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1 Introduction

The unification and extension of continuous calculus, discrete calculus, q−cal-
culus, and indeed arbitrary real-number calculus to time scale calculus was first
accomplished by Hilger in his PhD thesis [11]. This theory is very important
and useful in the mathematical modelling of several important dynamic pro-
cesses. As a result the theory of dynamic systems on time scales is developed
in ([1]-[10]).

There are a number of differences between the calculus one and of two
variables. The calculus of functions of three or more variables differs only
slightly from that of two variables. Bohner and Guseinov have published a
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paper about the partial differentiation on time scale. Here, authors introduced
partial delta and nabla derivative and the chain rule for two variables functions
on time scale and also the concept of the directional derivative [8].

In [2], we have investigated the calculus of multivariable functions on
n−dimensional time scale. In that paper, we introduced partial delta deriva-
tive and the chain rule for n−variables functions on n−dimensional time scale
and also the concept of the directional derivative and to application a Dif-
ferential geometry. In [9], the authors study some geometrical structures such
that tangent vector, vector fields, curves and mappings on n−dimensional time
scales. Moreover, they investigated some properties of these structures.

The present paper deals with the nabla 1−forms which is another geomet-
rical structure on n−dimensional time scale ∧n. The paper is organized as
follows. In Section 2, we give a brief account of time scale calculus, partial
nabla derivatives for multivariable functions on n−dimensional time scales ∧n
and offer several concepts related to∇−differentiability which will be use later.
Section 3 is devoted to nabla1−forms and its properties on ∧n. In Section, 4
an open problem is given.

2 Preliminaries

The following definitions and theorems will serve as a short primer on time
scale calculus; they can be found ([6], [7]). A time scale T is any nonempty
closed subset of R. Within that set, define the jump operators ρ, σ : T→ T
by

ρ(t) = sup{s ∈ T : s < t} and σ(t) = inf{s ∈ T : s > t},

where inf ∅ := supT and sup ∅ := inf T, where ∅ denotes the empty set. If
ρ(t) = t and ρ(t) < t, then the point t ∈ T is left-dense, left-scattered. If
σ(t) = t and σ(t) > t, then the point t ∈ T is right-dense, right-scattered. If T
has a right-scattered minimum m, define Tk := T−{m}; otherwise, set Tk = T.
If T has a left-scattered maximum M, define Tk := T−{M}; otherwise, set
Tk = T. The so-called graininess functions are µ(t) := σ(t) − t and v(t) :=
t− ρ(t).

For f : T→ R and t ∈ Tk, the delta derivative of f at t, denoted f∇(t), is
the number (provided it exists) with the property that given any ε > 0, there
is a neighborhood U of t such that∣∣f(σ(t))− f(s)− f∇(t)[σ(t)− s]

∣∣ ≤ ε |ρ(t)− s| ,

for all s ∈ U . For T = R, f∇ = f ′, the usual derivative; for T = Z the delta
derivative is the backward difference operator, f∆(t) = f(t+ 1)− f(t); in the
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case of q−difference equations with q > 1,

f∇(t) =
f(qt)− f(t)

(q − 1)t
, f∇(0) = lim

s→0

f(s)− f(0)

s
.

If f, g : T→ R are ∇−differentiable at t ∈ Tk, then
(i) f + g is ∇− differentiable at t and

(f + g)∇ (t) = f∇(t) + g∇(t).
(ii) For any constant c, c.f is ∇− differentiable at t and

(cf)∇ (t) = cf∇(t).
(iii) f.g is ∇− differentiable at t and

(fg)∇ (t) = f∇(t)g(t) + f(ρ(t))g∇(t)
= g∇(t)f(t) + g(ρ(t))f∇(t).

(iv) If g(t).g(ρ(t)) 6= 0 then
f

g
is ∇− differentiable at t and(

f

g

)∇
(t) =

f∇(t)g(t)− f(t)g∇(t).

g(t).g(ρ(t))
.

Let T be a time scale and ν : T→ R be a strictly increasing function such
that T = ν(T) is also a time scale. By ρ we denote the jump function on T,
and by ∆ we denote the derivative on T. Then

ν ◦ ρ = ρ ◦ ν.

