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Abstract
The differential subordinations method is one of the newest methods
used in the geometric theory of analytic functions. In this paper,
differential subordination and superordination results are obtained for
analytic functions in the open unit disk which are associated with the

operator Aﬁ’f;” defined in terms of Saigo fractional derivative. These

results are obtained by investigating appropriate classes of admissible
functions. Sandwich-type results are also obtained and we derive certain
other related results. Some of the results established would provide
extensions of those given in earlier works.
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1 Introduction and Preliminaries

To state our results, we need the following preliminaries.
Let H(U) be the class of functions analytic in U ={z  C:|z| <1} and H[a,n] be

the subclass of H(U) consisting of functions of the form
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f(z)=a+a,z"+a

n+1

z"™ +..., with H, =H[01] and H=H[11]. Also, let A(p)

denotes the class of all analytic functions of the form f(z) =z" + Za z"P,

n+p
n=1

The subordination now plays an important role in complex analysis. We recall
here the definition of subordination (Aouf and Seoudy [3], Miller and Mocanu
([9], [10] ) and Salim [15] ) as follows.

Let f and F be members of analytic function. The function f(z) is said to be

subordinate to F(z), or F(z) is said to be superordinate to f(z), if there exists a
function w(z) analytic in U with w(0)=0 and |w(z) <1, (zeU), such that
f(z)= F(W(z)). In such a case we write f(z)~<F(z).

In particular, if F is univalent, then f(z)< F(z) if and only if f(0)=F(0) and
fU)cFU).

Let ¥:C®xU —C and let h be univalent in U . If p is analytic in U and
satisfies the second order differential subordination

lI’(p(z), z p'(2),2%p"(2); z)< h(z) (zeU) (1.1)

then p is called a solution of the differential subordination.

The univalent function q is called a dominant if p <q for all p satisfying (1.1).
A dominant g that satisfies g < g for all dominants q of (1.1) is said to be the
best dominant of (1.1).

Similarly, let ®:C*xU — C and let h be univalent in U . If p is analytic in U
and satisfies the second order differential superordination

h(z)< ®(p(z).z p'(z),2%p"(z).2) (zeU) (1.2)

then p is called a solution of the differential superordination.

The univalent function q is called a subordinant if q< p for all p satisfying
(1.2). A subordinant q that satisfies g < g for all subordinant g of (1.2) is said
to be the best subordinant. ( see the monograph by Miller and Mocanu [9] ).

We use here the Saigo type fractional derivative operator introduced and studied
by Saigo ([13], [14] ), see, also Raina and Choi [12], Choi [7] and Owa [11].

Let 0<A<1 and v eR. Then the generalized fractional derivative operator
J5h of afunction f is defined by
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yA

r1-4)

I f(z) = %( -2, Fl[ﬂ_g,l_vn—z;l—gj f(¢) d;j (1.3)

In terms of Gamma functions, we have (Srivastava, Saigo and Owa [16] )

oy D(p+2) D(p—p+v+1)

R = P 0< A<, O,u—vy-1.(14
T T ar ) p—aev D) <L p>max{0, 1414

Under the hypotheses of above definition, the fractional derivative operator
Jgmemm of a function f(z) is defined by ( Choi [7])

0,z

Si+m,/t+m,v+m f (Z)I (;jzm ng,zp,v f (Z), ( zeU,me NO = {O}UN ) . (15)

Using the Saigo Derivative operator Sé;‘ of order A of a function f , we
can define a modification of the fractional derivative operator Aﬂz'f;,'“ by ( Choi

[71)

(p—pu+1) T(p-A+v+1)
T(p+1) T(p-u+v+1)

r
Now £(z)= 2" 3¢ (2) (1.6)

for f(z)e A(p) and u—v—p<1.

It is observed that A%%" also maps A(p) onto itself as follows :
N4 F(z) =27+ ag W, (A v) 247, (1.7)
k=1

(p"'l)k(p"'l—ﬂ""/)k
p+1_ﬂ)k(p+1_/1+v)k

where wkyp(ﬂ,,lu,v): (
(zeU0<A<Lu—-v—-p<l).

It is easily verified ( Choi [7] ) from (1.7) that

!

