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Abstract

We consider two time-inhomogeneous (one-dimensional)
diffusion processes having a particular generalized beta den-
sity function. The initial state of the processes also has a
generalized beta distribution. We show that the classical beta
distribution is stationary for two transformations of the orig-
inal diffusion processes. Finally, we find stationary density
functions for other diffusion processes.
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1 Introduction

The main diffusion processes, such as the Wiener and Ornstein-Uhlenbeck
processes, are Gaussian processes, so that they can take on any value in R.
Similarly, the geometric Brownian motion, which is very important in mathe-
matical finance, takes its values in an infinite interval, namely (0,∞).

Suppose that we want to find a model for a certain random variable X(t),
which varies with t, but which remains in a bounded domain for a fixed value
of t. For instance, suppose that X(t) always belongs to the interval (0, 1).
We could of course consider a diffusion process like the Wiener process (or
Brownian motion), if we assume that the boundaries at 0 and 1 are reflecting.
Then, the process {X(t), t ≥ 0} will indeed evolve between 0 and 1. However,
it would be nice to have a diffusion process for which its first-order density
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function

f(x; t) := lim
dx↓0

P [X(t) ∈ (x, x+ dx)]

dx

is that of a variable that is intrinsically bounded, rather than being a truncated
Gaussian random variable, for example. One such distribution is the beta
distribution. Remember that we say that the random variable X has a beta
distribution with parameters α and β (both positive) if

fX(x) =
xα−1(1− x)β−1

B(α, β)
for 0 < x < 1, (1)

where

B(α, β) :=
Γ(α)Γ(β)

Γ(α + β)

(and Γ(·) denotes the gamma function). Moreover, if a < b and if we let

Y := a+ (b− a)X,

then Y has a generalized beta distribution on (a, b):

fY (y) =
1

(b− a)α+β−1
(y − a)α−1(b− y)β−1

B(α, β)
for a < y < b.

In the next section, we will find two time-inhomogeneous diffusion processes
{X(t), t ≥ 0} for which X(t) has a (t-dependent) generalized beta distribution
with parameters α = β = 2. Next, we will see that, in each case, a simple
transformation Y (t) of X(t) leads to a diffusion process having a stationary
beta distribution with parameters α = β = 2, if we assume that Y (0) also has
this distribution. Then, in Section 3, we will find stationary density functions
for the Wiener and Ornstein-Uhlenbeck processes, as well as for the geometric
Brownian motion.

2 Processes having generalized beta density

functions

The first time-inhomogeneous diffusion process that we consider is defined by
its infinitesimal mean

m(x; t) =
x

1 + t
+

1

x− (1 + t)
(2)

and infinitesimal variance
v(x; t) ≡ 1. (3)
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The density function of X(t) satisfies the Kolmogorov forward equation (see
Lefebvre (2007, p. 64), for instance)

∂f

∂t
+

∂

∂x
[m(x; t)f(x; t)]− 1

2

∂2

∂x2
[v(x; t)f(x; t)] = 0. (4)

The boundaries at x = 0 and x = t + 1 are assumed to be reflecting. Hence,
this equation is considered in the interval (0, t+ 1).

Remark. Notice that the functions m and v are continuous for all t ≥ 0 and
x ∈ (0, t+ 1).

One can check the validity of the following proposition.

Proposition 2.1 The function f(x; t) that satisfies Eq. (4), subject to the
initial condition

f(x; 0) =
x(1− x)

B(2, 2)
= 6x(1− x) for 0 < x < 1, (5)

is

f(x; t) =
6

(1 + t)3
x(1 + t− x) for 0 < x < t+ 1.

Remark. The proposition means that if X(0) has a beta distribution with pa-
rameters α = β = 2, then we find that X(t) has a generalized beta distribution
(also with parameters α = β = 2), such that a = 0 and b = t+ 1.

Next, assume that

m(x; t) =
x

x− (1 + t)
and v(x; t) = 1 + t (6)

for t ≥ 0 and x ∈ (t, t+ 1) (that is, the boundaries at x = t and x = t+ 1 are
reflecting). As above, the functions m and v are continuous in the intervals
considered. We must solve the partial differential equation

∂f

∂t
+

∂

∂x

[
x

x− (1 + t)
f(x; t)

]
− 1

2

∂2

∂x2
[(1 + t)f(x; t)] = 0. (7)

Proposition 2.2 The function

f(x; t) = 6(x− t)(1 + t− x) for t < x < t+ 1

solves Eq. (7), subject to the initial condition (5). Thus, X(t) has a generalized
beta distribution with parameters α = β = 2, and a = t and b = t+ 1.
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The two diffusion processes considered above take on their values in a
bounded interval, which depends on t. In the case of the process with in-
finitesimal parameters (2) and (3), let

Y (t) :=
X(t)

t+ 1
∀ t ≥ 0.

