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Abstract

The purpose of this paper is to introduce and study some sequence spaces
which are defined by combining the concepts of a sequence of Orlicz functions,
invariant mean and lacunary convergence. We establish some inclusion rela-
tions between these spaces under some conditions.
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1 Introduction

One hundred years ago mathematics was undergoing a revolution. The
Kantian dictate that Euclidean Geometry is the only rationally conceivable
basis for the physical universe had been debunked. Numerous alternative ge-
ometries, each self-consistent, were being discovered, axiomatized, and devel-
oped. Felix Klein found a unifying principle for relating and classifying the
various geometries Invariant Theory. The key idea is to classify mathematical
structures by the transformations under which they are invariant. Invariant
Theory has achieved wide influence in mathematics, physics (including relativ-
ity and quantum mechanics), and computer science. The calculus developed
here is based upon relatively simple aspects of Invariant Theory.

From a mathematical point of view, transition from classical mechanics to
quantum mechanics amounts to, among other things, passing from the com-
mutative algebra of classical observables to the non-commutative algebra of
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quantum mechanical observables. Recall that in classical mechanics an ob-
servable (e.g. energy, position, momentum, etc.) is a function on a manifold
called the phase space of the system. A little more than 50 years after these
developments, Alain Connes realized that a similar procedure can in fact be
applied to areas of mathematics where the classical notions of space (e.g. mea-
sure space, locally compact space, or a smooth space) loses its applicability
and pertinence and can be replaced by a new idea of space, represented by a
non-commutative algebra. Conne’s theory, which is generally known as non-
commutative geometry, is a rapidly growing new area of mathematics that in-
teracts with and contributes to many disciplines in mathematics and physics.
For a recent survey, see Conne’s article [3].

Examples of such interactions and contributions include: theory of operator
algebras, index theory of elliptic operators, algebraic and differential topology,
number theory, standard model of elementary particles, quantum Hall effect,
renormalization in quantum field theory and string theory.

As cited above operator algebras are presently one of the dynamic areas of
mathematics.

Invariant means on amenable groups are an important tool in many parts
of mathematics, especially in harmonic analysis invariant means and their
generalizations for vector-valued functions play also an important role in the
stability of functional equations and selections of set-valued functions (see, for
example, [8,9]). Thus it seems natural to ask what are possible limitations of
the use of invariant means. We will show that invariant means are, in some
sense, naturally restricted to reflexive Banach spaces. (see [9])

In this paper, by introducing some sequence spaces which are related to a
sequence of Orlicz functions, invariant mean, lacunary convergence, we estab-
lish some inclusion relations between these spaces under some conditions.

Nowadays operator algebra, operator theory and lacunary convergence play
an important role in different areas of mathematics, and its applications, par-
ticularly in Mathematics, Physics and Numerical analysis.

It is hoped that this study about operator theory serves for researchers who
carry research in various fields of science.

Let `∞ and c denote the Banach spaces of bounded and convergent se-
quences x = (xk), with xk ∈ R or C, normed by ‖x‖ = supk |xk|, respectively.

The difference sequence spaces was first introduced by Kızmaz [11] and
then the concept was generalized by Et and Çolak [5]. Later on, Et and Esi
[6] extended the difference sequence spaces to the sequence spaces

X (∆m
v ) = {x = (xk) : (∆m

v x) ∈ X} ,

for X = `∞, c or c0, where v = (vk) be any fixed sequence of non-zero complex
numbers and (∆m

v xk) = (∆m−1
v xk −∆m−1

v xk+1), ∆m
v xk =m

i=0 (−1)i
(
m
i

)
vk+ixk+i

for all k ∈ N.
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The sequence spaces ∆m
v (`∞), ∆m

v (c) and ∆m
v (c0) are Banach spaces normed

by
‖x‖∆ =m

i=1 |vixi|+ ‖∆m
v x‖∞ .

Let σ be a mapping of the set of positive integers into itself. A continuous
linear functional φ on `∞, is said to be an invariant mean or σ−mean if and
only if

(i) φ(x) ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n,
(ii) φ(e) = 1, e = (1, 1, ...)
(iii) φ(xσ(n)) = φ(x) for all x ∈ `∞.
If x = (xk), write Tx = (Txk) = (xσ(k)). It can be shown that

Vσ =
{
x ∈ `∞ : lim

k
tkn(x) = l, uniformly in n

}
,

l = σ − limx where

tkn(x) =
xn + xσ1(n) + xσ2(n) + ...+ xσk(n)

k + 1
[14].

