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Abstract 

     In this paper, we investigate the schrödinger equation in a given 
 - dimensional fractional space with a columb potential depending 
on a parameter and obtain explicit solution of second order linear 
ordinary differential equation.  
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1      Introduction 

Fractional differential equations have recently been proved to be valuable tools in 
the modeling of many phenomena in various fields of science and engineering. 
Fractional calculus is "the theory of derivatives and integrals of any arbitrary real 
or complex order, which unify and generalize the notions of integer-order 
differentiation and n-fold integration" [1-3]. It has been in the minds of 
mathematicians for 315 years and still contains many questions. Firstly, the idea 
of this area appeared in a letter by Leibniz to L' Hospital in (1695). In the 
following three hundred years a lot of mathematicians contribute to the fractional 
calculus: Johann Bernoulli , John Wallis, L. Euler, J.L. Lagrange, P.S. Laplace, 
S.F. Lacroix, J.B.J. Fourier, N.H. Abel, J. Liouville, S.S. Greatheed, A.De 
Morgan, B. Riemann, W. Center, H. Holmgren, A.K. Grünwald, A.V. Letnikov, 
H. Laurent, O. Heaviside, G.H. Hardy, H. Weyl, E.L. Post, H.T. Davis, A. 
Erdélyi, H. Kober, A. Zygmund, M. Riesz, I.M. Gel'fand, G.E. Shilov, I.N. 
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Sneddon, S.G. Samko, T.J. Osler, E.R. Love, and many others [4,5]. In last 
decades, fractional calculus has been the concept of ever increasing interest 
because of its applications in physics and engineering. The differrintegration 
operators and their generalizations [6,7,8] have been used to solve some classes of 
differential equations and fractional differential equations. 

     Definition 1.1  Let    , , ,D D D C C C       where C  is a curve along 
the cut joing two points z  and   ,iIm z  C  is a curve along the cut joing 
two points z  and   ,iIm z  D  is a domain surrounded by C , and D  is a 
domain surrounded by C  (Here D contains the points over the curve C ).               

  Moreover, let  f f z  be a regular function in D  z D  such that 

                        
 

 1

1
, 1, 2,...

2 C

f t
f z f z dt

i t z 




 

 
    

            (1) 

and 

                                             lim ( Z ),n n
f z f z n


 

                                    (2)                                                 
where ,t z  

 arg t z        for C  

and  

   0 arg 2t z       for .C  

Then    0f z    is said to be the fractional derivative of  f z  of order   
and    0f z    is said to be the fractional integral of  f z of order  , 
provided (in each case) that  

                                            f z R    .                                     (3) 

     It is worth to recall the following useful lemmas and properties associated with 
the fractional differintagration  defined above  [6,9]. 

     Lemma 1.1  (Linearity). Let  f z  and  g z  be analytic and single-valued 
functions. If f  and g  exist, then 

    1 1)  i h f z h f z
  

         1 2 1 2)  ii h f z h g z h f z h g z 
                                                    (4)         

hold,  where 1h  and 2h    are constants and ;R z C  . 



 
 
Reşat YILMAZER et al.                                                                                     134 
 

     Lemma  1.2  (Index law). Let  f z be an analytic and single-valued function. 
If  f 

 and  f 
exist, then 

                                      ,f z f z f z                                        (5) 

where , ;R z C    and  
   

1
.

1 1
 

 
  

 
   

 

     Lemma 1.3  (Generalized Leibniz rule). Let  f z  and  g z be analytic and 
single-valued functions. If  f z and  g z exist, then        

                       
       

0

1
,

1 1 n n
n

f z g z f z g z
n n 









 


                     (6) 

 

where ;R z C   and  
   

1
1 1n n



 

 
    

. 

