
Int. J. Open Problems Compt. Math., Vol. 5, No. 2, June 2012
ISSN 1998-6262; Copyright c©ICSRS Publication, 2012
www.i-csrs.org

Some Open Problems On a Class of Finite Groups

Marius Tărnăuceanu
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Abstract

In this note we introduce and study a class of finite groups
for which the exponents of subgroups satisfy a certain ine-
quality. It is closely connected to some well-known arithmetic
classes of natural numbers.
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1 Introduction

Let n be a natural number and σ(n) be the sum of all divisors of n. We say
that n is a deficient number if σ(n) < 2n and a perfect number if σ(n) = 2n
(for more details on these numbers, see [3]). Thus, the set consisting of both
the deficient numbers and the perfect numbers can be characterized by the
inequality ∑

d∈Ln

d ≤ 2n ,

where Ln = {d ∈ N | d|n}.
Now, let G be a finite group. Then the set L(G) of all subgroups of G forms

a complete lattice with respect to set inclusion, called the subgroup lattice of
G. Two remarkable subsets of L(G) are constituted by all cyclic subgroups
and by all normal subgroups of G, respectively. They are called the poset of
cyclic subgroups and the normal subgroup lattice of G and will be denoted by
C(G) and N(G). Notice that N(G) is a sublattice of L(G), while C(G) is in
general only a subposet of L(G). If the group G is cyclic of order n, then

L(G) = C(G) = N(G)
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and these are isomorphic to the lattice Ln. So, the fact that n is deficient or
perfect can be written in the following equivalent three ways:∑

H∈L(G)

|H| ≤ 2|G| , (1)

∑
H∈C(G)

|H| ≤ 2|G| , (2)

∑
H∈N(G)

|H| ≤ 2|G| . (3)

In [1] and [8] we have studied the classes Ci, i = 1, 2, 3, consisting of all
finite groups G which satisfy the above inequalities, respectively. Recall only
that the unique groups contained in C1 are the cyclic groups of deficient or
perfect orders and that C1 is properly included in C2.

The starting point for our discussion is given by the remark that (1)-(3)
also equivalent for finite cyclic groups to the inequality∑

H∈L(G)

exp(H) ≤ 2 exp(G) , (4)

where exp(H) denotes the exponent of the subgroup H of G, that is the lower
common multiple of the orders of elements of G. Hence, in a similar manner,
one can introduce the class C consisting of all finite groups G which satisfy (4).
Its investigation is the main goal of our paper.

The paper is organized as follows. In Section 2 we study some basic proper-
ties of C and the connections with Ci, i = 1, 2, 3. The containment of some im-
portant classes of finite groups, as p-groups, nilpotent groups, dihedral groups,
ZM-groups and symmetric groups to C is also discussed. In the final section
we propose several problems with respect to this subject.

Most of our notation is standard and will not be repeated here. Basic
definitions and results on groups can be found in [2] and [5]. For subgroup
lattice concepts we refer the reader to [4] and [6].

2 Main results

For a finite group G let us denote

σ(G) =
1

exp(G)

∑
H∈L(G)

exp(H) .
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In this way, C is the class of all finite groups G for which σ(G) ≤ 2. First of
all, we remark that σ is a multiplicative function, that is if G and G′ are two
finite groups satisfying gcd(|G|, |G′|) = 1, then

σ(G×G′) = σ(G)σ(G′) .

By a standard induction argument, it follows that if Gi, i = 1, 2, . . . , k, are
finite groups of coprime orders, then

σ(

k×
i=1

Gi) =
k∏

i=1

σ(Gi) .

Obviously, C contains the finite cyclic groups of prime order. On the other
hand, we easily obtain

σ(Zp × Zp) =
1 + 2p+ p2

p
> 2, for any prime p .

This relation shows that C is not closed under direct products or extensions.
Observe next that for every finite group G we have

σ(G) ≥ 1

exp(G)

∑
H∈C(G)

exp(H) ≥ 1

|G|
∑

H∈C(G)

|H|

and thus if G does not belong to C2, then σ(G) > 2. Consequently, the
following result holds.

Theorem 1. The class C is contained in the class C2.

In the following we will focus on characterizing some particular classes of
groups in C. The simplest case is constituted by finite p-groups.

Lemma 2. A finite p-group is contained in C if and only if it is cyclic.

Proof. Let G be a finite p-group of order pn which is contained in C, set
pm = exp(G) and suppose that G is not cyclic. Then m < n. It is well-
known that G possesses at least an element a of order pm. One obtains that
exp(〈a〉) = pm and therefore

σ(G) ≥ exp(1) + exp(〈a〉) + exp(G)

pm
=

1 + 2pm

pm
> 2.

This shows that G does not belong to C, a contradiction.
Conversely, for a finite cyclic p-group G of order pn, we obviously have

σ(G) =
1 + p+ ...+ pn

pn
=

pn+1 − 1

pn+1 − pn
≤ 2.
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The above lemma leads to a precise characterization of finite nilpotent
groups contained in C. It shows that the finite cyclic groups of deficient or
perfect order are in fact the unique such groups.