In the case σ is the translation mapping n→ n+1, σ−mean is often called
a Banach limit and Vσ, the set of bounded sequences all of whose invariant
means are equal, is the set of almost convergent sequence (see [12]).

By a lacunary sequence θ = (kr); r = 0, 1, 2, ... where k0 = 0, we will
mean an increasing sequence of nonnegative integers with kr − kr−1 → ∞.
The intervals determined by θ will be denoted by Ir = (kr−1, kr] and we let
hr = kr−kr−1. The ratio kr/kr−1 will be denoted by qr. The space of lacunary
strongly convergent sequences Nθ was defined by Freedman et al. [7] as

Nθ =

{
x = (xk) : lim

r

1

hr k∈Ir
|xk − l| = 0, for some l

}
.

An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous,
non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x)→
∞ as x→∞.

It is well known that if M is a convex function and M (0) = 0, then
M (λx) ≤ λM (x) for all λ with 0 ≤ λ ≤ 1.

Lindenstrauss and Tzafriri [13] used the idea of Orlicz function to define
what is called an Orlicz sequence space

`M =

{
x ∈ w :∞k=1 M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
which is a Banach space with the norm

‖x‖ = inf

{
ρ > 0 :∞k=1 M

(
|xk|
ρ

)
≤ 1

}
.
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Definition 1.1 Any two Orlicz functions M1 and M2 are said to be equi-
valent if there are positive constant α and β, and x0 such that M1 (αx) ≤
M2 (x) ≤M1 (βx) for all x with 0 ≤ x ≤ x0, [10].

Definition 1.2 A sequence space E is said to be solid or normal if (αkxk) ∈
E whenever (xk) ∈ E and for all sequences of scalars (αk) with |αk| ≤ 1, [10].

Definition 1.3 A sequence space E is said to be monotone if it contains
the canonical pre-images of all its step spaces, [10].

Remark 1. From the two above definitions it is clear that ”A sequence
space E is solid implies that E is monotone”, [2].

The following inequality will be used throughout the article. Let p = (pk)
be a positive sequence of real numbers with 0 < pk ≤ sup pk = G, D =
max(1, 2G−1). Then for all ak, bk ∈ C for all k ∈ N , we have

|ak + bk|pk ≤ D{|ak|pk + |bk|pk}. (1)

2 Main Results

Definition 2.1 Let M = (Mk) be a sequence of Orlicz functions, p = (pk)
be any sequence of strictly positive real numbers and u = (uk) be a sequence of
positive real numbers . Then we define the following sequence spaces:

[wθ,M, p, u]∞σ (∆m
v ) =

{
x = (xk) : sup

r,n

1

hr k∈Ir
uk

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]pk
<∞

}
[wθ,M, p, u]σ(∆m

v ) =

{
x = (xk) : lim

r

1

hr k∈Ir
uk

[
Mk

(
|tkn(∆m

v xk − le)|
ρ

)]pk
= 0

}
[wθ,M, p, u]0σ(∆m

v ) =

{
x = (xk) : lim

r

1

hr k∈Ir
uk

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]pk
= 0

}
where for some ρ > 0 and uniformly in n.

Some well-known spaces are obtained by specializing Mk, u, v and m:
If u = (uk) = (1, 1, ...) for all k ∈ N, then [wθ,M, p, u]∞σ (∆m

v ) = [wθ,M, p]∞σ (∆m
v ),

[wθ,M, p, u]σ(∆m
v ) = [wθ,M, p]σ(∆m

v ) and [wθ,M, p, u]0σ(∆m
v ) = [wθ,M, p]0σ(∆m

v ).
If Mk = M for all k ∈ N and u = (uk) = (1, 1, ...) for all k ∈ N, then we have

the sequence spaces [wθ,M, p]∞σ (∆m
v ), [wθ,M, p]σ(∆m

v ) and [wθ,M, p]0σ(∆m
v ).

If Mk(x) = x for all k ∈ N and u = (uk) = (1, 1, ...) for all k ∈ N, then we
have the sequence spaces [wθ, p]∞σ (∆m

v ), [wθ, p]σ(∆m
v ) and [wθ, p]0σ(∆m

v ).
Ifm = 0 and v = (vk) = (1, 1, ...) for all k ∈ N, then we obtain [wθ,M, p, u]∞σ ,

[wθ,M, p, u]σ and [wθ,M, p, u]0σ instead of [wθ,M, p, u]∞σ (∆m
v ), [wθ,M, p, u]σ(∆m

v )
and [wθ,M, p, u]0σ(∆m

v ), respectively.
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Theorem 2.2 [wθ,M, p, u]∞σ (∆m
v ), [wθ,M, p, u]σ(∆m

v ) and [wθ,M, p, u]0σ(∆m
v )

are linear space over the field of complex numbers.