(Chain Rule)Assume ν : T → R is strictly increasing and T = ν(T) is

a time scale. Let ω : T → R. If ν∇(t) and ω∇(ν(t)) exist for t ∈ Tk, then
(ω ◦ ν)∇ exist at t and satisfy the chain rule

(ω ◦ ν)∇ = (ω∇ ◦ ν)ν∇ at t.

Many other information concerning time scales and dynamic equations on
time scales can be found in the books ([6], [7]).

After already, in this section, for the convenience of readers, we repeat the
relevant material from [2] and [9].

2.1 Partial Differentiation on n−Dimensional Time
Scales

Let n ∈ N be fixed and for each i ∈ {1, 2, ..., n} , Ti denote a time scale. Let
us set

∧n = T1 × T2 × ...× Tn = {(l1, l2, ..., ln) : li ∈ Ti for all i ∈ {1, 2, ..., n}} .
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We call ∧n an n− dimensional time scale. the set ∧n is a complete metric
space with the metric d defined by

d(t, s) =

(
n∑
i=1

|ti − si|2
)1

2
, ∀t, s ∈ ∧n.

Let σi and ρi denote the backward and backward jump operators in T, respec-
tively. Remember that for u ∈ Ti the backward jump operator σi : Ti → Ti is
defined by

σi(u) = inf {v ∈ Ti : v > u} ,
and the backward jump operator ρi : Ti → Ti is defined by

ρi(u) = sup {v ∈ Ti : v < u} .
In this definition, we put σi(maxTi) = maxTi if Ti has a finite maximum, and
ρi(minTi) = minTi if Ti has a finite minimum. If σi(u) > u, then we say that
u is right-scattered in Ti, while any u with ρi(u) < u is called left-scattered in
Ti. Also, if u < maxTi and σi(u) = u, then u is called right-dense in Ti, and
if u > minTi and ρi(u) = u then u is called left-dense in Ti. If Ti has a left-
scattered maximum M , then we define Tki = Ti − {M}, otherwise Tki = Ti.
If Ti has a right-scattered minimum m, then we define (Ti)k = Ti − {m},
otherwise (Ti)k = Ti.

Let f : ∧n → R be a function. The partial nabla derivative of f with
respect to ti ∈ (Ti)k is defined as the limit

lim
si → ti

si 6= ρi(ti)

f(t1, t2, ..., ti−1, ρi (ti) , ti+1, ..., tn)− f(t1, t2, ..., ti−1, si, ti+1, ..., tn)

ρi (ti)− si

=
∂f(t)

∇iti
.

Higher order partial nabla derivatives are defined similarly.
We say that a function f : ∧n → R is completely ∇−differentiable at

the point t0 ∈ (T1)k × (T2)k × ...× (Tn)k if there exist numbers A1, ..., An
independent of t = (t1, ..., tn) ∈ ∧n(but, generally, dependent on (t01, ..., t

0
n))

such that all t ∈ Uδ(t0),

f(t01, t
0
2, ..., t

0
n)− f(t1, t2, ..., tn) =

n∑
i=1

Ai(t
0
i − ti) +

n∑
i=1

αi(t
0
i − ti), (1)

and, for j ∈ {1, ..., n} and all t ∈ Uδ(t0),

f(t01, ..., t
0
j−1, ρj(t

0
j), t

0
j+1..., t

0
n)− f(t1, ..., ti−1, ti, ti+1..., tn) =

Aj
[
ρj(t

0
j)− tj

]
+

n∑
i=1
i6=j

Ai [t
0
i − ti] + βj

[
ρj(t

0
j)− tj

]
+

n∑
i=1
i 6=j

βi [t
0
i − ti] ,

(2)
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where δ is a sufficiently small positive number, Uδ(t
0) is the the δ−neighborhood

of t0 in ∧n, αi = αi(t
0, t) and βi = βi(t

0, t) are defined on Uδ(t
0) such that they

are equal to zero at t = t0 and such that

lim
t→t0

αi(t
0, t) = 0 and lim

t→t0
βi(t

0, t) = 0 for all i ∈ {1, ..., n}.

