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Abstract 

     In this paper, we characterize Smarandache 1TM  curves of spacelike 
biharmonic B-slant helices according to Bishop frame in the Lorentzian 
group of rigid motions (1,1)E .  
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1      Introduction 

Let (1,1)E  be the group of rigid motions of Euclidean 2-space. This 

consists of all matrices of the form 

 .

100

coshsinh

sinhcosh

















zxx

yxx

 

 

Topologically, (1,1)E  is diffeomorphic to 
3R  under the map 
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It's Lie algebra has a basis consisting of 
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The bracket relations are 

       .=0,=,= 23132321 XX,XX,XXX,X  

 

We consider left-invariant Lorentzian metrics which has a pseudo-

orthonormal basis  ., 321 XX,X  We consider left-invariant Lorentzian metric [10], 

given by 

       ,=
2

31212
312121 dxedxedxedxedxg xxxx    

where  

       1.==1,= 332211 X,XX,XX,X ggg   

 

Let coframe of our frame be defined by 

 .=,=,= 312133121211 dxedxedxedxedx xxxx  
θθθ  

 

In this paper, we characterize Smarandache 1TM  curves of spacelike 

biharmonic slant helices according to Bishop frame in the Lorentzian group of 

rigid motions (1,1)E . 

 

2      Smarandache 1TM  Curves of Spacelike 

Biharmonic B-Slant Helices in the Lorentzian Group of 

Rigid Motions (1,1)E  

 

Let (1,1): EI  be a non geodesic spacelike curve on the (1,1)E  

parametrized by arc length. Let }{ BN,T,  be the Frenet frame fields tangent to the 

(1,1)E  along   defined as follows: 
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T  is the unit vector field '  tangent to  , N  is the unit vector field in the 

direction of TT  (normal to  ), and B  is chosen so that }{ BN,T,  is a positively 

oriented orthonormal basis. Then, we have the following Frenet formulas: 

 N,TT =  

 B,TNT   =  (2.1) 

 ,= NBT   

where   is the curvature of   and   is its torsion and 

       1,=1,=1,= BB,NN,TT, ggg   

       0.=== BN,BT,NT, ggg  

 

The Bishop frame or parallel transport frame is an alternative approach to 

defining a moving frame that is well defined even when the curve has vanishing 

second derivative. The Bishop frame is expressed as  

 ,= 2211 MMTT kk   

 ,= 11 TMT k  (2.2) 

 ,= 22 TMT k  

where 

       1,=,1,=,1,= 2211 MMMMTT, ggg   

       0.=,=,=, 2121 MMMTMT ggg  

 

Here, we shall call the set }{ 11 M,MT,  as Bishop trihedra, 1k  and 2k  as 

Bishop curvatures and  ss ' =)( , .=)( 2

1

2

2 kks   Thus, Bishop curvatures 

are defined by 

  ,sinh)(=1 ssk   

  .cosh)(=2 ssk   

 

With respect to the orthonormal basis }{ 321 e,e,e  we can write 
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Definition 2.1. Let (1,1): EI  be a unit speed regular curve in the 

Lorentzian group of rigid motions (1,1).E  and }{ 2M,MT, 1  be its moving Bishop 

frame. Smarandache 1TM  curves are defined by 
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Definition 2.2.  [7], A regular spacelike curve (1,1): EI  is called a 

B-slant helix provided the timelike unit vector 1M  of the curve   has constant 

angle   with some fixed timelike unit vector ,u  that is 

    .forallcosh=,1 Isusg M  (2.4) 

 

The condition is not altered by reparametrization, so without loss of 

generality we may assume that slant helices have unit speed. The slant helices can 

be identified by a simple condition on natural curvatures. 

 

Lemma 2.3. [7], Let (1,1): EI  be a unit speed spacelike curve with 

non-zero natural curvatures. Then   is a slant helix if and only if  

 .tanh=
2

1 
k

k
 (2.5) 

 

  

Theorem 2.4.  Let (1,1): EI  is a non geodesic spacelike biharmonic 

B-slant helix in the Lorentzian group of rigid motions (1,1).E  Then, the 

parametric equations of Smarandache 1TM  curves of spacelike biharmonic slant 

helix are 
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where 21, DD  are constants of integration. 

 

Proof. Assume that   is a non geodesic spacelike biharmonic B-slant 

helix according to Bishop frame. 

From Definition 3.2, we obtain 

     .sinsinhcossinhcosh= 32122111 XXXM DsDDsD   (2.7) 

 

Using (1.1) in (2.7), we can choose 

     .cossin= 3212212 XXM DsDDsD   (2.8) 

 

From above equations we get 

     .sincoshcoscoshsinh 3212211 XXX=T DsDDsD      (2.9) 
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Substituting (2.7) and (2.9) in (2.4) we have (2.6), which completes the 

proof. 

 

In terms of Eqs. (1.1) and (2.6), we may give: 

 

Corollary 2.5.  Let (1,1): EI  is a non geodesic spacelike biharmonic 

B-slant helix in the Lorentzian group of rigid motions (1,1).E  Then, the 

parametric equations of Smarandache 1TM  curves of spacelike biharmonic slant 

helix are 
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where 21, DD  are constants of integration. 

 

Proof. Substituting (1.1) to (2.6), we have (2.10) as desired. 

 

We may use Mathematica in Corollary 2.5, yields 

 

  
 Figure1.  
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In the light of Lemma 2.3 and Corollary 2.5, we express the following 

Corollary without proofs: 

  

Corollary 2.6.  Let (1,1): EI  is a non geodesic spacelike biharmonic 

B-slant helix in the Lorentzian group of rigid motions (1,1).E  Then, the 

parametric equations of Smarandache 1TM  curves of spacelike biharmonic slant 

helix are 
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where 21, DD  are constants of integration. 

 

 

Also, we may use Mathematica in Corollary 2.6, yields 

 

  
 Figure2.  
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3      Open Problem 

The authors can be resarch Smarandache 2TM  curves of spacelike 

biharmonic B-slant helices according to Bishop frame in the Lorentzian group of 

rigid motions (1,1)E . 
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