Proof is trivial.

Theorem 2.3 [wθ,M, p, u]0σ(∆m
v ) is a topological linear space, total para-

normed by

g (x) = inf

{
ρpr/H :

(
1

hr k∈Ir
uk

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]pk)1/H

≤ 1, r ≥ 1,m = 1, 2, ...

}

where H = max (1, sup pk).

The proof is routine verification by using standard arguments and therefore
omitted.

Theorem 2.4 Let M be an Orlicz function, then [wθ,M, p]0σ(∆m
v ) ⊂ [wθ,M, p]σ(∆m

v )
⊂ [wθ,M, p]∞σ (∆m

v ).

Proof. The first inclusion is obvious. We establish the second inclusion.
Let x ∈ [wθ,M, p]σ(∆m

v ). Then there exists some positive number ρ1 such that

1

hr k∈Ir

[
M

(
|tkn(∆m

v xk − le)|
ρ1

)]pk
→ 0

as r → ∞ uniformly in n. Define ρ = 2ρ1. Since M is non-decreasing and
convex, we have

1

hr k∈Ir

[
M

(
|tkn(∆m

v xk)|
ρ

)]pk

≤ D

hr k∈Ir

[
M

(
|tkn(∆m

v xk − le)|
ρ1

)]pk
+
D

hr k∈Ir

[
M

(
|le|
ρ1

)]pk
≤ D

hr k∈Ir

[
M

(
|tkn(∆m

v xk − le)|
ρ1

)]pk
+Dmax

{
1,

[
M

(
|le|
ρ1

)]G}

by (1). Thus x ∈ [wθ,M, p]∞σ (∆m
v ).

Theorem 2.5 LetM = (Mk) be a sequence of Orlicz functions. If supk[Mk(z)]pk

<∞ for all z > 0, then

[wθ,M, p]σ(∆m
v ) ⊂ [wθ,M, p]∞σ (∆m

v ).
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Proof. Let x ∈ [wθ,M, p]σ(∆m
v ). By using (1), we have

1

hr k∈Ir

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]pk
≤ D

hr k∈Ir

[
Mk

(
|tkn(∆m

v xk − le)|
ρ

)]pk
+
D

hr k∈Ir

[
Mk

(
|le|
ρ

)]pk
.

Since supk[Mk(z)]pk <∞, we can take that supk[Mk(z)]pk = K. Hence we
get x ∈ [wθ,M, p]∞σ (∆m

v ). This completes the proof.
The proofs of the following theorems are obtained by using the same tech-

nique of Bektaş [1], therefore we give it without proof.

Theorem 2.6 Let M = (Mk) be a sequence of Orlicz functions. Then the
following statements are equivalent:

(i) [wθ, p]∞σ (∆m
v ) ⊂ [wθ,M, p]∞σ (∆m

v ),
(ii) [wθ, p]0σ(∆m

v ) ⊂ [wθ,M, p]∞σ (∆m
v ),

(iii) supr
1
hr k∈Ir

[Mk(z /ρ)]pk <∞ for all z, ρ > 0.

Theorem 2.7 Let M = (Mk) be a sequence of Orlicz functions. Then the
following statements are equivalent:

(i) [wθ,M, p]0σ(∆m
v ) ⊂ [wθ, p]0σ(∆m

v ),
(ii) [wθ,M, p]0σ(∆m

v ) ⊂ [wθ, p]∞σ (∆m
v ),

(iii) infr
1
hr k∈Ir

[Mk(z /ρ)]pk > 0 for all z, ρ > 0.

Theorem 2.8 LetM = (Mk) be a sequence of Orlicz functions. [wθ,M, p]∞σ (∆m
v )

⊂ [wθ, p]0σ(∆m
v ) if and only if

lim
r→∞

1

hr k∈Ir
[Mk (z /ρ)]pk =∞ (z, ρ > 0).

Theorem 2.9 Let m ≥ 1 be a fixed integer, then
(i) [wθ,M, p, u]∞σ (∆m−1

v ) ⊂ [wθ,M, p, u]∞σ (∆m
v ),

(ii) [wθ,M, p, u]σ(∆m−1
v ) ⊂ [wθ,M, p, u]σ(∆m

v ),
(iii) [wθ,M, p, u]0σ(∆m−1

v ) ⊂ [wθ,M, p, u]0σ(∆m
v ).