We say that a function f : T1 × T2 × ... × Tn → R is ρj-completely
∇−differentiable at a point t0 = (t01, ..., t

0
n) ∈ (T1)k × (T2)k × ...× (Tn)k

if it is completely ∇−differentiable at that point in the sense of conditions
(1), (2) and moreover, along with the numbers A1, ..., An presented in (1)
and (2) there exists also numbers B1, ..., Bn independent of t = (t1, ..., tn) ∈
T1 × T2 × ... × Tn(but, generally, dependent on (t01, ..., t

0
n)) such that for

j ∈ {1, ..., n}

f(ρ1(t01), ρ2(t02)..., ρn(t0n))− f(t1, t2, ..., tn) = Aj
[
ρj(t

0
j)− tj

]
+

n∑
i=1
i6=j

Bi [ρi(t
0
i )− ti] + γj

[
ρj(t

0
j)− tj

]
+

n∑
i=1
i6=j

γi [ρi(t
0
i )− ti] , (3)

for all t = (t1, ..., tn) ∈ V ρj(t01, ..., t
0
n), where V ρj(t01, ..., t

0
n) is a union of some

neighborhoods of the points (t01, ..., t
0
n) and (ρ1(t01), ..., t0i ..., ρn(t0n)), and the

functions γj = γj(t
0; t) and γi = γi(t

0; ti) are equal to zero for (t1, ..., tn) =
(t01, ..., t

0
n) and

lim
t→t0

γj(t
0; t) = 0 and lim

ti→t0
γi(t

0; ti) = 0.

2.2 The Chain Rule

The chain rule for one-variable and two-variable functions on time scales has
been investigated in ([1], [6], [8]). In order to get an extension to n−variable
functions on time scales, we start with a time scale T. Denote its backward
jump operator by ρi and its nabla differentiation operator by ∇i for i = 1, .., n.
Moreover, let n−functions

ϕi : T→ R for i = 1, ..., n,

be given. Let us set
ϕi(T) = Ti for i = 1, ..., n.

We will assume that T1, ...,Tn are time scales. ρ1,∇1, ..., ρn,∇n are denoted by
the backward jump operators and nabla operators for T1, ...,Tn, respectively.
Take a point ξ0 ∈ Tk and put

t0i = ϕi(ξ
0) for i = 1, ..., n.
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We will also assume that

ϕi(ρ(ξ0)) =ρi(ϕi(ξ
0)) for i = 1, ..., n, (4)

Under the assumptions above, let a function f : T1 × ...× Tn → R be given.
Let the function f be ρj−completely∇−differentiable at the point (t01, ..., t

0
n).

If the function ϕi (i = 1, ..., n) has nabla derivatives at the point ξ0, then the
composite function

F (ξ) = f(ϕ1(ξ), ..., ϕn(ξ)) for ξ ∈ T, (5)

has a nabla derivative at that point which is expressed by the formula

F∇(ξ0) =
∂f(t01, ..., t

0
n)

∇jtj
ϕ∇j (ξ0)+n

i=1
i 6=j

∂f(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
ϕ∇i (ξ0), (6)

for each j ∈ {1, ..., n}.
Let the function f be ρj−completely∇−differentiable at the point (t01, ..., t

0
n).

If the function ϕi (i = 1, ..., n) has first order partial nabla derivatives at the
point ξ0 = (ξ0

1 , ..., ξ
0
n), then the composite function

F (ξ0) = f(ϕ1(ξ0), ..., ϕn(ξ0)) for ξ0 = (ξ0
1 , ..., ξ

0
n) ∈ T(1) × ...× T(n), (7)

has a nabla derivative at that point which is expresses by the formula

∂F (ξ0
1 , ..., ξ

0
n)

∇(k)ξk
=

∂f(t01, ..., t
0
m)

∇jtj

∂ϕj(ξ
0
1 , ..., ξ

0
n)

∇(k)ξk
)

+m
i=1
i6=j

∂f(ρ1(t01), ..., t0i , ..., ρm(t0m))

∇iti

∂ϕi(ξ
0
1 , ..., ξ

0
n)

∇(k)ξk
,

(8)

for each k ∈ {1, ..., n}.