The stochastic process {Y (t), t ≥ 0} will always remain in the interval (0, 1).
Moreover, we calculate

f(y; t) = 6y(1− y) for 0 < y < 1,

so that Y (t) has a beta distribution for all t ≥ 0. Hence, the probability
density function f(y; t) is stationary for the stochastic process {Y (t), t ≥ 0}.

Let us compute the infinitesimal parameters of {Y (t), t ≥ 0}. We have [see
Lefebvre (2007, p. 181)]:

m(y; t) := lim
ε↓0

1

ε
E [Y (t+ ε)− Y (t) | Y (t) = y]

= lim
ε↓0

1

ε
E

[
X(t+ ε)

1 + t+ ε
− X(t)

1 + t

∣∣∣∣X(t) = (1 + t)y

]
.

We find, after some calculation, that

m(y; t) =
1

(1 + t)2

(
1

y − 1

)
. (8)

Next, we may write that

v(y; t) := lim
ε↓0

1

ε
E
[
{Y (t+ ε)− Y (t)}2 | Y (t) = y

]
= lim

ε↓0

1

ε
E

[{
X(t+ ε)

1 + t+ ε
− X(t)

1 + t

}2 ∣∣∣∣X(t) = (1 + t)y

]
.

We obtain that

v(y; t) =
1

(1 + t)2
. (9)

We can now state the following proposition.

Proposition 2.3 Let {Y (t), t ≥ 0} be the diffusion process having infinitesi-
mal mean (8) and variance (9). If the initial state Y (0) has a beta distribution
with parameters α = β = 2, and if the boundaries at 0 and 1 are reflecting,
then so has Y (t) for all t > 0.
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In the case of the diffusion process {X(t), t ≥ 0} having the infinitesimal
parameters given in (6), we define

Z(t) = X(t)− t for t ≥ 0.

Like Y (t), the random variable Z(t) takes on its values in the interval (0, 1).
Furthermore, we also obtain that

f(z; t) = 6z(1− z) for 0 < z < 1.

Proceeding as above, we can calculate the infinitesimal parameters of {Z(t),
t ≥ 0}.
Proposition 2.4 Suppose that the diffusion process {Z(t), t ≥ 0} has in-
finitesimal parameters

m(z; t) =
t+ 1

z − 1
and v(z; t) = 1 + t.

Then, given that Z(0) has a beta distribution with parameters α = β = 2 and
that the boundaries at 0 and 1 are reflecting, Z(t) has the same beta distribution
∀ t > 0.

In the next section, we will consider the problem of obtaining stationary
density functions for important diffusion processes.

3 Stationary probability density functions

If m(x; t) = m(x) and v(x; t) = v(x), and the function f(x; t) can be written
as

f(x; t) = f(x) ∀ t ≥ 0,

then the Kolmogorov forward equation (4) reduces to

d

dx
[m(x)f(x)]− 1

2

d2

dx2
[v(x)f(x)] = 0,

which implies that

m(x)f(x)− 1

2

d

dx
[v(x)f(x)] = c, (10)

where c is a constant. We will find interesting solutions to this ordinary dif-
ferential equation (o.d.e.) for important diffusion processes.

I) Assume that m(x) ≡ 0 and v(x) ≡ 1, so that {X(t), t ≥ 0} is a standard
Brownian motion. It follows that we have:

f ′(x) = c =⇒ f(x) = c1x+ c0,

where c0 and c1 are constants. Let us choose c0 = 0 and c1 = 2. Then, f(x) is
a valid density function on the interval (0, 1).
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Proposition 3.1 If {X(t), t ≥ 0} is a standard Brownian motion, considered
between reflecting boundaries at x = 0 and x = 1, for which X(0) is a random
variable such that

fX(0)(x) = 2x for 0 < x < 1,

then this probability density function (p.d.f.) is also the p.d.f. of X(t) for t > 0.

Remarks. i) This result is also valid if v(x) ≡ v0 > 0.
ii) By choosing c1 = 0 and c0 = 1 instead, we obtain that X(t) has a uniform
distribution on the interval (0, 1) for all t ≥ 0.

II) When m(x) ≡ m0 6= 0 and v(x) ≡ v0 > 0, the diffusion process {X(t),
t ≥ 0} is a Wiener process with drift m0 and diffusion coefficient v0. We must
solve

m0f(x)− v0
2
f ′(x) = c.

We find at once that

f(x) =
c

m0

+ c1 exp

{
2m0x

v0

}
.

As in the previous case, we see that by choosing c1 = 0 and c = m0, we get a
uniform distribution on the interval (0, 1) for all random variables X(t). If we
assume that m0 < 0, and if we take c = 0 and c1 = −2m0/v0, we obtain the
following proposition.

