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Abstract

Let N be a prime left near-ring, and I be a nonzero semigroup ideal of N .
We prove that if N admits a derivation d satisfying any one of the following
properties: (i) d([x, y]) = [x, y], (ii) d([x, y]) = [d(x), y], (iii) [d(x), y] = [x, y],
(iv) d(x◦y) = x◦y, (v) d(x)◦y = x◦y and (vi) d(x)◦y = x◦y for all x, y ∈ I,
then N is a commutative ring. Moreover, example proving the necessity of the
primeness condition is given.

Keywords: prime near-rings, derivations, commutativity.
2010 MSC: 16Y30, 13N15, 15A27.

1 Introduction

A left near-ring is a set N with two operations + and · such that (N,+) is a
group and (N, ·) is a semigroup satisfying the left distributive law x · (y+ z) =
x · y + x · z for all x, y, z ∈ N. A left near-ring N is called Zero symmetric
if 0 · x = 0 for all x ∈ N (recall that left distributivity yields x · 0 = 0).
Throughout this paper, unless otherwise specified, we will use the word near-
ring to mean zero symmetric left near-ring and denote xy instead of x · y.
A nonempty subset I of N will be called a semigroup ideal if IN ⊂ I and
NI ⊂ I. An additive mapping d : N −→ N is said to be a derivation if
d(xy) = xd(y) + d(x)y for all x, y ∈ N, or equivalently, as noted in [7], that
d(xy) = d(x)y + xd(y) for all x, y ∈ N. According to [4], a near-ring N is said



8 Abdelkarim Boua

to be prime if xNy = 0 for x, y ∈ N implies x = 0 or y = 0. For any x, y ∈ N,
the symbol [x, y] stands for the commutator xy − yx, while the symbol x ◦ y
will denote xy+ yx. The symbol Z(N) will represent the multiplicative center
of N, that is, Z(N) = {x ∈ N | xy = yx for all y ∈ N}. Recall that N is called
2-torsion free if 2x = 0 implies x = 0 for all x ∈ N.
Recently, there has been a great deal of work concerning commutativity of
prime and semi-prime rings with derivations satisfying certain differential iden-
tities (see for example [2], [3], [4], [5], [6]) asserting that the existence of a
suitably-constrained derivation on a prime near-ring forces the near-ring to
be a ring. In this paper we continue the line of investigation regarding the
study of prime near-rings with derivations. More precisely, we shall prove
that a prime near-ring which admits a nonzero derivation satisfying certain
differential identities must be a commutative ring.

2 Main Results

In order to prove our main theorems, we shall need the following lemmas.

Lemma 2.1 ([3], Theorem 2.1) Let N be a prime near-ring, and I be a
nonzero semigroup ideal of N . If N admits a nonzero derivation d for which
d(I) ⊂ Z(N), then N is a commutative ring.

Lemma 2.2 ([4], Lemma 1) Let d be an arbitrary derivation on the near-
ring N . Then N satisfies the following partial distributive law:

(xd(y) + d(x)y)z = xd(y)z + d(x)yz for all x, y, z ∈ N.

Lemma 2.3 ([3], Lemma 1.4(i)) Let N be a prime near-ring, and I a
nonzero semigroup ideal of N . Let d be a nonzero derivation on N . If x, y ∈ N
and xIy = {0}, then x = 0 or y = 0.

Lemma 2.4 Let N be a 2-torsion free prime near-ring, and I be a nonzero
semigroup ideal of N . If N admits a nonzero derivation d for which d(−I) ⊂
Z(N), then N is a commutative ring.