2.3 The Directional ∇−Derivative

Let T be a time scale with the backward jump operator ρ and the nabla
operator ∇. We will assume that 0 ∈ T. Furthermore, let ω = (ω1, ..., ωn) ∈ Rn

be a unit vector and let (t01, ..., t
0
n) be a fixed point in Rn. Let us set

Ti= {ti = t0i + ξωi : ξ ∈ T}, i = 1, ..., n.

Then T1, ...,Tn are time scales and t0i ∈ Ti for i = 1, ..., n. The backward jump
operators of Ti denoted by ρi, the nabla operators by ∇i for i = 1, .., n.

Let a function f : ∧n → R be given. The directional nabla derivative of
the function f at the point (t01, ..., t

0
n) in the direction of the vector ω (along

ω) is defined as the number

∂f(t01, ..., t
0
n)

∇ω
= F∇(0), (9)
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provided it exists, where

F (ξ) = f(t01 + ξω1, ..., t
0
n + ξωn) for ξ ∈ T. (10)

Suppose that the function f is ρj−completely∇−differentiable at the point
(t01, ..., t

0
n). Then the directional nabla derivative of f at (t01, ..., t

0
n) in the di-

rection of the vector ω exists and is expressed by the formula

∂f(t01, ..., t
0
n)

∇ω
=
∂f(t01, ..., t

0
n)

∇jtj
ωj+

n
i=1
i 6=j

∂f(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
ωi, (11)

for each j ∈ {1, ..., n}.
Let n = 2. Then for j = 1, i = 2 we have

∂f(t01, t
0
2)

∇ω
=
∂f(t01, t

0
2)

∇1t1
ω1+

∂f(ρ1(t01), t02)

∇2t2
ω2, (12)

and for j = 2, i = 1

∂f(t01, t
0
2)

∇ω
=
∂f(t01, ρ2(t02))

∇1t1
ω1+

∂f(t01, t
0
2)

∇2t2
ω2. (13)

Therefore, for n = 2, equality (11) reduces to (12) and (13) which are proved
for ∆−derivative by Bohner et. al. [8].

2.4 Tangent Vectors and Properties of Directional
∇−Derivative

A tangent vector vP to ∧n consists of two points of ∧n :its vector part v and
its point of application P.

Let P be a point of ∧n. The set VP (∧n) consisting of all tanget vectors
that have P as point of application is called the tangent space of ∧n at P .

Let xi : ∧n → Ti be Euclidean coordinate functions on time scale for all
1 ≤ i ≤ n, denoted by the set {x1, x2, ..., xn}. Let f : ∧n → R be a function
described by f(P ) = (f1(P ), f2(P ), ..., fm(P )) at a point P ∈ ∧n. The function
f is called ρj−completely ∇−differentiable function at the point P provided
that all fi (i = 1, 2, ...,m) functions are ρj−completely ∇−differentiable at the
point P . All this kind of functions set will be denoted by C∇ρj . If we define two
algebraic operations as follows:

⊕ : C∇ρj × C
∇
ρj
−→ C∇ρj

(f, g) −→ f ⊕ g ,

for ∀x ∈ ∧n,
(f ⊕ g)(x) = f(x) + g(x),
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and
� : R×C∇ρj −→ C∇ρj

(λ, f) −→ λf = λ� f ,

for ∀x ∈ ∧n,
(λ� f)(x) = λf(x).

In this case the set,
{C∇ρj ,⊕,R,+, ·,�},

is a vector space. Next, if we define another operation by,

� : C∇ρj × C
∇
ρj
−→ C∇ρj

(f, g) −→ f � g ,

for ∀x ∈ ∧n
(f � g)(x) = f(x)g(x).