(P—pe) NS (2) 4 g0 A2 £ (2) =2 (A4 £(2)) . (1.8)
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Before obtaining our main result, we need to introduce a class of analytic
functions defined on the unit disk that has some nice boundary properties.
Denote by N the set of all functions q(z) that are analytic and injective on

U/E(q) Where
i{eau Ilmq = }

and are such that g (cj);to for ¢ eaU/E( ). Further, let the subclass of N for
which q(0)=a be denoted by N(a), N(0)=¥, and N(1)=¥,.

In the recent publications of Miller and Mocanu [9] and Aouf and Seoudy ([3],[4])
the class of admissible functions P, [2, q] was defined as follows.

Definition 1.1. Let Q beasetin C,q €N and n be a positive integer.
The class of admissible functions W, [Q,q] , consists of those functions

¥ :C*xU — C that satisfy the admissibility condition :

¥(r,st;2)2Q
whenever
=q(¢)s=k ¢ q'(¢) m{é +1} >k in{l+ %’g)} ,

where z eU,¢ € dU/E(q) and k > n. We write P, [Q,q] as P[Q,q].

Also, other more class of admissible functions such as ¥/ [2,q] has been used in

the study of superordination. For instant, see the papers by Miller and Mocanu
[10] and Aouf and Seoudy [3].

Definition 1.2. Let Q be a set in C,q(z)eH [a,n] with q'(z)# 0. The class of
admissible functions ! [Q,q], consists of those functions ¥:C*xU — C that

satisfy the admissibility condition :
¥(r,s,t;¢)eQ
whenever

r=dlz)s=" ?T;(Z),m{éﬂ}sim{uiﬂ(z)},

m q'(2)

where zeU,ledU and m>n>1. In particular, we write ¥} [Q,q] as
¥'[Q,q].
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In order to prove our subordination results, we make use of the following two
lemmas, which were investigated by Miller and Mocanu ( [9], [10] ) and were
used in the paper of Aouf and Seoudy [3].

Lemma 1.3. Let ¥ € ¥, [Q2,q] with q(0)=a. If the analytic function

g9(z)=a+a,z" +a,,,z"" +... satisfies W(g(2).z 9'(2).229"(2) ;2)e Q,

n+1
then g(z)<q(z).

Lemma 1.4. Let ¥ € P, [Q,q] with g(0)=a. If g(z)eN(a) and
W(g(z).z 9'(z),229"(2); z) is univalent in U , then

Qc{¥(9(2)z9(z)2%9"(z) ;2):2€U |implies q(z)< g(z).

The differential subordinations method is one of the newest methods used in the
geometric theory of analytic functions. The basics of this theory were introduced
and studied by Miller and Mocanu ([9],[10]) and similar problems were studied
by Kim and Srivastava [8], Aouf and Seoudy [3], Aghalary et al. [1], Ali et al. [2],
Aouf [6] and Aouf et al. [5]. In this paper, differential subordination and
superordination results are obtained for analytic functions in the open unit disk,

which are associated with the derivative operator A% . These results are

obtained by investigating appropriate classes of admissible functions. Sandwich-
type results are also obtained and we obtain certain other related results. Further,
we generalize classical results of the theory of differential subordination and
superordination, that is the differential subordination and superordination results
of Aouf and Seoudy [3] is extended for functions associated with the derivative

operator Aﬁ'f;'v. Some of the results established in this paper would provide
extensions of those given in earlier works.

2 Subordination Results Involving the Derivative
Operator A}%"

First, the following class of admissible functions is required in our first
result.
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Definition 2.1. Let Q be a set in C,q(z) e N, NH|0, p]. The class of admissible
functions @, [Q,q], consists of those functions ®:C*xU — C that satisfy the
admissibility condition :
DU, x,W;2) g Q
whenever
k 1 —
b= (o) x = K& A& ald)
pP—u

Jp—p) (p—p=1) w—p (u+1) u § X
B{ (p=s) xrpu ”“”}‘”{1 a0)

where zeU,¢ €dU/E(q),u=p,peN and k> p.
Next, by appealing to Lemma 1.3, we prove the following Theorem.

Theorem 2.2. Let ® € @, [Q,q]. If f(z)e A(p) satisfies

{ @ A £(2), Nt f (2) A242V2 £ (2) 12): €U e Q, (2.1)
then A“*f(z)=<q(z). (0 < 4<Llue{ppLjzel,peN).

