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Abstract

Our aim in this note is to investigate some nonlinear integral inequalities
wn two independent variables on time scales. The inequalities given here can be
used as handy tools to study the properties of certain partial dynamic equations
on time scales.
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1 introduction

Motivated by the paper [1], many authors have extended some fundamental
integral inequalities used in the theory of differential and integral equations on
time scales.

In this paper,we investigate some nonlinear integral inequalities in two
independent variables on time scales.The obtained inequalities can be used as
important tools in the study of certain properties of partial dynamic equations
on time scales.

1.1 Preliminaries on time scales

In this section, we begin by giving some necessary materials for our study.

A time scale T is an arbitrary nonempty closed subset of R where R is
the set of real numbers.The forward jump operator ¢ on T is defined by
o(t):=inf{se€T:s>t} €T forall t € T.In this definition we put inf(0) =
sup T,where () is the empty set.If o(t) > t,then we say that ¢ is right-scattered.If
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o(t)=tand t <supT , then we say that ¢ is right-dense.The backward jump
operator, left—scattered and left—dense points are defined in a similar way.The
graininess p : T — [0,00) is de fined by u(t) = o(t) —t.

C,q denotes the set of rd-continuous functions.fR denotes the set of all
regressive and rd—continuous functions.

We define the set of all positively regressive functions by

Rt ={peR:1+ul)p(t) >0for allteT}.

Throughout this paper,we always assume that T;and Ts are time scales, {2 =
T, x T, and we write 22t (¢, s) for the partial delta derivatives of x(t, s) with
respect to t.

Theorem 1.1. If p € R and fix ty € T, then the exponential function
ep(., to)is for the unique solution of the initial value problem

2 = p(t)z,z(tg) =1 on T. (1.1)

Theorem 1.2. Ifp € R then

l-e,(t,t) =1 and eg(t,s) = 1;
2-If p € R then e,y(t,tp) >0 forallt €T .

Remark 1.3. : Clearly, the exponential function is given by

e,(t, s) = els PN (1.2)

for s,t € R and p: R — R is a continuous function if T =R .

2 Main result

Before giving our main results,we introduce The following lemmas which are
useful in our main results.

Lemma 2.1. Forx e Ry, y e Ry, 1/p+1/q =1, with p > 1,we have,
eyt < x/p+y/q. (2.1)

Lemma 2.2. :Assume that p > 1,a > 0.Then

1 1 —1
a% < —KlTa + p—K%. (2.2)
p p

for any K >0
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Proof. : see [6]. O
Lemma 2.3. Assume that a > 0,p > q > 0 and p # 0,then

ar < T a4 u[(%, (2.3)
p p
for any K > 0.

Proof. : if ¢ = 0,it is easy to see that inequality (2.3) holds.So we only prove
inequality (2.3) holds in the case of ¢ > 0.
Let b = Z—),then b > 1 by Lemma 2.2, we obtain the result.
q

Theorem 2.4. (Comparison Theorem [1]) .Suppose u,b € Cyq, a € R . if
]

u(t) < a(t)u(t) +b(t),t € T .
Then,

ult) < ultoealtsto) + [ ealto(m)bn)An , €T .

to
Now we state the main results of this work.
Theorem 2.5. Let u(t,s),a(t,s),b(t,s) and hi(t,s)(i = 1,...n) are non-
negative functions defined for t,s € ) that are right-dense continuous for

t,s € Q.If there exists a series of positive real numbers pi, pa, ..., pn such that
p>p;>0,1=1,2,....,n,then

w00,9) < oty 100,5) [ [ St (o anar for ) € 0 (2.0

implies
1

u(t, s) < (a(t, s) +b(t, s)m(t, s)ey , (t,t0))P, (2.5)

where

mit,s) /t / ;hi(w)(%w,n) L2 ;pi)AnAT, (2.6)

S

y(t,s) = /b(t,n) i %hi(t,n)An, (t,s) € Q. (2.7)