Thus, the set {C∇ρj ,⊕,R,+, ·,�,�} is an algebra over R. Finally, we can

consider a tangent vector of ∧n as a function from C∇ρj to R. This result can
be easily seen from Definition 2.3.

Let a, b ∈ R and f, g ∈ C∇ρj and vP , ωP , zP ∈ VP (∧n). Then, the following
properties are proven for the directional ∇−derivative of the function f at the
point P (t01, t

0
2, ..., t

0
n) :

(i)
∂f(P )

∇ (avP + bωP )
= a

∂f(P )

∇ (vP )
+ b

∂f(P )

∇ (ωP )
,

(ii)
∂ (af + bg) (P )

∇vP
= a

∂f(P )

∇vP
+ b

∂g(P )

∇vP
,

(iii)
∂ (fg) (P )

∇vP
= g(P )

∂f(P )

∇vP
+ f(ρ1 (t01) , t02, ..., t

0
n)
∂g(P )

∇vP
−n
i
i=1
6=j

(g (P )− gρi(P ))
∂fρi(P )

∇iti
vi

+n

i
i=1
6=j

(fρ(P )− f(ρ1 (t01) , t02, ..., t
0
n))

∂gρi(P )

∇iti
vi,

where fρi(P ) = f(ρ1 (t01) , ..., ρ(i−1)

(
t0i−1

)
, t0i , ρ(i+1)

(
t0i+1

)
, ..., ρn(t0n)) and

fρ(P ) = (ρ1 (t01) , ..., ρi−1

(
t0i−1

)
, ρi (ti) , ρi+1

(
t0i+1

)
, ..., ρn(t0n).

2.5 Vector Fields and Properties of Directional
∇−Derivative

A vector field W on ∧n is a function that assigns to each point P of ∧n a
tangent vector ωP to ∧n at P .

Let Z be a vector field and Z(P ) belongs to the set of tangent vector space
VP (∧n) at the point P . Generally, a vector field is denoted by

Z =
n∑
k=1

gk(x1, ...xn)
∂

∇kxk
, (14)
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where gk(x1, ...xn) are real valued and have partial nabla derivative func-

tions defined on ∧n and

{
∂

∇1x1

,
∂

∇2x2

, ...,
∂

∇nxn

}
are the basis for VP (∧n). If

for each gk(x1, ...xn) is ρj−completely ∇−differentiable then we say the vector
field Z is ρj−completely ∇−differentiable.

Let χ(∧n) be a set of the ρj−completely ∇−differentiable vector fields and
let a ρj−completely ∇−differentiable function f : ∧n → R be given. The
directional ∇−derivative of the function f at the point P (t01, t

0
2, ..., t

0
n) in the

direction of the vector field W is defined as(
∂f

∇W

)
(P ) =

∂f(P )

∇ωP
.

By this definition, we have defined a function W : C∇ρj → C∇ρj such that
W (P ) = ωP . Here, ωP is the tangent vector, which belongs to the vector field
W .

Let V and W be two vector fields. Then, The following are proved for any
two functions f, g and h ∈ C∇ρ1 :

(i)
∂h

∇ (fV + gW )
= f

∂h

∇V
+ g

∂h

∇W
,

(ii)
∂ (af + bg)

∇V
= a

∂f

∇V
+ b

∂g

∇V
,

(iii)
∂ (fg)

∇V
= g(P )

∂f

∇V
+ f(ρ1 (t01) , t02, ..., t

0
n)
∂g

∇V
−n
i
i=1
6=j

(g (t01, ..., t
0
n)− g(ρ1(t01), ..., t0i , ..., ρ1(t0n)))

∂fρi
∇iti

vi

+n

i
i=1
6=j

(f(ρ1 (t01) , ..., ρn(t0n))− f(ρ1 (t01) , t02, ..., t
0
n))

∂gρi
∇iti

vi,

where fρi(P ) = f(ρj1 (t01) , ..., ρj(i−1)

(
t0i−1

)
, t0i , ρj(i+1)

(
t0i+1

)
, ..., ρjn(t0n))

Let two vector fields Z,W be given. The covariant nabla differentiation
with respect to W at the point P (t01, t

0
2, ..., t

0
n) is defined as the vector(

∂Z

∇W

)
(P ) = Y ∇(0)

provided it exists, where

Y (ξ) = Z(t01 + ξω1, ..., t
0
n + ξωn) for ξ ∈ T.