Proof. The proof of the inclusions follows from the following inequality

1

hr k∈Ir
uk

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]pk
≤ D

hr k∈Ir
uk

[
Mk

(
|tkn(∆m−1

v xk)|
ρ

)]pk
+
D

hr k∈Ir
uk

[
Mk

(
|tkn(∆m−1

v xk+1)|
ρ

)]pk
.
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Theorem 2.10 LetM = (Mk) and T = (Tk) be any two sequence of Orlicz
functions. Then we have

(i) [wθ,M, p, u]∞σ (∆m
v ) ∩ [wθ, T , p, u]∞σ (∆m

v ) ⊂ [wθ,M+ T , p, u]∞σ (∆m
v ),

(ii) [wθ,M, p, u]σ(∆m
v ) ∩ [wθ, T , p, u]σ(∆m

v ) ⊂ [wθ,M+ T , p, u]σ(∆m
v ),

(iii) [wθ,M, p, u]0σ(∆m
v ) ∩ [wθ, T , p, u]0σ(∆m

v ) ⊂ [wθ,M+ T, p, u]0σ(∆m
v ).

Proof. (i) Let x ∈ [wθ,M, p, u]∞σ (∆m
v ) ∩ [wθ, T , p, u]∞σ (∆m

v ). Then

sup
r,n

1

hr k∈Ir
uk

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]pk
<∞

and

sup
r,n

1

hr k∈Ir
uk

[
Tk

(
|tkn(∆m

v xk)|
ρ

)]pk
<∞

uniformly in n. We have[
(Mk + Tk)

(
|tkn(∆m

v xk)|
ρ

)]pk
≤ D

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]pk
+D

[
Tk

(
|tkn(∆m

v xk)|
ρ

)]pk
by (1). Applying k∈Ir and multiplying uk and 1

hr
both side of this inequality,

we get

1

hr k∈Ir
uk

[
(Mk + Tk)

(
|tkn(∆m

v xk)|
ρ

)]pk
≤ D

hr k∈Ir
uk

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]pk
+
D

hr k∈Ir
uk

[
Tk

(
|tkn(∆m

v xk)|
ρ

)]pk
uniformly in n. This completes the proof. (ii) and (iii) can be proved similar
to (i).

Theorem 2.11 Let M = (Mk) and T = (Tk) be two sequence of Orlicz
functions. If M and T are equivalent then

(i) [wθ,M, p, u]∞σ (∆m
v ) = [wθ, T , p, u]∞σ (∆m

v ),
(ii) [wθ,M, p, u]σ(∆m

v ) = [wθ, T , p, u]σ(∆m
v ),

(iii) [wθ,M, p, u]0σ(∆m
v ) = [wθ, T , p, u]0σ(∆m

v ).

Proof. Proof follows from Definition 1.1.

Theorem 2.12 Let 0 < pk ≤ qk for each k and (qk /pk ) be bounded, then
(i) [wθ,M, q]∞σ (∆m

v ) ⊂ [wθ,M, p]∞σ (∆m
v ),

(ii) [wθ,M, q]σ(∆m
v ) ⊂ [wθ,M, p]σ(∆m

v ),
(iii) [wθ,M, q]0σ(∆m

v ) ⊂ [wθ,M, p]0σ(∆m
v ).
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Proof. Let x ∈ [wθ,M, p]0σ. Then

sup
r,n

1

hr k∈Ir

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]qk
<∞

uniformly in n. Write µk,n =
[
Mk

(
|tkn(∆m

v xk)|
ρ

)]qk
and λk = pk /qk . Since

pk ≤ qk therefore 0 < λ < λk ≤ 1. Define yk,n = µk,n, yk,n = 0 if µk,n ≥ 1 and
zk,n = µk,n, zk,n = 0 if µk,n ≥ 1. So µk,n = yk,n + zk,n and µλkk,n = yλkk,n + zλkk,n.

Now it follows that yλkk,n ≤ yk,n ≤ zk,n and zλkk,n ≤ zλk,n. Therefore

h−1
r k∈Irµ

λk
k,n = h−1

r k∈Ir

(
yλkk,n + zλkk,n

)
≤ h−1

r k∈Iryk,n + h−1
r k∈Irz

λ
k,n.

Since λ < 1 so that 1/λ > 1, for each n

h−1
r k∈Irz

λ
k,n = k∈Ir

(
h−1
r zk,n

)λ (
h−1
r

)1−λ

≤
(
k∈Ir

[(
h−1
r zk,n

)λ]1/λ
)λ(

k∈Ir

[(
h−1
r

)1−λ
]1/(1−λ)

)1−λ

=
(
h−1
r k∈Irzk,n

)λ
by Hölder’s inequality, and thus

h−1
r k∈Irµ

λk
k,n ≤ h−1

r k∈Irµk,n +
[
h−1
r k∈Irzk,n

]λ
.