Proof. Define the analytic function g(z) in U by

g(z)= A% 1(2) (0 < A<1,u e{ p,p-1 },ZEU pe N ) (2.2)

In view of the relation (1.9), then from (2.2) we get

st () 9'(2)- 1 9(z) 2.3)

P—u

Further computations show that

Aﬁ;s*’*z’”zf(z): 2°9"(2)-2 w2 9'(2)+p (u+1) g(z). (2.4)

(p—u) (p—u-1)

Define the transformation from C* to C by
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S—ur t—2 us+u (,u+1)r
u:r’X: , =
p—u (p—u) (p—u—-1)

(2.5)

Let

\If(r,s,t;z)=CI)(u,x,W;z):cl)(r,S_'ur -2 pstu(urd)r, J (2.6)

p-u’ (p—p) (p-p-1) °

Using equations (2.2),( 2.3) and (2.4), then from (2.6), we obtain

¥ (00)2 92)2°07(2) 12)= (W PN 1 @) A2 1) 2).27)
Hence (2.1) becomes W (g(2)z 9'(2),2%g"(2) z)e Q.

The proof is completed, if it can be shown that the admissibility condition for
®ed,[Q,q] is equivalent to the admissibility condition for ¥ as given in

Definition 1.1. Note that

(p—p) (p—p—1) w—p (u+1) u
(p—u) x+pu

£+1: +2 u+1,
S

and hence WeW¥,[Q,q]. By Lemma 1.3, g(z)=<aq(z) or AL“"f(z)<d(z).
O

If Q= C isasimply connected domain ,then Q = h(U) for some conformal
mapping h(z) of U onto Q. In this case, the class @, [h(U),q] is written as
@, [h,q]. The following result is immediate consequence of Theorem 2.2.

Theorem 2.3. Let ® e @, [h,q]. If f(z)e A(p) satisfies
D( AL f(2), A f (), A2H 22 £ (2) 5 2) < h(z), (2.8)
then A*“f(2)<q(z). (0 < 4 <1,ue{pp-1},2eU,peN).

Our next result is an extension of Theorem 2.2 to the case, where the behavior of
q(z)on aU is not known.

Corollary 2.4. Let Q c C and let q(z) be univalentin U, g(0)=0. Let
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®ed,[Q,q,] forsome pe(01), where q,(z)=dl(p z) . If f(z)e A(p) and

CD( Af’”’vf (Z )’Aﬁ,+l,y+1,v+lf (Z )’A/1+2,/1+2,v+2f (Z ) -7 )EQ,

P zZ,p z,p

then A4 f(z)<q(z). (0 <A<1ue{pp-1]2eU,peN).

Proof. Theorem 2.2 yields A%%" f(z)<q,(z). The result is now deduced from

q,(z)=a(2)

Theorem 2.5. Let h(z) and qg(z) be univalent in U with g(0)=0 and set
q,(z)=dlp z) and h (z)=h (p 2).
Let ®@:C®xU — C satisfy one of the following conditions :

DPecd, [h,qp], for some p €(0,1), or

(2) there exists p, €(0,1) such that ® e ®, [hp,qp], forall pe(p,.1).
If f(z)e A(p) satisfies (2.8), then A% f(z)<q(z).

(0 <A<1l,u g{ p,p—l},ZeU pe N).

Proof. The proof is similar to the proof of Miller and Mocanu [9] and therefore
omitted.

O

The next Theorem yields the best dominant of the differential subordination (2.8).

Theorem 2.6. Let h(z) be univalentin U . Let ®:C*xU — C. Suppose that the
differential equation

®(q(z).z q'(z).229"(z) ;z)=h (2) (2.9)
has a solution qg(z) with q(0)=0 and satisfy one of the following conditions :
(1) 9(z)e N, NH[0, p] and ® e @, [h,q],

(2) q(z) is univalentin U and ® e ®, [h,qp], for some p €(0,1), or

(3) q(z) is univalent in U and there exists p, €(0,1) such that ® e @, [hp,qp],
forall pe(p,.1).
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If f(z)e A(p) satisfies (2.8), then A% f(z) < q(2),
and q(z)is the best dominant.

(0<i<1,ue{pp-1}zeU,peN)

Proof. We deduce that q(z) is a dominant from Theorems 2.3 and 2.5. Since
q(z) satisfies (2.9) it is also a solution of (2.8) and therefore q(z) will be
dominated by all dominants. Hence q(z) is the best dominant.
O

In the particular case q(z)=M z ,M >0, and in view of the Definition 2.1, the

class of admissible functions @, [Q,q], denoted by @, [,M], is described
below.

