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Abstract

The most famous iteration scheme for solving algebraic
equations is Newton-Raphson method. It is derived by the
first order Taylor expansion and gives a recurrence formula
for the iterations that approximate an exact root of the equa-
tion. Methods have appeared recently, based on certain recur-
rent polynomial equations which are called in this paper re-
solvent equations and from which the variations of iterations
are obtained, instead of a recurrence formula for iterations.
Thus, in 2003 J. H. He proposed a method based on a quadratic
resolvent equation, deduced by the second-order Taylor expan-
sion. Unfortunately, his method is not so effective, because
the resolvent equation has no real roots for any initial data.
Using third-order Taylor expansion, in 2008 D. Wei, J. Wu
and M. Mei obtained an iteration scheme based on solving
a cubic resolvent equation, which has always a real root and
therefore the method has no restriction regarding the choice
of the initial data. The trouble with the resolvent polynomial
equations obtained by both He and Wei-Wu-Mei is the con-
stant term that has a complicated expression. In this paper
we give two types of methods for finding the approximate val-
ues (iterations) of a real root of an algebraic equation, based
on the determination of the resolvent polynomial equation of
general order, one of its roots being the variation from an
iteration to the next. The two types of methods will be ob-
tained in accordance with the type of conditions that will be
considered. The resolvent equation of the first type methods
is the Taylor polynomial of general order in the considered
iteration. Particularly, the first-order case gives the initial
Newton-Raphston method. The resolvent equations of the sec-
ond type methods will differ from those of first type only by
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the constant term. In the second-order and third-order cases,
He and respective Wei-Wu-Mei methods are obtained. A sim-
ple algebraic calculation, based on a telescopic procedure, will
produce an improvement of the constant term of the resolvent
equations of the second type. We give several examples and
two applications to some extremum problems, namely to calcu-
lation of the minimum distance from the origin to the graphs
of two functions inverse to each other, the exponential and
the natural logarithm. The algebraic equations to which these
problems are reduced will be solved by the methods given in the
present paper.

Keywords: algebraic equations, Newton-Raphson iterative method, Taylor
expansion.
2000 Mathematics Subject Classification: 65H05, 41A25.

1 Introduction

We consider the algebraic equation

f(x) = 0, (1)

where f(x) is a function of a real variable with derivatives up to a necessary
order.

The iterative methods of Newton-Raphson type consist in determining a
sequence of iterations xn, n = 0, 1, 2, . . . , that approximate an exact real root
of the equation (1), starting with conveniently chosen initial datum. In the
new methods of this type, the variations of iterations

tn = xn+1 − xn, n = 0, 1, 2, . . . , (2)

will be obtained, starting with the initial data x0 and x1, hence with the initial
variation t0 = x1 − x0, from a recurrent polynomial equation, deduced by the
Taylor expansion of the function f(x) and named resolvent equation. From
these variations, the iterations are determined from the relation

xn+1 = xn + tn, n = 1, 2, . . . , (3)

starting with x1.
We consider the value of the function f at xn+1 given by the Taylor expan-

sion of order m = 1, 2, 3 . . . , at the point xn, with the remainder Rm,n,

f(xn+1) = Pm,n(tn) + Rm,n, n = 0, 1, 2, . . . , (4)

where

Pm,n(tn) =
m∑
k=0

f (k)(xn)

k!
tkn, n = 0, 1, 2, . . . , (5)

is the Taylor polynomial of order m in xn with the variable tn.
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2 Newton-Raphson Type Methods of First Kind

2.1 Methods of General Order

For an arbitrary natural number n ≥ 1, we require to have approximately

f(xn+1) = 0, Rm,n = 0. (6)

Then the Taylor expansion (4) takes the form

Pm,n(tn) =
m∑
k=0

f (k)(xn)

k!
tkn = 0, n = 1, 2, . . . , (7)

this being the resolvent equation of the method. Starting with x0 and x1, we
have t0 = x1−x0 and the resolvent equation (7) gives recurrently the variation
tn, which is one of the roots of the equation (7), conveniently chosen. Then
the iterations xn are obtained by relation (3).

Remark 2.1 (i) The formula (7) gives the simplest form of the resolvent
equation, from which tn can be determined. It is the Taylor polynomial in xn.

(ii) Because in the conditions (6) and (13) below we have approximate
equality, we obtain approximate values of the variations tn and iterations xn.