Let two vector fields Z,W be given. The covariant nabla differentiation
with respect to W at the point P (t01, t

0
2, ..., t

0
n) exists and is expressed by the

formula
∂Z(P )

∇ωP
=

n∑
i=1

∂gi(P )

∇ωP
∂

∂xi
(P ),
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where the functions
∂gi(P )

∇ωP
can be found similarly as in Theorem 2.3.

Let a, b ∈ R and two vector fields X and Y be given. For any two tangent
vectors vP and ωP , the following properties are proven:

(i)
∂X

∇ (aV + bW )
= a

∂h

∇V
+ b

∂h

∇W
,

(ii)
∂ (aX + bY )

∇V
= a

∂f

∇V
+ b

∂g

∇V
,

(iii)
∂ (fX) (P )

∇vP
=n
k=1

[
hk(P )

∂f(P )

∇vP
+ f(ρ1 (t01) , t02, ..., t

0
n)
∂hk(P )

∇vP
−n
i
i=1
6=j

(
hk (P )− (hk)ρi (P )

) ∂fρi(P )

∇iti
vi

+n

i
i=1
6=j

(fρ(P )− f(ρ1 (t01) , t02, ..., t
0
n))

∂ (hk)ρi (P )

∇iti
vi

]
∂

∇kxk

(iv)

(
∂ 〈Y, Z〉
∇V

)
(P ) =

〈
∂Y (P )

∇vP
, Z

〉
+

〈
Y (ρ1 (t01) , t02, ..., t

0
n),

∂Z(P )

∇vP

〉
−nk=1

[
n

i
i=1
6=j

(
gk (P )− (gk)ρi (P )

) ∂ (fk)ρi (P )

∇iti
vi

−n
i
i=1
6=j

(fρk (P )− fk(ρ1 (t01) , t02, ..., t
0
n))

∂ (gk)ρi (P )

∇iti
vi

]
,

where P = P (t01, t
0
2, ..., t

0
n).

3 Nabla 1−Forms

It follows from Definition 2.1, If f : ∧n → R is ρj-completely ∇−differentiable
at a point t0 = (t01, ..., t

0
n) ∈ (T1)k × (T2)k × ...× (Tn)k, then in elementary

calculus on on ∧n one defines the ρj-completely ∇−differential of f to be

df(P ) =
∂f(t01, ..., t

0
n)

∇jtj
dtj+

n
i=1
i 6=j

∂f(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
dti.

In this section we give a rigorous treatment using the notion of nabla 1−form.
A nabla 1−form φ on ∧n is a real-valued function on the set of all tangent

vectors to ∧n such that φ is linear at each point , that is,

φ(avP + bωP ) = aφ(vP ) + bφ(ωP ),

for any numbers a, b and tangent vectors vP , ωP at the same point of ∧n. The
set of 1−forms will be denoted by V ∗ (∧n).

We emphasize that for every tangent vector vP to ∧n, a nabla 1−form φ
defines a real number φ(vP ); and for each point P in ∧n, the resulting function

φP : V (∧n)→ R,
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is linear.
The sum of nabla 1−forms φ and ψ is defined in the usual pointwise fashion

(φ+ ψ) (vP ) = φ(vP ) + ψ(vP ) for all tangent vectors vP .

Similarly if f is a real-valued function on ∧n and φ is a nabla 1−form such
that

(fφ)(vP ) = f(P )φ(vP ),

for all tangent vectors vP .
There is also a natural way to evaluate a nabla 1−form φ on a vector field X

to obtain a real-valued function φ(X) :at each point P the value of φ(X) is the
number φ(X(P )). thus a nabla 1−form may also be viewed a a machine which
converts vector fields into real-valued functions. If φ(X) is ∇−differentiable
whenever X is, we say that φ is ∇−differentiable. As with vector field, we
shall always assume that the nabla 1−forms we deal with are differentiable.