Proof. By hypothesis given we have

d(−x) ∈ Z(N) for all x ∈ I. (1)

Replacing x by tx in (1), where t ∈ Z(N), we get

d(t)(−x) + td(−x) ∈ Z(N) for all x ∈ I, t ∈ Z(N).
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This implies that

d(t)(−x) ∈ Z(N) for all x ∈ I, t ∈ Z(N). (2)

Hence
d(t)N [−x, u] = {0} for all x ∈ I, t ∈ Z(N), u ∈ N. (3)

Since N is prime and using (3), we obtain

d(Z(N)) = 0 or − x ∈ Z(N) for all x ∈ I. (4)

(i) If d(Z(N)) = {0}, then 0 = d2(u(−x)) = d2(u)(−x)+2d(u)d(−x)+ud2(−x)
for all x,∈ I, u ∈ N which, because of d2(−x) = 0, forces

d2(u)(−x) + 2d(u)d(−x) = 0 for all x ∈ I, u ∈ N. (5)

Applying d again, we get

d3(u)(−x) + 3d2(u)d(−x) = 0 for all x ∈ I, u ∈ N. (6)

Taking d(u) instead of u in (6) gives

d3(u(−x)) + 2d2(u)d(−x) = 0

Combining the last equation with (6) we obtain d2(u)d(−x) = 0 so that

d2(u)Nd(−x) = 0 for all x ∈ I, u ∈ N. (7)

By primeness of N , equation (7) gives either d2(u) = 0 or d(−x) = 0. Hence

d2(u) = 0 or d(x) = 0 for all x ∈ I, u ∈ N. (8)

If d(x) = 0 for all x ∈ I, then it is easy to find that d = 0 which contradicts
our hypothesis. If d2(u) = 0 for all u ∈ N , then ([4], Lemma 3) assures that
d = 0 which is impossible.
(ii) Assume that

−x ∈ Z(N) for all x ∈ I.

Replacing x by vx, where v ∈ N, in the above equation we have v(−x) ∈ Z(N)
and thus

(−x)N [y, v] = 0 for all x ∈ I, y, v ∈ N. (9)

Since N is prime and I 6= {0} so that y ∈ Z(N) for all y ∈ N . Therefore,
d(y) ∈ Z(N), then d(N) ⊂ Z(N). Using Lemma 2.1, we conclude that N is a
commutative ring. This completes the proof of our theorem.

Remark 2.5 Note that −I is a semigroup right ideal, for if x ∈ I and
w ∈ N, (−x)w = −xw ∈ −I. Therefore, the result follows from Lemma 2.1
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Theorem 2.6 Let N be a prime near-ring, and I be a nonzero semigroup
ideal of N . If N admits a nonzero derivation d such that d([x, y]) = [x, y] for
all x, y ∈ I, then N is a commutative ring.

Proof. Assume that

d([x, y]) = [x, y] for all x, y ∈ I. (10)

Replacing y by xy in (10), because of [x, xy] = x[x, y], we get

x[x, y] = d(x[x, y]) forall x, y ∈ I.

Since d(x[x, y]) = xd([x, y]) + d(x)[x, y], then according to (10) we obtain

x[x, y] = x[x, y] + d(x)[x, y]

and therefore d(x)[x, y] = 0. Hence

d(x)xy = d(x)yx for all x, y ∈ I. (11)

Substituting yz for y in (11), where z ∈ N , because of d(x)xyz = d(x)yxz, we
obtain d(x)y[x, z] = 0 for all x, y ∈ I, z ∈ N which leads to

d(x)I[x, z] = 0 for all x ∈ I, z ∈ N. (12)

Using Lemma 2.3, equation (12) reduces to

d(x) = 0 or [x, z] = 0 for all x ∈ I, z ∈ N. (13)

From (13) it follows that for each fixed x ∈ I we have

d(x) = 0 or x ∈ Z(N). (14)

But x ∈ Z(N) also implies that d(x) ∈ Z(N) and equation (14) forces

d(x) ∈ Z(N) for all x ∈ I. (15)

In the light of (15), d(I) ⊂ Z(N) and using Lemma 2.1 we conclude that N is
a commutative ring. This completes the proof of our theorem.