2.2 First Order Method: Initial Newton-Raphson Method

For m = 1, the resolvent equation (7) takes for n = 1, 2, . . . , the form

f ′(xn)tn + f(xn) = 0, with the root tn = − f(xn)

f ′(xn)
, hence according to (3), the

iterations are given by the well-known recurrence relation

xn+1 = xn −
f(xn)

f ′(xn)
, n = 1, 2, . . . , (8)

starting with x1. Here we consider x0 = 0.

Remark 2.2 Newton used a variant of this formula to solve the polynomial
equation presented in example 2.4 below, in his work Method of Fluxions, writ-
ten in 1671 but published only in 1736. In turn, J. Raphson gave the formula
in his book Analysis Aequationum Universalis, published in 1690.

2.3 Second and Third Order Methods

For m = 2, the resolvent equation (7) is the quadratic equation

1

2
f ′′(xn)t2n + f ′(xn)tn + f(xn) = 0, n = 1, 2, . . . , (9)

and for m = 3 is the cubic equation

1

6
f ′′′(xn)t3n +

1

2
f ′′(xn)t2n + f ′(xn)tn + f(xn) = 0, n = 1, 2, . . . · (10)
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2.4 Example: Newton’s Polynomial Equation

The polynomial equation f(x) = x3 − 2x − 5 = 0, was initially solved by

Newton using his recurrence relation (8), which gives xn+1 = xn−
x3
n − 2xn − 5

3x2
n − 2

=
2x3

n + 5

3x2
n − 2

, n = 1, 2, . . . · Taking x1 = 2, we obtain x2 = 2.1 and x3 = 2.0946.

The second order resolvent equation is 3xnt
2
n+(3x2

n−2)tn+x3
n−2xn−5 = 0,

n = 1, 2, . . . · Taking x0 = 0, x1 = 2 and n = 1, we obtain the equation
6t21 + 10t1−1 = 0, with the roots −1.7613 which do not agree and t1 = 0.0946.
Hence we obtain the iteration x2 = x1 + t1 = 2, 0946.

2.5 Calculation of a Radical

We calculate by the first type method the radical 3
√

2, so we solve the
equation f(x) = x3 − 2 = 0. The quadratic resolvent equation is 3xnt

2
n +

3x2
ntn +x3

n− 2 = 0, n = 1, 2, . . . · Taking x0 = x1 = 1, hence t0 = 0, we obtain
the equation 3t21 + 3t1 − 1 = 0, with the roots −1.2638, inconvenient and
t1 = 0.2638, hence x2 = x1 + t1 = 1.2638 and 3.7914t22 + 4.7916t2 + 0.0185 = 0,
with the roots −1.2599, inconvenient and t2 = −0.0039, hence x3 = x2 + t2 =
1.2599.

2.6 Example

We consider the algebraic equation f(x) = x − e−x = 0. For m = 1,

the recurrent relation (8) is xn+1 = xn −
xn − e−xn

1 + e−xn
=

1 + xn

1 + exn
, n = 1, 2, . . . ·

Taking x1 = 0.5, we obtain x2 = 0.5663 and x3 = 0.5671. In the methods
based on resolvent equation we will take x0 = x1 = 0, hence t0 = 0.

For m = 2, the resolvent equation (9) takes the form

−1

2
e−xnt2n + (1 + e−xn)tn + xn − e−xn = 0, n = 1, , 2, . . . · (11)

For n = 1, the resolvent equation (11) reduces to −0.5t21 + 2t1− 1 = 0 from
which one obtains t1 = 0.5858 = x2 and for n = 2, to equation −0.2783t22 +
1.5567t2 + 0.0291 = 0, which gives t2 = −0.0186 and x3 = x2 + t2 = 0.5672.