A routine check of definitions shows that φ(X) is linear in both φ and X;
that is,

φ(fX + gY ) = fφ(X) + gφ(Y ),

and

(fφ+ gψ)(X) = fφ(X) + gψ(X),

where f and g are real-valued functions on ∧n.
Using the notion of directional ∇−derivative, we now define a most impor-

tant way to convert functions into nabla 1−forms.
If f is a ρj−completely ∇−differentiable real-valued functions on ∧n, the

differential df of f is the nabla 1−form such that

df(vP ) =
∂f(P )

∇vP
,

for all tangent vectors vP .
In fact, df is a nabla 1− form, since by definition it is a real-valued function

on tangent vectors, and by (i) of Theorem 2.4 is linear at each point P . Clearly,
df knows all rates of change of f in all directions on ∧n, so it is not surprising
that ∇−differentials are fundamental to the calculus on ∧n.

The differentials dt1, dt2, ..., dtn of the Euclidean coordinate functions. Us-
ing Theorem 2.3 we find

dti(vP ) =
∂ti(P )

∇vP
= vi.

Thus, the value of dti on an arbitrary tangent vector vP is the i.th coordinate
vi of its vector part, and does not depend at all on the point of application P.
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Since dti is a nabla 1−form, our definitions show that ψ =n
i=1 fidti is also a

nabla 1−form for any functions fi, 1 ≤ i ≤ n. The value of ψ on an arbitrary
tangent vector vP is

ψ(vP ) = (ni=1fidti) (vP ) =n
i=1 fi(P )dti(vP ) =n

i=1 fi(P )vi.

The first of these examples show that the 1−forms dt1, dt2, ..., dtn are the
analogues for tangent vectors of the natural coordinate function t1, t2, ..., tn for
points. Alternatively, we can view dt1, dt2, ..., dtn as the duals of the natural
unit vector U1, U2, ..., Un. In fact, it follows immediately from Example 3 that
the function dti(Uj) has the constant value δij, where δij is the Kronecker delta
(0 if i 6= j, 1 if i = j).

We shall now show that every nabla 1−form can be written in the concrete
manner given in Example 3.

If φ is a nabla 1−form on ∧n, then φ =n
i=1 fidti, where fi = φ(Ui). These

functions f1, f2, ..., fn are called the Euclidean coordinate functions of φ.
By definition a nabla 1−form is a function on tangent vectors; thus φ and

n
i=1fidti are equal if and only if they have the same value on every tangent
vector vP = n

i=1viUi(P ). In Example 3, we saw that

(ni=1fidti) (vP ) =n
i=1 fi(P )vi.

On the other hand,

φ(vP ) = φ (ni=1viUi(P )) =n
i=1 viφ (Ui(P )) =n

i=1 vifi(P ),

since fi = φ(Ui). Thus φ and n
i=1fidti do have the same value on every tangent

vector.
This theorem shows that a nabla 1−form on ∧n is nothing more than an

expression n
i=1fidti, and such expression are now rigorously defined as functions

on tangent vectors. Let us now how that the definition of differential of a
function agrees with the informal definition given at the start of this section.

If f is a ρj−completely ∇−differentiable real-valued functions on ∧n, then

df(P ) =
∂f(t01, ..., t

0
n)

∇jtj
dtj+

n
i=1
i 6=j

∂f(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
dti.

The value of
∂f(t01, ..., t

0
n)

∇jtj
dtj+

n
i=1
i 6=j

∂f(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
dti on an arbi-

trary tangent vector vP is
∂f(t01, ..., t

0
n)

∇jtj
vj+

n
i=1
i 6=j

∂f(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
vi. By

Theorem 2.3 df(vP ) =
∂f(P )

∇vP
is the same. Thus the nabla 1−form df and

∂f(t01, ..., t
0
n)

∇jtj
dtj+

n
i=1
i 6=j

∂f(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
dti are equal.
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Finally we determine the effect of d on products of functions and on com-
positions of functions.