50 =1
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Proof. Define a function z(t, s) by

2(t, s) —/t /ihi(T,n)upi(T,n)AnAT, (2.8)

then (2.4) can be written as
uP(t,s) < al(t,s)+ b(t,s)z(t, s). (2.9)

From (2.9) , by Lemma 2.1, we get

pi
w(t,5) = (W(49)7 < (@t ) 0(0 )2(08) T < 7 (alt )bl 9)2(0 )+
(2.10)
It follows from (2.8) and (2.10) that
Ats) < / /Z tr.n) | Zatr) + 6 )s(rom) + 22| A,
- [ S5 we e = mysna me )
(2.11)
where m(t, s) is defined by (2.6). O

Let € > 0 be given, and from (2.11), we obtain
t ) < 1+/ /Z pl (1,m)b(r,n)—————— AGL) JAnAT,  (2.12)
m(t,s) +e m(7,1n) + ¢

Define a function v(¢, s) by

ts—l—i—//zzpZ (1,m)b(7,n) (<77):‘ JAnAT for (t,s) € Q,

(2.13)
It follows from (2.12) and (2.13) that

z(t,s) < (m(t,s) +e)v(t, s). (2.14)
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From ( 2.13), a delta derivative with respect to t yields

) = [ X Enemote =0y
< /izn(&hi(t,n)b(t,n)v(t,n)AnS (/izn(&hi(t,n)b(t,n)An)v(t, s),
so =1 b o =l p

— y(t, s)v(t, s) for (t,s) € Q,

(2.15)
where y(t, s) is is defined by (2.7) with v(to,s) = 1 and y(¢,s) > 0.
Using Theorem 2.4 from (2.15), we obtain
o(t,s) < ey, (tt0),(t,s) € Q. (2.16)
It follows from (2.9), (2.14) and ( 2.16) that
ult,s) < (alt,s) + b(t, s)=(t, s))7,
< (a(t, ) +b(t, )(m(t, 5) + )o(t, 5))»
< (a(t,s) +b(t, s)(mlt, s) +e)ey (8, 10))7for (1, 5) € Q. (2.17)

Letting ¢ — 0 in (2.17) the Theorem is proved.

Remark 2.6. :If we taken = 2, p > 1 and py = p,p2 = 1, hy = g and
ho = h, then the inequality established in Theorem 2.5 becomes the inequality
given by in |7, Theorem 2.3 ].

Theorem 2.7. Assume that all assumptions of Theorem 2.5 hold. If a(t,s) >
0 and is nondecreasing for (t,s) € €1, then

t S i=n
wt.5) < @(ts) +0(ts) [ [ iyt (rmdnar for () € 0.
to 7 =1
S0

(2.18)
implies
1

u(t, s) < a(t, s)(1+b(t, s)n(t, s)ew , (t,t0))P, (2.19)

where
S i=nn

n(t,s) = /t t / ;Hi(r,n)AnAT, (2.20)

S0
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i=nll
w(t, s) = /tn sz At ) A, (2.21)
S0

and
H;(t,s) = hi(t,s)a""P(t,s). (2.22)

Proof. : Nothing that a(t,s) > 0 is nondecreasing for (¢,s) € 2, from (2.18)
we have

((t ))p<1—|—bts//2h (1,m)a(r,n)P~ (E n;)plAnAT (2.23)

By Theorem 2.5, and from (2.23), we easily obtain the result. This com-
pletes the proof of Theorem 2.7. n

Remark 2.8. Lettingn =2, p>1 and py =p,p2 =1, hy = g and hy = h,
then the inequality established in Theorem 2.7 becomes the inequality given in
[7, Theorem 2.5] .

Now by using Lemmas 2.2 and 2.3, other estimates are established.