For m = 3, the resolvent equation (10) takes the form

1

6
e−xnt3n −

1

2
e−xnt2n + (1 + e−xn)tn + xn − e−xn = 0, n = 1, 2, . . . · (12)

From (12) we obtain the equation 0.1667t31 − 0.5t21 + 2t1 − 1 = 0 from which
one obtains t1 = 0.5647 = x2 and 0.0948t32 − 0.2843t22 + 1.5685t2 − 0.0038 = 0,
which gives t2 = 0.0024, hence x3 = 0.5671.
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3 Newton-Raphson Type Methods of Second

Kind

3.1 Methods of General Order

We now suppose m ≥ 2. For an arbitrary natural number n ≥ 1, we require
to have approximately

f(xn+1) = 0, Rm,n = Rm,n−1. (13)

Then the Taylor expansion (4) takes the form

Pm,n(tn) + Rm,n = 0. (14)

According to (13) and (4), the last relation for n substituted by n− 1, the
remainder Rm,n is given by formula

Rm,n = Rm,n−1 = f(xn)− Pm,n−1(tn−1)

and the equation (14) becomes

Pm,n(tn) + f(xn)− Pm,n−1(tn−1) = 0, n = 1, 2, . . . · (15)

According to the notation (5), the equation (15) has the form

m∑
k=0

f (k)(xn)

k!
tkn + f(xn)−

m∑
k=0

f (k)(xn−1)

k!
tkn−1 = 0, n = 1, 2, . . . , (16)

which is the resolvent equation from which tn can be recurrently determined,
starting with the value t0 = x1 − x0, given by the initial data x0 and x1.

Remark 3.1 The resolvent equation (16) was given by J. H. He, [3], for
m = 2 and by D. Wei, J. Wu and M. Mei, [4], for m = 3. The method of
resolvent polynomial equation introduced by Ji-Huan He in the above mentioned
paper must be added to other methods of solving various types of equations
proposed by the same author, such as the homotopy perturbation technique, [2]
and the variational iteration method, [3].

3.2 Improved Methods

Now we give a new form of the resolvent equation (16), more convenient
for its writing. Replacing in the form (15) of the resolvent equation (16) the
index n by n− 1, n− 2, . . . , 2, 1, we obtain the relations

Pm,n−1(tn−1) + f(xn−1)− Pm,n−2(tn−2) = 0,
Pm,n−2(tn−2) + f(xn−2)− Pm,n−3(tn−3) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pm,2(t2) + f(x2)− Pm,1(t1) = 0,
Pm,1(t1) + f(x1)− Pm,0(t0) = 0.
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Adding these relations to (15), we obtain the following improved form of
this equation,

Pm,n(tn) +
n∑

j=1

f(xj)− Pm,0(t0) = 0, n = 1, 2, . . . , (17)

hence, according to the notation (5), one obtains the resolvent equation

m∑
k=0

f (k)(xn)

k!
tkn +

n∑
j=1

f(xj)−
m∑
k=0

f (k)(x0)

k!
tk0 = 0, n = 1, 2, . . . · (18)

3.3 Simplified Methods

If we choose x0 = x1, then t0 = 0 and the equation (18) reduces to the
equation

m∑
k=0

f (k)(x1)

k!
tk1 = 0, (19)

that is the same as (7), for n = 1 and

m∑
k=0

f (k)(xn)

k!
tkn +

n∑
j=2

f(xj) = 0, (20)

that is different from (7), for n ≥ 2.

Remark 3.2 (i) For m = 2, respectively m = 3, we call the methods ob-
tained in this Section and based on the resolvent equations (19) and (20), the
improved He, respectively improved Wei-Wu-Mei method.

(ii) In both methods of first and second type, the resolvent equations, namely
the equations (7), (15), (17), (19) and (20), differ only by the constant term.
They can not be used if they have only complex roots. See example 3.5 below.

3.4 Example

We solve here by second type methods, namely by improved He and Wei-
Wu-Mei methods, the same equation f(x) = x − e−x = 0, solved in example
2.6 by methods of first type. We start with x0 = x1 = 0, hence t0 = 0. As
a result of (19), the resolvent equation for t1 is the same as in example 2.6.
Therefore, for m = 2, we have t1 = 0.5858 = x2. For n ≥ 2 the resolvent
equation is

−1

2
e−xnt2n + (1 + e−xn)tn + xn − e−xn +

n∑
j=2

(xj − e−xj) = 0.
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For n = 2 this equation is −0.2783t22 + 1.5567t2 + 0.0582 = 0, resulting
t2 = −0.0371, hence x3 = 0.5487.

For n = 3, the equation is −0.2889t23 + 1.5777t3 − 0.0289 = 0, resulting
t3 = 0.0184, hence x4 = 0.5671.