Theorem 2.7 Let N be a prime near-ring, and I be a nonzero semigroup
ideal of N . If N admits a nonzero derivation d such that either d([x, y]) =
[d(x), y] for all x, y ∈ I or [x, y] = [d(x), y] for all x, y ∈ I, then N is a
commutative ring.
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Proof. Assume that

d([x, y]) = [d(x), y] for all x, y ∈ I. (16)

Replacing y by xy in (16) we get

[d(x), xy] = d(x[x, y]) for all x, y ∈ I. (17)

Since d(x[x, y]) = d(x)[x, y] + xd([x, y]), in light of (16), equation (17) reduces
to

d(x)yx = xd(x)y for all x, y ∈ I. (18)

Substituting yz for y in (18), where z ∈ N and using xd(x)yz = d(x)yxz, we
obtain d(x)y[x, z] = 0. Hence

d(x)I[x, z] = 0 for all x ∈ I, z ∈ N. (19)

Since equation (19) is the same as equation (12), arguing as in the proof of
Theorem 2.6, we conclude that N is a commutative ring.
Now suppose that

[d(x), y] = [x, y] for all x, y ∈ I. (20)

Replacing x by yx in (20), because of [yx, y] = y[x, y], we get

[d(yx), y] = y[x, y] = y([d(x), y]) for all x, y ∈ I.

Since [d(yx), y] = d(yx)y − yd(yx), then according to Lemma 2.2 we obtain

yd(x)y + d(y)xy − yd(y)x− y2d(x) = yd(x)y − y2d(x),

so that
d(y)xy = yd(y)x for all x, y ∈ I. (21)

Since equation (21) is the same as equation (12), arguing as in the first case
we find that N is a commutative ring.

The conclusion of Theorems 2.6 and 2.7 no remains valid if we replace the
product [x, y] by x ◦ y. In fact, we obtain the following result:

Theorem 2.8 Let N be a 2-torsion free prime near-ring, and I be a nonzero
semigroup ideal of N . Then there is no derivation d such that d(x ◦ y) = x ◦ y
for all x, y ∈ I.

Proof. If there exists a nonzero d such that

d(x ◦ y) = xy + yx for all x, y ∈ I. (22)
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Then, replacing y by xy in (22), we get

d(x ◦ (xy)) = x2y + xyx for all x, y ∈ I. (23)

Since x ◦ (xy) = x(x ◦ y), then (22) yields d(x ◦ (xy)) = x(x ◦ y) + d(x)(x ◦ y).
Hence equation (23) reduces to

x(x ◦ y) + d(x)(x ◦ y) = x2y + xyx for all x, y ∈ I. (24)

As x2y + xyx = x(x ◦ y), then (24) assures that

d(x)(x ◦ y) = 0 for all x, y ∈ I,

which leads to
d(x)xy = −d(x)yx for all x, y ∈ I. (25)

Substituting yz for y in (25), where z ∈ N, we find that

−d(x)yzx = d(x)xyz = (−d(x)yx)z = d(x)y(−x)z for all x, y ∈ I, z ∈ N.
(26)

Since −d(x)yzx = d(x)yz(−x), then (26) becomes

d(x)yz(−x) = d(x)y(−x)z for all x, y ∈ I, z ∈ N. (27)

Then
d(x)I[−x, z] = 0 for all x, y ∈ I, z ∈ N. (28)

By Lemma 2.3, equation (28) assures that for each x ∈ I, either −x ∈ Z(N)
or d(x) = 0. Accordingly,

d(−x) = 0 or − x ∈ Z(N) for all x ∈ I. (29)

In light of d(Z(N)) ⊂ Z(N), equation (29) yields then

d(−x) ∈ Z(N) for all x ∈ I. (30)

Hence d(−I) ⊂ Z(N), by Lemma 2.4, equation (30) assures thatN is a commu-
tative ring. Use the fact that N is a 2-torsion free, the hypothesis d(x◦y) = x◦y
for all x, y ∈ I, becomes

d(xy) = xy for all x, y ∈ I.

So that
d(x)y + xd(y) = xy for all x, y ∈ I.

Replacing x by xz, then the last equation can be written as xzd(y) = 0 for all
x, y, z ∈ I, thus xId(y) = 0 for all x, y ∈ I. Since I 6= {0}, then Lemma 2.3
shows that d = 0 on I, then it is easy to see that d = o on N ; a contradiction.
If there exists a zero derivation d such that d(x ◦ y) = x ◦ y for all x, y ∈ I,
then we can easily see that x = 0 for all x ∈ I; a contradiction.
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Theorem 2.9 Let N be a 2-torsion free prime near-ring, and I be a nonzero
semigroup ideal of N . Then there is no derivation d such that d(x) ◦ y = x ◦ y
for all x, y ∈ I.