Hence x ∈ [wθ,M, p]∞σ (∆m
v ). (ii) and (iii) can be proved similar to (i).

Theorem 2.13 (i)The sequence spaces [wθ,M, p, u]∞σ and [wθ,M, p, u]0σ
are solid and hence are monotone.

(ii) The space [wθ,M, p, u]σ is not monotone and a such is neither solid
nor perfect.

Proof. (i) We give the proof for [wθ,M, p, u]0σ. Let x ∈ [wθ,M, p, u]0σ and
(αk) be sequences of scalars such that |αk| ≤ 1 for all k ∈ N. Then we have

h−1
r k∈Iruk

[
Mk

(
|tkn(αkxk)|

ρ

)]pk
≤ h−1

r k∈Iruk

[
Mk

(
|tkn(xk)|

ρ

)]pk
→ 0

(r →∞), uniformly in n. Hence αx ∈ [wθ,M, p, u]0σ for all sequence of scalars
(αk) with |αk| ≤ 1 for all k ∈ N, whenever x ∈ [wθ,M, p, u]0σ. The spaces are
monotone follows from the Remark 1.

Theorem 2.14 Let θ = (kr) be a lacunary sequence. If 1 < lim infr qr <
lim supr qr <∞. Then [w,M, p, u]σ(∆m

v ) = [wθ,M, p, u]σ(∆m
v ), where

[w,M, p, u]σ(∆m
v ) =

{
x = (xk) : lim

i

1

i

i

k=1
uk

[
Mk

(
|tkn(∆m

v xk − le)|
ρ

)]pk
= 0

}
for some l, ρ > 0 and uniformly in n.
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Proof. Suppose that lim infr qr > 1, then there exists δ > 0 such that
qr = ( kr

kr−1
) ≥ 1 + δ for all r ≥ 1. Furthermore we have kr

hr
≤ (1+δ)

δ
and

kr−1

hr
≤ 1

δ
, for all r ≥ 1. Then we may write

1

hr j∈Ir
uj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj
=

1

hr

kr

j=1

uj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj
− 1

hr

kr−1

j=1

uj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj
=

kr
hr

(
k−1
r

kr
j=1uj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj)
−kr−1

hr

(
k−1
r−1

kr−1

j=1 uj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj)
.

Now suppose that lim supr qr < ∞ and let ε > 0 be given. Then there
exists s0 such that for every s ≥ s0

As =
1

hs k∈Is
uk

[
Mk

(
|tkn(∆m

v xk)|
ρ

)]pk
< ε.

We can also choose a number K > 0 such that As < K for all s. If
lim supr qr < ∞, then there exists a number β > 0 such that qr < β for all r.
Now let i be any integer with kr−1 < i ≤ kr, where r > L. Then

i−1
j=1

iuj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj
≤ k−1

r−1
kr
j=1uj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj
= k−1

r−1

{
j∈I1uj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj
+j∈I2 uj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj
+...+j∈Ir uj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj}

= k−1
r−1

{
s0
s=1j∈Isuj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj
+r
s=s0+1 j∈Isuj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj}
= k−1

r−1

{
s0
s=1j∈Isuj

[
Mj

(
|tjn(∆m

v xj)|
ρ

)]pj
+ ε(kr − ks0)k−1

r−1

}
≤ k−1

r−1 {h1A1 + h2A2 + ...+ hs0As0}+ ε(kr − ks0)k−1
r−1

≤ k−1
r−1

(
sup

1≤j≤s0
As

)
ks0 + ε(kr − ks0)k−1

r−1

< Kk−1
r−1ks0 + εβ

which yields that x ∈ [w,M, p, u]σ(∆m
v ).
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3 Open Problem

The aim of this paper is to introduce and study the new sequence spaces
[wθ,M, p, u]∞σ (∆m

v ), [wθ,M, p, u]σ(∆m
v ) and [wθ,M, p, u]0σ(∆m

v ). We propose
to study various some topological properties and establish some inclusion rela-
tions between these spaces. But we didn’t prove inclusion relations [wθ,M, p, u]0σ
(∆m

v ) ⊂ [wθ,M, p, u]σ(∆m
v ) ⊂ [wθ,M, p, u]∞σ (∆m

v ). Therefore it is left as an
open problem.
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