Let fg be the product of ρj−completely ∇−differentiable real-valued func-
tions f and g on ∧n. Then

d(fg) = gdf + fρjdg +n
i=1
i 6=j

∂fρi
∇iti

(
gρi − g

)
dti

+n
i=1
i 6=j

(fρ − fρj)
∂gρi
∇iti

dti,

where fρ(P ) = f(ρ1(t01), ..., ρi(t
0
i ), ..., ρn(t0n)), fρj(P ) = f(t01, ..., ρj(t

0
j), ..., t

0
n)

and fρi (P ) = f(ρ1(t01), ..., t0i , ..., ρn(t0n).

Using Corollary 3, we obtain

d (fg) =
∂ (fg) (t01, ..., t

0
n)

∇jtj
dtj+

n
i=1
i 6=j

∂ (fg) (ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
dti

=
∂f(t01, ..., t

0
n)

∇jtj
g(t01, ..., t

0
n)dtj + f(t01, ..., ρj(t

0
j), ..., t

0
n)
∂g(t01, ..., t

0
n)

∇jtj
dtj

+n
i=1
i 6=j

∂f(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
g(ρ1(t01), ..., t0i , ..., ρn(t0n))dti

+n
i=1
i 6=j

f(ρ1(t01), ..., ρi(t
0
i ), ..., ρn(t0n))

∂g(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
dti

= g(t01, ..., t
0
n)df + f(t01, ..., ρj(t

0
j), ..., t

0
n)dg

+n
i=1
i 6=j

∂f(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti

(
g(ρ1(t01), ..., t0i , ..., ρn(t0n))

−g(t01, ..., t
0
n)
)
dti

+n
i=1
i 6=j

(
f(ρ1(t01), ..., ρi(t

0
i ), ..., ρn(t0n))

−f(t01, ..., ρj(t
0
j), ..., t

0
n)
) ∂g(ρ1(t01), ..., t0i , ..., ρn(t0n))

∇iti
dti

If we set fρ(P ) = f(ρ1(t01), ..., ρi(t
0
i ), ..., ρn(t0n)), fρj(P ) = f(t01, ..., ρj(t

0
j), ..., t

0
n)

and fρi (P ) = f(ρ1(t01), ..., t0i , ..., ρn(t0n), then we obtain desired result.

Let f : ∧n → R ρj−completely ∇−differentiable real-valued functions and
h : R→ R differentiable function, so the composite function h(f) : ∧n → R is
also ρj−completely ∇−differentiable. Then,

d(h(f)) =
(
h

′ ◦ f
)
df +n

i=1
i 6=j

(
h

′ ◦ fρi − h
′ ◦ f

) ∂fρi
∇jtj

dti.



Nabla 1−Forms on n−Dimensional Time Scales 109

From Corollary 3 and Theorem 2, we have

d(h ◦ f) (P ) = h
′
(f(P ))

∂f(P )

∇jtj
dtj+

n
i=1
i6=j

h
′
(fρi (P ))

∂fρi (P ))

∇jtj
dti.

= h
′
(f(P ))df(P ) +n

i=1
i 6=j

(
h

′
(fρi (P ))− h′

(f(P ))
) ∂fρi (P ))

∇jtj
dti.

where fρi (P ) = f(ρ1(t01), ..., t0i , ..., ρn(t0n). Thus the proof is complete.

4 Open Problem

In this paper, we have provided an introduction to nabla 1-forms for multivari-
able functions on n−dimensional time scales and we give a rigorous treatment
using the notion of nabla 1-forms. This study will form the basis on the efforts
in the field of discrete differential geometry and the time scale analysis.

In vector calculus, the Frenet–Serret formulas describe the kinematic prop-
erties of a particle which moves along a continuous, differentiable curve in
three-dimensional Euclidean space , R3 or the geometric properties of the curve
itself irrespective of any motion. More specifically, the formulas describe the
derivatives of the so-called tangent, normal, and binormal unit vectors in terms
of each other. This suggests the following open problem:

By using above structures, how to define Frenet–Serret formulas of a regular
curve on n−dimensional time scales?
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