Proof. Suppose there exists a nonzero derivation d such that

d(x ◦ y) = d(x)y + yd(x) for all x, y ∈ I. (31)

Then, replacing y by xy in (31), we get

d(x ◦ (xy)) = d(x)xy + xyd(x) for all x, y ∈ I. (32)

Since x ◦ (xy) = x(x ◦ y), then d(x ◦ (xy)) = d(x)(x ◦ y) + xd(x ◦ y). As
d(x ◦ y) = d(x) ◦ y by hypothesis, then d(x ◦ (xy)) = d(x)(x ◦ y) + x(d(x) ◦ y).
Hence equation (32) reduces to

d(x)yx = −xd(x)y for all x, y ∈ I. (33)

Substituting yz for y in (33), where z ∈ N we find that

d(x)yzx = −xd(x)yz = xd(x)y(−z) = d(x)y(−x)(−z) = −d(x)y(−x)z. (34)

Since −d(x)yzx = d(x)yz(−x), then (34) becomes

d(x)yz(−x) = d(x)y(−x)z for all x, y ∈ I, z ∈ N. (35)

Since equation (35) is the same as equation (27), arguing as in the proof of
Theorem 2.8 we conclude that N is a commutative ring. Use the fact that N
is a 2-torsion free and the hypothesis of Theorem we arrive at

d(x)y = xy for all x, y ∈ I.

Replacing x par xz, we get d(x)zy + xd(z)y = xzy for all x, y, z ∈ I, then
d(x)zy = 0 for all x, y, z ∈ I. Since I 6= 0, then Lemma 2.3 assure that d = 0;
a contradiction. If there exists a zero derivation d such that d(x) ◦ y = x ◦ y
for all x, y ∈ I, then we can easily see that x = 0 for all x ∈ I; a contradiction.

Theorem 2.10 Let N be a 2-torsion free prime near-ring, and I be a
nonzero semigroup ideal of N . If N admits a derivation d such that d(x◦y) =
d(x) ◦ y for all x, y ∈ I, then d = 0.

Proof.Suppose that

d(x) ◦ y = x ◦ y for all x, y ∈ I. (36)

Replacing x by yx in (36) we obtain

d(yx) ◦ y = y(x ◦ y) = y(d(x) ◦ y) for all x, y ∈ I. (37)
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Since d(yx) ◦ y = d(yx)y + yd(yx), then according to Lemma 2.2 we obtain

yd(x)y + d(y)xy + yd(y)x+ y2d(x) = yd(x)y + y2d(x),

this implies that

d(y)xy = −yd(y)x for all x, y ∈ I. (38)

As equation (38) is the same as equation (33), arguing as above we conclude
that N is a commutative ring. Using the hypothesis of Theorem we have

xd(y) = 0 for all x, y ∈ I.

Hence
xId(y) = 0 for all x, y ∈ I.

Since I 6= {0}, then Lemma 2.3 shows that d = 0 on I, then it is easy to see
d = 0 on N .

The following example demonstrate that the primeness hypothesis in Theo-
rems 2.6, 2.7, 2.8, 2.9 and 2.10 cannot be omitted.

Example. Let S be a commutative near-ring. Set N =

{(
x y
0 0

)
|x, y ∈ S

}
and I =

{(
0 x
0 0

)
|x ∈ S

}
. It is clear that N is not prime. Moreover,

d

(
x y
0 0

)
=

(
0 x
0 0

)
, d is a nonzero derivation of N and I is a semigroup

ideal of N such that: (i) d([A,B]) = [A,B], (ii) d([A,B]) = [d(A), B], (iii)
[d(A), B] = [A,B], (iv) d(A ◦ B) = A ◦ B, (v) d(A) ◦ B = d(A) ◦ B and (vi)
d(A) ◦B = A ◦B for all A,B ∈ I, but N is a noncommutative ring.

3 Open Problem

In this section we introduce the following open question:
(i) Does the results remain valid for I a left semigroup ideal?
(ii) Does the results remain valid for I a right semigroup ideal?
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