     Property 1.4.  For a constant  ,  

                                 0; ; .z ze e R z C  


                               (7) 

     Property 1.5.  For a constant  ,  

                                0; ; .z i ze e e R z C   


                          (8) 

     Property 1.6.  For a constant  ,  

                   
 

 
 

; ; .iz e z R z C   



   


 
 

    
          

         (9) 

    Some of the most recent studies on the subject of particular solutions of linear 
ordinary and partial fractional differintegral equations are those given by Tu et al. 
[10] who presented unification and generalization of a significantly large number 
of widely scattered results on this subject, involving a family of linear ordinary 
fractional differintegral equations as follows. 

     Theorem 1.7.  Let  ;P z p  and  ;Q z q  be polynomials in z of degrees 
p and q , respectively, defined by 

                      0 0
0 1

; 0,
pp

p k
k j

k j
P z p a z a z z a p N

 

                       (10) 

and 

                     0
0

; ( 0, ).
q

q k
k

k
Q z q b z b q N



                                         (11)  
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     Suppose also that   0f z   exists for a given function .f  

Then the nonhomogeneous linear ordinary fractional differintegral equation 

        

        
         

   

1
1 1

0 1

; ; ;
1

! ( , , , )

p q

k k k
k k

q

P z p z P z p Q z q z
k k

q b z f z R p q N
q

 



 
 


  

 
 

 

    
         

 
    
 

 
            (12) 

 

has a particular solution of the form 

 

            
 

     ; , ; ,
1

1 1

( ,..., ,
;

H z p q H z p q
p

f z
z e e z C z z

P z p


 

 

  

  
        

          (13) 

 

where for convenience, 

                            
   ,

, 1,
; , ( ,..., ,z Q q

d pP q
H z p q z C z z




                           (14) 

provided that the second member of (13) exists. Furthermore, the homogeneous 
linear ordinary fractional differintegral equation 

 

          
         

 

1
1 1

0 1

; ; ;
1

! 0 ( , , , )

p q

k k k
k k

q

P z p z P z p Q z q z
k k

q b z R p q N
q

 



 
 


  

 
 

 

    
         

 
    
 

 
           (15) 

 

has solutions of the form 

                                       ; ,

1

H z p qz K e
 

 

 
                                    (16) 

where K  is an arbitrary constant and  ; ,H z p q is given by (14), it being 
provided that the second member of (16) exist [10]. 

2      Main Results 

 We consider the Schrödinger equation  

              
2 2

1 2
1 2 2 , , ,

2 2 gr e r E E r
mr r r mr r


 


   

 

            

      (17) 
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where  2  corresponds to the angular momentum operator given by 

                 
2

2 1
2, sin , 2 , ,

sin
r r r

      
 




            

       (18) 

Where    is the dimension of a solid  1 3  , and the radial interval 
 0r r    and related angle  0     measured relative to an axis 

passing through the origin are two coordinates describing r  in the  -dimensional 
space. The constant   has the value of 

0

1
4

 for 3   and is generally showed 
as [11] 

 

                                             
   2

0

2 2 .
2 2



 
  

  
  


                               (19) 

By means of equation (17) in the form 

     , .r R r     

We can obtain that 

               2
2 2 2

21 2 0,g
mR r R r E E e R r

r r r

 


            
  

 


  (20) 

                       2 cot 2 0.                                           (21) 

The following equality is solutions by aid of Gegenbauer polynomials 
   2 1 cosC  
  for the angular equation (18) 

                               2 1 cos 0,1, 2,..., 1 ,H C n                            (22)                  

where H   is the normalization factor and given by [12], 

 

 

                   

 
    

1 2

3

1 2 1 2

! 1
21 2 ,

2 2 2

1 10 0 2 .
22

H

or







 








                         


  




 



 

                (23) 

 

 

Solving the radial equation  R r , we need to use the substitutions 
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                                          ,krR r r e r                                                          (24) 

where  
 2

2

2
.gm E E

k


 


 

    We find the following differential equation 

           3
3 4

2 12 1 0,
2 2

bz z z z z z
k


 

   
 

              
       (25) 

by using the substitutions 

                                
2

22 , .mez kr b 
 


                                              (26) 

We obtain at the special case as given in reference for 3   [12]. 