Theorem 2.9. : Assume that all assumptions of Theorem 2.5 hold,then

uP(t,s) < a(t,s)+ b(t,s)/t /Zhi(T,T])upi(T,T])AUAT for (t,s) € Q,
) (2.24)

implies

1
u(t,s) < (a(t,s) + b(t, s)m*(t, s)eyz’s) (t,to))P, (2.25)

where

t 5 i=n
Di g, picp P—Pi b
5) = / / S mlr B arn) + PR AgAr. (220
0 =1

and
S i

vt = [ YK
=1 p
S0

hi(t,m)b(t, 7)An, (t,s) € Q, (2.27)
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Proof. Define a function z(t, s) by

t 5 i=n
z(t, ) =/ /Zhi(ﬂn)u“(ﬂn)ﬁnm,
to i=1

[
By Lemma 2.3, we get
uPi(t,s) = (uP(t, 3))% < (a(t, s) + b(t, s)z(t, 3))# (2.28)
< DU (alt, ) + bt s)z(t, ) + L2
p p

from the proof of Theorem 2.5,we obtain the required inequality in (2.25)
where m*(t, s) is defined by (2.26) and y*(¢, s) is defined by (2.27)

Theorem 2.10. Assume that all assumptions of Theorem 2.5 hold. If
a(t,s) > 0 is nondecreasing for (t,s) € Q, then

S .

t i=n
uP(t,s) < aP(t,s) + b(t, s)/ /Z hi(T,n)uP (T,n)AnAr for (¢,s) € Q,
to i=1

S0

implies
u(t, s) < alt,s) [1 + b(t, s)n*(t, s)ew;’s)(t,to))%] , (2.29)

where

A o I
n*(t,s):/ /ZHZ-(T,U)<%K 7L pp’Kp)AnAr for any K > 0,
to < =1

80

(2.30)

S i=nn

* Pi . pi=p
Wt s) = / SO PR H(n n)b(t, ) A,

=1 p

S0

and
H;(t,s) = hi(t,s)a"P(t, s).

Proof. : The proof is similar to the proof given in theorem 2.7. O
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Theorem 2.11. : Assume that u(t,s) , a(t,s) and b(t,s) are nonnegative
functions defined for (t,s) € 2 that are right-dense continuous for (t,s) € 0,
and p > 1 1s a real constant. If f : Q x R, — R, is right-dense continuous
on £ and continuous on R, such that

0 < f(tv va) - f<t787y) < h(t,S,y)(l’ - y)? (231)

for (t,s) € Q, x>y > 0where h : QxR, — R, isright-dense continuous
on {2 and continuous on R, if

uP(t,s) < alt,s)+ b(t, 3)/t /f(T,n,u(T,n))AnAT for (t,s) € Q, (2.32)

0

then
u(t,s) < (a(t,s) + b(t, s)l*(t, s)ew(*' ) (t,to))?P, (2.33)
where
t K DK
R B s LULCHNCEY)
to p
S0
s 1-p 1 1-p
K7 a(t —1)K» K * bt
50
Proof. : Define a function z(t, s) by O

2(t,8) = /tt/f(T,’I],u(T,’I]))A’l?AT for (t,s) € Q,

Fom (2.32) ,we have

u(t,s) < (a(t, s) + b(t, s)=(t, 5))7,

using Lemma 2.2, we obtain

—_

ult,s) < ~K 7 (alt, ) + b(t, 8)2(t, 8)) + 1%1[(;

S

noting the assumptions on f, we have :
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t P, , P
2(t,s) < / _ K 7 a(rm)+(p-1)KP
\ f(rsm, )+

1—p P

1—-p 1
‘l‘f('r, n, K a(T,nI))—I—(p—l)KP )AT]AT,

1

Loy K5 _DKF K
<t(ts)+ [ [uirg SR RZDENEI AR pagas,
to

where [*(t, s) is defined by (2.34) and is nonnegative, right-dense continu-
ous, and nondecreasing for (¢, s) € 0. The remainder of the proof is similar to
that of Theorem 2.5.