Theorem 3. Let G be a finite nilpotent group. Then G is contained in C if
and only if it is cyclic and its order is a deficient or perfect number.

Proof. Assume that G belongs to C and let

k×
i=1

Gi be its decomposition as a

direct product of Sylow subgroups. Since Gi, i = 1, 2, ..., k, are of coprime
orders, one obtains

σ(G) =
k∏

i=1

σ(Gi) ≤ 2.

This inequality implies that σ(Gi) ≤ 2, for all i = 1, k. So, each Gi is contained
in C and it must be cyclic, by Lemma 2. Therefore G itself is cyclic and | G |
is a deficient or perfect number.

The converse is obvious.

Theorem 3 shows that in order to find examples of noncyclic groups con-
tained in C, we must look to some classes of nonnilpotent groups. Three such
classes are investigated in the following theorem.

Theorem 4. The following finite groups are not contained in C:

1. dihedral groups;

2. ZM-groups;

3. symmetric groups.

Proof. 1. The exponent of the dihedral group

D2n = 〈x, y | xn = y2 = 1, yxy = x−1〉, n ≥ 2,

can be easily computed:

exp(D2n) =


2n, n ≡ 1 (mod 2)

n, n ≡ 0 (mod 2) .

For every divisor d of n, D2n has a unique cyclic subgroup of order d and
n
d

subgroups isomorphic to D2d. Denote by τ(n) the number of divisors
of n. We infer that for n odd we have

σ(D2n) =
1

2n

∑
d|n

d+
∑
d|n

n

d
2d

 =
1

2n
(σ(n) + 2nτ(n)) > τ(n) ≥ 2,
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while for n even we have

σ(D2n) ≥ 1

n

∑
d|n

d+
∑
d|n

n

d
d

 =
1

n
(σ(n) + nτ(n)) > τ(n) ≥ 2.

Hence D2n does not belong to C.

2. Recall that a ZM-group is a finite nonabelian group with all Sylow sub-
groups cyclic. By [2], such a group is of type

ZM(m,n, r) = 〈a, b | am = bn = 1, b−1ab = ar〉,

where the triple (m,n, r) satisfies the conditions

gcd(m,n) = gcd(m, r − 1) = 1 and rn ≡ 1 (mod m).

Obviously, we have
exp(ZM(m,n, r) = mn.

Set

L =

{
(m1, n1, s) ∈ N3 | m1 | m, n1 | n, s < m1, m1 | s

rn − 1

rn1 − 1

}
.

Then it is well-known that there is a bijection between L and the sub-
group lattice of ZM(m,n, r), namely the function that maps a triple
(m1, n1, s) ∈ L into the subgroup H(m1,n1,s) defined by

H(m1,n1,s) =

n
n1⋃
k=1

α(n1, s)
k〈am1〉 = 〈am1 , α(n1, s)〉,

where α(x, y) = bxay, for all 0 ≤ x < n and 0 ≤ y < m. Since
exp(H(m1,n1,s)) = mn

m1n1
, we infer that

σ(ZM(m,n, r)) =
1

mn

∑
m1| m

∑
n1| n

mn

m1n1

gcd

(
m1,

rn − 1

rn1 − 1

)
≥

≥ 1

mn
(x+ y) ,

where

x =
∑
n1| n

mn

n1

gcd

(
1,
rn − 1

rn1 − 1

)
= mσ(n)

and

y =
∑
n1| n

n

n1

gcd

(
m,

rn − 1

rn1 − 1

)
≥ mn.



Some open problems on a class of finite groups 93

The above inequalities lead to

σ(ZM(m,n, r)) ≥ 1

mn
(mσ(n) +mn) >

1

mn
(mn+mn) = 2,

which proves that ZM(m,n, r) is not contained in C.

3. The exponent of the symmetric group Sn is given by

exp(Sn) = lcm(1, 2, . . . , n) .

Clearly, we have

exp(Sn) = lcm(exp(Sn−1), n) ≤ nexp(Sn−1) .

On the other hand, Sn has at least n subgroups isomorphic to Sn−1,
namely Hi = {σ ∈ Sn | σ(i) = i}, i = 1, 2, ..., n. One obtains

σ(Sn) ≥ 1

exp(Sn)

(
1 +

n∑
i=1

exp(Hi) + exp(Sn)

)
=

=
1

exp(Sn)
(1 + nexp(Sn−1) + exp(Sn)) ≥

≥ 1

exp(Sn)
(1 + 2exp(Sn)) > 2,

implying that Sn does not belong to C.

The containment to C can be also studied for other important classes of
finite groups. Unfortunately, for the moment we are not able to decide whether
C consists only of cyclic groups of deficient or perfect orders.

3 Open problems

Problem 1. Determine all finite groups contained in the class C. Is it true
that C = C1?

Problem 2. Study if C is closed under subgroups and homomorphic images,
i.e. if all subgroups and all quotients of a group in C also belong to C.

Problem 3. Investigate the class C ′ consisting of all finite groups G for which

σ′(G) =
1

exp(G)

∑
H∈N(G)

exp(H) ≤ 2 .
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