For m = 3, we have t1 = 0.5647 = x2, according to the example 2.6. For
n ≥ 2 the resolvent equation is

1

6
e−xnt3n −

1

2
e−xnt2n + (1 + e−xn)tn + xn − e−xn +

n∑
j=2

(xj − e−xj) = 0.

For n = 2 this equation is 0.0948t32 − 0.2843t22 + 1.5685t2 − 0.0076 = 0,
resulting t2 = 0.0048, hence x3 = 0.5695.

For n = 3 the equation is 0.0943t33 − 0.2829t23 + 1.5658t3 + 0.0037 = 0,
resulting t3 = −0.0024, hence x4 = 0, 5671.

3.5 Example

We give an example, taken from [6], in which He’s method does not apply.
Here we use first type and improved second type methods, i.e. the resolvent
equations (7) and (20), while in [6] the usual He and Wei-Wu-Mei methods
were used, i.e. the resolvent equation (16), for m = 2 and m = 3.

Consider equation f(x) = x3−e−x = 0. Newton-Raphson formula (8) gives

the recurrence relation xn+1 = xn −
x3
n − e−xn

3x2
n + e−xn

, n = 1, 2, . . . ·

Taking x1 = 1, we obtain x2 = 0.8123, x3 = 0.7743 and x4 = 0.7729.

For the methods based on the resolvent equation, we take x0 = x1 = t0 = 0.

For m = 2, both the first and second type methods give the same quadratic
equation t21 − 2t1 + 2 = 0, which has complex roots, therefore these methods
are not applicable.

For m = 3, both the first and second type methods give the same cubic
equation 1.1667t31−0.5t21+t1−1 = 0, from which one obtains t1 = 0.7673 = x2.
The first method gives the cubic equation 1.0774t32 + 2.3019t22 + 2.2305t2 −
0.0125 = 0, from which one obtains t2 = 0.0056, hence x3 = 0.7729. By
the second method, the improved Wei-Wu-Mei method gives the following
recurrence process

1.0774t32 + 2.0698t22 + 2.2305t2 − 0.025 = 0, t2 = 0.0111, x3 = 0.7784

and

1.0765t33 + 2.1056t23 + 2.2769t3 + 0.0125 = 0, t3 = −0.0055, x4 = 0.7729.
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4 Applications

In the applications below, the algebraic equations will be solved approxi-
mately by the Newton-Raphson method and also by the new methods, based
on the resolvent equations, given in the present work.

4.1. Determine the point on the graph of the function y = ex that is closest
to the origin of the coordinate axes in plane and the distance from the origin
to graph.

We should minimize the distance d(x) =
√
x2 + e2x from origin to an arbi-

trary point on the graph, hence its square, namely the function d2(x) = x2+e2x.
With this end in view, it is necessary to have (d2(x))′ = 2x+ 2e2x = 0. There-
fore we have to solve the equation f(x) = x + e2x = 0, which is done by the
above methods. For those based on the resolvent equations, the initial data
x0 = x1 = 0, t0 = 0 are used.

The Newton-Raphson method is based on the recurrence relation

xn+1 =
(2xn − 1)e2xn

1 + 2e2xn
, n = 1, 2, . . . .

Taking x1 = 0, we have x2 = −0.3333, x3 = −0.4222, and x4 = −0.4263.
By the first type method of second-order, the resolvent equations are 2t21 +

3t1 + 1 = 0, from which one obtains t1 = −0.5 = x2 and 0.7358t22 + 1.7358t2 −
0.1321 = 0, from which one obtains t2 = 0.0738, hence x3 = −0.4262.

By the improved He’s method we have the same first resolvent equation,
with the root t1 = −0.5 = x2, then 0.7358t22 + 1.7358t2 − 0.2642 = 0, with the
root t2 = 0.1435, hence x3 = x2+t2 = −0.3565, 0.9804t23+1.9803t3+0.1353 = 0,
with the root t3 = −0.0708, hence x4 = x3 + t3 = −0.4273 and 0.8509t24 +
1.8509t4−0.0021 = 0 with the root t4 = 0.0011, hence x5 = x4 + t4 = −0.4262.

By the first type method of third-order, we obtain the resolvent equations
1.3333t31 + 2t21 + 3t1 + 1 = 0, with the root t1 = −0.417 = x2 and 0.5791t32 +
0.8686t22 + 1.8686t2 + 0.0173 = 0, hence t2 = −0.0093 and x3 = −0.4263.

