1—s) = ®(s),

(the case n > s > 1 — (3 is impossible since by hypothesis we have § < 1 —1.)
If ¢t > s then

(s+a)(l—t—7)
l1+a—-7

(t+a)(l—s—p)

G(t,s) = "

—(t—s) =

the function G is positive if t <1 — 3, in this case we get

(s+a)(l—t—0) < (14 «)

G(t,s) = - _1—1—04—6(1_8):@(8)
if t>1—/ then G(t,s) <0 and
(st a)(=1+t+p) 1+ )
~G(t,s) = S STia_g—"
(1+a) B
m(l—s)—q’(s)
therefore |G(t,s)| < 2 (1 —5) = ® (s).

1+a—p
Lower bounds. Let b € (0,1 — ) and o > 0, then for ¢t € [0,b] and

s € [0,1] it yields: Case 1. s > 7, if t < s then

If ¢ > s then
(st a)(1—-t)+B(t—s) a(l—1t)
Glt,s) = l+a-8 “Tra—p
a(l—=0) a(l—=10)

Tra_pl ™= *0
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Case 2. s <n. If t <s then

e = 10
If ¢ > s then
Git.s) = (s+a)(1—t—p) > a(l—b—ﬂ)q)(s).D

l+a—-p 1+«

Define the operator T': E — E by Tu(t) = fol G(t,s)g(s)f(u(s))ds.
Notations. Let K be the cone K = {u € C[0,1] : minwu () > cHuH} and

te(0,b]
define the following subsets of K,

K, ={ue K:|u| <r}, K,={ueK:|u|<r},
K,, ={ue K:p<l|u| <r}, where 0 < p <r < 0.

We also let
o= hmsup& [ = supM fo =1lim f(u)’ foo = liminfM,
u—0 ‘U| |u|_>OO |U| u—>0+ u u—oo U
and
[P = sup &, fepp = inf _f(u)
u€l-p,p] P u€lep,p] P

t€[0,b]

Letm = (maxogtgl fol |G(t, s)| g(s)ds) - and M = (mln fo (t s)g(s)ds) _1.

As in [5] define the continuous function ¢ : £ — R, ¢(u) = H%(i)r;]u(t) and
tel0,
the set Q, = {u € K : q(u) < cp}. It is clear that if u € 0f2,, (the boundary

relative to K') then cp < u(t) < p for all ¢t € [0,b]. The set €2, was introduced
in [5] for cones of positive functions, the case here was used in [2], for further
properties of €, see [5].

Now we state the existence results from [2] specialized to our case.

Theorem 3.2 Assume that 0 < § < 1 —mn, and let b € (0,1 — ) and
suppose that fob ®(s)g(s)ds > 0. Then for a > 0, the problem (1)-(2) has at
least one nonzero solution, positive on [0,0b], if either

H1)0< fO<m and M < fo < 00, or

H2)0 < f* <m and M < fu < o0,

and has two nonzero solutions, positive on [0, b], if there is p > 0 such that
either

S1)0< fO<m, fep,>cM, usTu forue dQ, and 0 < f>° <m or

S2) M < fo < oo, [P <m, u+#Tu forue dK, and M < f < c0.
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Example 3.3 Consider the following BVP
1
u'+1=0,t€(0,1), u(0)=1u(0), u(l) = u'(é) (5)

Here o =1, n =1/2, 5 =1/3, g(t) =1 on [0,1] and f =1 on R. Then

fo = o0, f°° = 0 so this is a sublinear case. Choosing b = g < 2/3, then

fo s)ds > 0, (H2) holds and the Theorem gives that the BVP has at
least one solutwn which is positive on [0,3/5]. In fact, the solution is easily
found to be u(t) =+ %t—% which is positive on [0, (1++/11)/5] ~ [0, 0.863].

10%u?, [u] < 1
Example 3.4 Let f(u) = ¢ —999u +1999,1 < |u| < 2
L |ul >2
Choosing g=1a=1n=1/2 §=1/3 and b = 3/5 as in Example 2.4, then
fO=0. f*=0,c= %,M:1250N15823 Letp—lthenfcpp:%g%

0.55556 > cM = 71)2;’300 ~ 0.52743. Assume that there exists u € 052, such that

u = Twu, then fort € [0, 5] it yields by property of €1,

w(t) = Tu(t) = / G(t, 5)f (uls)) ds > /0 "Gt ) f (u(s)) ds
= 103/ G(t,s)u?(s)ds > 10°¢? /§’ G(t,s)ds

3
5

Taking the minimum over t € [O }, we get

cp > 10°c?p* /M, that is cp < M/10%,

Since cp = 1/60 > M /103, this is a contradiction, consequently (S1) holds and

the BVP has at least two nonzero solutions positive on |0, %]

4 Open problem

In the present note we have established the existence of nonzero solutions
changing sign and positive on a subinterval of [0, 1], in the case a > 0, 0 <
B < 1 —mn and under more general conditions on f. The existence of nonzero
solutions for problem (1)-(2) could be investigated for other cases such as a > 0
and g < 0.
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