    Let us consider the differential equation 

                            
2

3
2 0,

2
d dz z z z
dz dz

  
        

 
                        (27) 

where 

                                 3 42 1, .
2

b
k                                          (28) 

    Let 3.   For this   the equation (27) becomes the differential equation 

                             
2

2 0.
2

d dz z z
dz dz
  

        
 

                             (29) 

 For equation (29), using the substitution  

                                    2 2 .zz z e u z                                                (30) 

Thus, we have  

                        
1 22 1 ,

2
z duz z e z z u z

dz



 
        

                                 (31) 

and  

                    
22 22 22

2

1 2 .
4

z d u duz z e z z z z u z
dz dz



   
             

     (32) 

After substituting    ,z z    and  z   into (29), performing necessary 
operations, we obtain at the differential equation   

                          
2 2

2 2

1 2 0.
4 4

d u u z
dz z z

   
     
 

                                 (33) 
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We can write  the last equation in the form 

 

                         

2

2

2 2

1 1
1 4 2 0.
4

d u u z
dz z z




    
      

 
 
 

                           (34) 

 

For the problem having the analogous singularity, some questions of spectral 
analysis are given in [13]. 

    Using Theorem 1.7, 

              0 1 0 12, 1, 0, 0, 0, ,p q a h a b n b s                    (35) 

so that  

                                       1;1 , ;1 ,P z hz P z h                                    (36) 

and 

                                      1;1 , ;1 .Q z nz s Q z n                                 (37) 

Therefore, we obtain from definition (14) that  

   
 

;1
;1,1

;1
z Q

H z d
P





   

 

           
z n sd

h
 



   

                                                      ln .s h nz hhz e                                (38) 

    By substituting from (35) to (38) into Theorem 1.7, we can find the following 
relevant application of  Theorem 1.7. 

     Theorem 2.1 The homogeneous second order linear ordinary differential 
equation  

                         
2

2 0 0, ,d dhz nz h s n z h R
dz dz
 

                          (39) 

 
has a solution of the form  
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                                   
1
,s h nz hz K hz e


  


                                              (40) 

 
where K is an arbitrary constant, provide that the right hand of  (40) exists. 

     Now, in Theorem 2.1, we further set 

                               1, 1, , .
2 2

h n s                                 (41) 

We thus obtain that the homogeneous linear ordinary differential equation  

      
2

2 0 0 ,
2

d dz z z z C
dz dz
  

          
 

 

has a solution of the form 

                                    2

1
2

.zz K z e
 

 


   
 

 

 
  

  
                                     (42)                                                        

Thus, the homogeneous linear ordinary differential equation (34) has a solution 
given by 

   2 2zu z z e z   

                                                  2 2 2

1
2

.z zKz e z e
 



 

     

 

 
   

 
                  (43)  

 

     Example 2.2   If  we substitute 2, 1     in equation (34), then we obtain 
the following equation,  

                                         2
1 1 0,
4

u u
z

    
 

                                        (44) 

the solution is 

                                           2
1
.

z
zu Kze e


                                           (45) 

By performing necassary operations in (45), we get 

                                         2
2 1 .

4
z zu Kze    
 

                                              (46) 

 
If equality (45), (46) put into (44), we can see easily that is a solution of (44). 
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3      Conclusion 

Several authors demonstrated the usefulness of fractional calculus operators in the 
derivation of particular solutions of a considerably large number of linear ordinary 
and partial differential equations of the second and higher orders. By means of 
fractional calculus techniques, we find explicit solutions of second order linear 
ordinary differential equations. 
 
4       Open Problem 
 
In this work, we obtain explicit solution for  the schrödinger  equation with a 
columb potential. The method  can be applied different for potentials. 
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