Theorem 2.12. : Assume that u(t,s),a(t,s) and b(t,s) are nonnegative
functions defined for (t,s) € 2 that are right-dense continuous for (t,s) € 0,
and p > 1 1s a real constant. If f : Q x R, — R, is right-dense continuous
on 2 and continuous on R, such that

0< f(t,s,x) — f(t,s,9) < h(t,s,9) (z —y),

for (t,s) € Q, 2 >y > 0where h : QxR, — R, isright-dense continuous
on 2 and continuous on R, ®~lis the inverse function of ®, and

d Hzy) <@ Ha)d (y),
if

uP(t,s) < alt,s) + b(t, s)@(/t /f(T,n,u(T,n))AnAT) for (t,s) € 2, (2.36)

then

ult, ) < {alt, ) + bt )R (1, )ew | (1,10)) (2.37)
where [*(t, s) is define by (2.34) and

S

w(ts) = [ it

S0

1-p 1 1-p
K> a(t,n)Jr(p—l)Kp)@_l(K 7 b(t,n)
p p

)An.
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Proof. :Define a function z(t, s) by

()= [ [ st anar o t9) € 0

1

ult, s) < (alt, s) + b(t, $)B(=(t, )P,

using Lemma 2.2,we obtain :

1-p 1
ult,s) < LK P maﬁy+wag¢@uﬁ»y+3§iKﬂ

i

by the assumptions on f and ®,we have
2(t,s) < U(t,s)+
L—p
1—p 1 1 ——
v D p —K P b
a(r, -1)K —
+ Ji f h(r,n, T e DB )=t (B ——)z(r, ) AnAr,

p

Where [*(t,s) is defined by (2.34).The remainder of the proof is similar to
that of Theorem 2.5. O

3 application :

In this section we give an application of Theorem 2.9. We Consider the fol-
lowing partial dynamic equation on time scales

(uP(t, )% = H(t, s, u(t,s)) +r(t,s) for (t,s) € Q (3.1)

with the initial boundary conditions

u(t, so) = a(t), u(te, s) = B(s), u(to, s0) = w (3.2)

where H : T;x Ty x R — R is right-dense continuous on {2 and continuous
on R, r : Ty x Ty — R is right-dense continuous on 2, « : Ty — R and
f: Ty — R are right-dense continuous, and w € R is a constant.

Assume that

i=n
[H (s, w) < 3 hilt,5) ful™ (3:3)
i=1
hi(t,s)(i = 1,...n) are nonnegative right-dense continuous functions defined

for (t,s) €
If u(t, 3) is a solution of (3.1) , (3.2) then u(t, s) satisfies
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1

lu(t,s)| < {a(t, s) + m(t, s)ey.s)(t, o) } 7, (3.4)

where

t S
alt,s) = [aP(t) + B(s) — wP| + / / ir(r, )| ApAr, (3.5)
to
olts) = [ 3 DR bt ). for (t,5) € (3.6)
=1
and

t = . PP —D; P
m“’5>:/ / S hitr ) (E K a(r, ) + Eo P K ) Agar,
to /=1 p p
80

Proof. : the solution of (3.1),(3.2) satisfies : O

t y t y
uP(t,s) = ogp(t)+ﬁp(5)—wp+/ /H(T,n,u(T,n))AnAT—i-/ /T(T,?])AT]AT
to to
Therefore,

t S
Wt 5)] < alt, s) + / / harm) [ (7, 7)] ApAT.
to

80

Applying theorem 2.9, we easily obtain (3.4).

4 Open problem

In this work, we have established some nonlinear integral inequalities in two
independent variables on time scales.The inequalities given here can be used
as handy tools to study the properties of certain partial dynamic equations on
time scales, for example the partial dynamic equation on time scales (3.1) —
(3.2).

It will be interesting to estimate the solution of (3.1) — (3.2) in the cases
py =min{p;,i=1,..n} <p<p*=max{p;,i=1,..n} and p < p,.
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