By the improved Wei, Wu and Mei method we have the same first resolvent
equation, with the root t1 = −0.417 = x2, then 0.5791t32+0.8686t22+1.8686t2+
0.0346 = 0, from which one obtains t2 = −0.0187, hence x3 = x2+t2 = −0.4357
and 0.5578t33 + 0.8367t23 + 1.8367t3 − 0.0174 = 0, from which one obtains t3 =
0.0094, hence x4 = x3 + t3 = −0.4263.

It follows that the point on the graph, which is the closest to the origin of
coordinates is

(x, ex) = (− 0.426, 0.653)

the minimum distance being d(x) =
√
x2 + e2x = 0.78.

4.2. Determine the point on the graph of the function y = lnx that is
closest to the origin of the coordinate axes in plane and the distance from the
origin to graph.
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We should minimize the distance d(x) =
√
x2 + ln2 x from the origin to an

arbitrary point on the graph, hence its square, namely the function d2(x) =

x2 + ln2 x. For this, it is necessary to have (d2(x))′ = 2x +
2

x
lnx =

2

x
(x2 +

lnx) = 0. Therefore we should solve the equation f(x) = x2 + lnx = 0, which
is done by the above methods. For the methods based on resolvent equations
the initial data x0 = x1 = 0.5, t0 = 0 are used.

The Newton-Raphson method is based on recurrence relation xn+1 = xn−
x3
n + xn lnxn

2x2
n + 1

. Taking x1 = 0.5, we have x2 = 0.6477 and x3 = 0.6529.

By the first type method of second-order, we have the resolvent equations
−t21 + 3t1 − 0.4431 = 0, with the roots 2.8442 and t1 = 0.1558, hence x2 =
0.6558, and −0.1626t22 + 2.8365t2 + 0.0082 = 0, from which one obtains t2 =
−0.0029 and x3 = 0.6529.

By the improved He’s method we obtain the same first resolvent equation
from which one obtains t1 = 0.1558, hence x2 = x1 + t1 = 0.6558, and the
second resolvent equation −0.1626t22 + 2.8365t2 + 0.0164 = 0, with the roots
17.4504 and t2 = −0.0058, hence x3 = x2 + t2 = 0.65.

By the first type method of third-order, we have the resolvent equations
2.6667t31 − t21 + 3t1 − 0.4431 = 0, with real root t1 = 0.1523, hence x2 =
x1 + t1 = 0.6523, then 0.0417t32− 0.1626t22 + 2.8365t2 + 0.0082 = 0, from which
t2 = −0.0029, hence x3 = 0.6494 and 0.0913t33−0.1856t23 +2.8387t3−0.01 = 0,
from which t3 = 0.0035, hence x4 = 0.6529.

By the improved Wei, Wu and Mei method we obtain by the same first
resolvent equation the root t1 = 0.1523, hence x2 = x1 + t1 = 0.6523 and
1.201t32 − 0.1751t22 + 2.8376t2 − 0.0036 = 0, with real root t2 = 0.0013, hence
x3 = x2 + t2 = 0.6536.

It follows that the point on the graph, which is the closest to the origin, is

(x, lnx) = (0.653,−0.426),

the minimum distance being d(x) =
√
x2 + ln2 x = 0.78.
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Remark 4.1 The points obtained in the two applications are symmetrical
about the bisetrix of the first quadrant and the obtained minimum distances are
the same, because the two considered functions are inverse to each other.

5 Conclusions and open problems

Following the direction initiated by J. H. He of finding new methods of
Newton-Raphson type for solving algebraic equations, which are based on re-
solvent polynomial equations, in this paper we present methods whose resol-
vent equations are simpler than those previously given by He and Wei-Wu-Mei.
Taking into consideration the importance of finding such new methods and de-
termining their theoretical foundation, we propose the following open problems
related to the methods presented in this paper:

5.1. Demonstrate the convergence of the methods of Newton-Raphson
type based on resolvent equations and determine their speed of convergence.
Compare different methods presented in this paper in terms of their speed of
convergence.

5.2. Expand the methods based on resolvent equations to systems of
algebraic equations.

5.3 Establish criteria to indicate the real root of the resolvent polynomial
equation that can be taken as variation of iterations of the exact real root of
an algebraic equation.
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