Proposition 3.2 When {X(t), t ≥ 0} is a Wiener process with infinitesimal
parameters m0 < 0 and v0 > 0 and there is a reflecting boundary at x = 0, if
X(0) ∼ Exp(−2m0/v0), that is, if X(0) has an exponential distribution with
parameter −2m0/v0, then X(t) ∼ Exp(−2m0/v0) for any t > 0 as well.

III) Next, let us consider the Ornstein-Uhlenbeck process. That is, {X(t),
t ≥ 0} is the diffusion process for which m(x) = −αx, where α > 0, and
v(x) ≡ v0 > 0. The o.d.e. that we must solve is

−αxf(x)− v0
2
f ′(x) = c.

The general solution to this differential equation involves the error function
and does not lead to a classical distribution for X(t), apart from the Gaussian
distribution. Actually, it is well known that the distribution of the stationary
Ornstein-Uhlenbeck process is Gaussian.

Proposition 3.3 Suppose that X(0) has the probability density function

fX(0)(x) =

√
α

√
πv0

exp

{
− α
v0
x2
}

for x ∈ R,



Diffusion Processes With Generalized Beta Density Functions 111

where X(0) is the initial state of the Ornstein-Uhlenbeck process {X(t), t ≥ 0}
having infinitesimal mean −αx and infinitesimal variance v0. Then,

fX(t)(x) = fX(0)(x) for all t > 0.

Remark. The function fX(0)(x) is the p.d.f. of a Gaussian random variable
with mean µ = 0 and variance σ2 = v0/(2α). By choosing a different constant
in front of the exponential function, the random variable X(t) could have a
Gaussian distribution, conditioned to be positive or to remain in the interval
(0, 1) (if we assume that the boundary at x = 0 (or the boundaries at x = 0
and x = 1) is (are) reflecting), etc.

IV) Finally, if {X(t), t ≥ 0} is a geometric Brownian motion, we can write
that

m(x) = αx and v(x) = x2, (11)

where α ∈ R.

Remark. Actually, m(x) = (µ + 1
2
σ2)x and v(x) = σ2x2 for a geometric

Brownian motion, where µ ∈ R and σ > 0. However, to solve the differential
equation (10), we may assume, without loss of generality, that σ = 1 and
α = µ+ 1

2
.

The general solution of

αxf(x)− d

dx

[
x2f(x)

]
= c

is

f(x) =


2c

x(2α− 1)
+ c0x

2(α−1) if α 6= 1/2,

−2c ln(x) + c0
x

if α = 1/2.

Proposition 3.4 Consider a geometric Brownian motion for which α in (11)
is greater than 1/2. If X(0) has the following probability density function:

fX(0)(x) = (2α− 1)x2(α−1) for 0 < x < 1,

then X(t) has the same p.d.f. as X(0) for all t > 0 (assuming that the boundary
at x = 1 is reflecting).

Remarks. i) Remember that the origin is a natural boundary for the geometric
Brownian motion.

ii) With α = 3/2, we obtain that fX(0)(x) = 2x, for 0 < x < 1, as in the case
of the standard Brownian motion.



112 Mario Lefebvre

To conclude, it is worth mentioning yet another interesting case. Consider
the time-homogeneous diffusion process {X(t), t ≥ 0} characterized by

m(x) =
α

2
(1− x) +

β

2
x and v(x) = x(1− x)

for 0 < x < 1, where α and β are positive constants. This process has
applications in population genetics [see Tavaré and Zeitouni (2004), and also
Karlin and Taylor (1981, section 15.2)].

We find that as t tends to infinity, the p.d.f. f(x; t) of X(t) tends to that
of a random variable having a beta distribution with parameters α and β.
Therefore, if we assume that X(0) also has a beta distribution with parameters
α and β, then we can assert that the p.d.f. defined in (1) is stationary for
the diffusion process considered. However, we cannot state that X(t) has a
generalized beta distribution for any finite (and positive) t.

4 Conclusion and Open Problems

In this work, we have shown that two particular time-inhomogeneous diffusion
processes, considered between two reflecting boundaries, have a generalized
beta distribution (with parameters α = β = 2) which depends on t. Next,
by considering simple transformations of the original processes, we have ob-
tained two diffusion processes for which the beta density function (with the
same parameters) is stationary. Finally, in Section 3, we have found various
interesting stationary density functions for important diffusion processes in
(generally) bounded intervals.

This type of work could be carried out in two or more dimensions. In
Section 3, other one-dimensional diffusion processes, such as the Bessel pro-
cess, could also be considered. Finally, it would be nice to find a diffusion
process having a t-dependent generalized beta distribution for which X(0) is
deterministic; that is, fX(0)(x) would be a Dirac delta function.
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