Definition 2.7. Let Q beasetin C and M > 0. The class of admissible
functions @, [, M], consists of those functions @ : C* xU — C such that

L+(—2,u K+ u (,u+1) ) M e“’_

o M e? KZH\p g 7220 (2.10)

p—u (p—u) (p—u-1)

whenever
zeU,fe R,SR{L e"‘g}z(k—l) kM for all real 6ue| pp-1jpeN and

k>p.

From above definition and Theorem 2.2, we have the following corollary
Corollary 2.8. Let ® € ®,[Q,M]. If f(z)e A(p) satisfies

O ALy £ (2) A (2) AT E (2) s2) e,

then ‘ Nk £(z) ‘<M. (0 <A<l,u e{ p,p—l},ZeU ,pe N )

In the special case Q=q (U)={ w:[w <M |, the class ®,[,M] is simply
denoted by @, [M], then Corollary 2.8 takes the following form.

Corollary 2.9. Let ® e @, [M]. If f(z)e A(p) satisfies
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| o A (@) A (2) AR (2) 52) [ <M
then | A% f(z) [<M. (0<a<1pelppdjzeu peN).

If ® (u,x,w;z):x=k_—'uM e'’, from Corollary 2.9, we obtain the next
P—u
corollary.

Corollary 2.10 If k> p and f(z)e A(p) satisfies

| ATE R (z) [< M then | A4 £(2) [ <M.
(0<a<1uelppilzeu,penN)
Now, we introduce a new class of admissible functions d)Ayl[Q, q).

Definition 2.11. Let Q be a set in C,q(z)eN, NH,. The class of admissible
functions @, ,[Q,q], consists of those functions ®:C*xU —C

that satisfy the admissibility condition :
D(u, x,w;z) & Q
whenever

_k¢a(@)+(p-u-1) a(¢)

u=q(¢)x = ,

m{(p—ﬂ) (p-u-1) w=(p-u-1) (p-u-2) u
(p—n) x=(p—u—-1) u

where zeU,¢ € dU/E(q), u# p, peN and k >1.
By making use of Lemma 1.3, we prove the following subordination result.

Theorem 2.12. Let ® € @, ,[Q,q]. If (z)e A(p) satisfies
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AA,;{,V f Al-%—l,,u+l|v+lf AA+2,,L1+2,V+2 f
{ q{ 2l pl(z)’ P (Z) P (Z); ZJ zeU }c Q(2.11)
z z z

N (2)

then Z'Z"T<q(z). (0 < A<1l,u e{ p,p—l},ZGU,pe N).

Proof. Define the analytic function g(z) in U by

N (2
g(z)=’§Tl() (0<i<1,uefpptjzeU,peN). (2.12)

In view of the relation (1.5), then (2.12) yields

N f(z) 2 g'(z)+(p—u-1) 9(z
)2 910-n) o) 015

P—u

Further computations show that

A;:;,;Hz,vﬂf(z): Z2g"(z)+2 (p_lu—l) Z g,(2)+(p_ﬂ_1) (p_,U—Z) g(Z) (2 14)

= (p—n) (p-u-1)

Define the transformation from C* to C by

s+(p-u-)r  t+2 (p-p-1)s+(p-u-1) (p-u-2)r

u=r,x= W= .(2.15)
p—u (p—p) (p-p-1)
Let ¥ (r,s,t;2)=® (u,x,w;2)
—u-1 2 (p-u-1 —u-1)(p-pu-2
=q)r,5+(|0 [ )f’t+ (p-p-1) s+(p-p-1) (p-u )f;z (2.16)
p-u (p-4) (p-p-1)
Using equations (2.12),( 2.13) and (2.14), then from (2.16), we obtain
’ ) A);,y,v.f(z) A};+1,y+1,v+lf(z) A);+2,y+2,v+2f(z)
‘P(g(z),z 9'(2)2%9"(z) ;z):CD[ ';p_l e . P - 2. (2.17)



99 Differential Subordination and ...

Hence (2.11) becomes W (g(z),z 9'(z),2%9"(2);z)e Q.

The proof is completed if it can be shown that the admissibility condition
for @ e(DM[Q,q] is equivalent to the admissibility condition for W as given in

Definition 1.1. Note that

—+1= ~2(p-u)+3,

t (p-u)(p—u-)w—(p-pu-1)(p-u-2)u
s (p—u) x=(p-p-1u

Nt £(2)

and hence ¥ e¥[Q,q]. By Lemma 1.3, g(z)=<q(z) or = <q(z) .

d

If Q=C is a simply connected domain, then Q=h(U) for some conformal
mapping h(z) of U onto Q. In this case, the class @,,[h(U)q] is written as

®,,[h,q].

Proceeding similarly as in Theorem 2.3, the following result is an immediate
consequence of Theorem 2.12.

Theorem 2.13. Let ® € @, ,[h,q]. If f(z)e A(p) satisfies

Aﬂ,,u,v f Aﬂ,+l,y+1,v+1 f Aﬂ.+2,y+2,v+2 f
CD{ Z,p _l(Z); Z,p Zp_l (Z)’ Z,p zp_l (Z),Zj'< h(Z), (218)

then Zy’py—_l<q(z). (0 <A< 1,ye{p,p—1},2eu,pe N).

In the particular case g(z)=M z ,M >0, the class of admissible functions

®,, [Q,q], denoted by @, , [, M], is described below.

Definition 2.14. Let Q be a set in C and M >0. The class of admissible

functions @, [, M], consists of those functions ®: C*xU — C such that

Kt p-p=1 o Lr(p-u=1) (2k+p-u-2)Me"

: Q(2.19
p—u (p—u) (p—u-1) 7|19

®| M e',
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whenever
zeU,f¢e R,SR{L e*“)}z(k—l) k M forallreal 6,u¢{ p,p-1}peN and k >1.
From above Definition and Theorem 2.12, we have the following corollary

Corollary 2.15. Let ® e @, ,[Q,M]. If f(z)e A(p) satisfies

q{wf(z)g@rgﬂﬂyﬂf(a Ai,*ﬁ’“*z’”zf(Z)_ZJeQ’

Z p_l Z p_l ! Z p_l ’

<M. (0<i<tlue{ppljzeU,peN).

In the special case @ =q (U)={ w:[w|<M }, the class @, [, M] is simply
denoted by @, ,[M], then Corollary 2.15 takes the following form.

Corollary 2.16. Let ® e @, ,[M]. If f(z)e A(p) satisfies

Aﬂ,,u.v f A&+l,,u+1,v+1f A/?.+2,,u+2,v+2f
CD[ ZY; p_j_(Z)’ 2P Zp—l (Z)’ =P Zp_l (Z)’Zj <M1
Aﬁ.,,u,vf
then Z’pr_l(z)<M. (0£/1<l,/1 g{p,p—l},ZGU,pe N).

K+p—pu-1
P—u

By taking @ (u,x,w;z)=Xx= M €' in Corollary 2.16,

we obtain the following corollary.

Al+l,/1+l,v+1 f
Corollary 2.17. If k > 1 and f(z)e A(p) satisfies % L (Z)% <M,

zP?

N4 £(2)

2

then <M. (03/1<1,;1 ¢{p,p—l},2eU,pe N).
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Next, we introduce down a new class of admissible functions @, ,[,q].

Definition 2.18. Let Q be a set in C,q(z)eN, NH. The class of admissible
functions @, , [, q], consists of those functions @ :C*xU — C that satisfy the
admissibility condition :

DU, X,W; 2) g Q
whenever

1 k¢ q(¢)
u=alC)x= p_ﬂ_l{—“(p—u) 0 @ }

9{{(p—y—l) X [ (p—u—2) w—(p—u-1) x+1]_

(p—=1) x=(p—u) u+1 z(p_”)UJF(P—,U—l)XH}

where zeU,¢ €dU/E(q),u# p-LpeN and k >1.
By making use of Lemma 1.3, we prove the following subordination result.

Theorem 2.19. Let ® e @, ,[Q,q] and AY%" f(z)=0. If f(z)e A(p) satisfies

{ @(A};;,;Hl,wl f (Z) Aﬂ;ﬁ,y+2,v+2 f (Z) A};’rs,y+3,v+3 f (Z) . ZJ N } 6
TR A ) A

(2.20)

then Aﬂ;-f—;,yﬂ,vﬂ f (Z)

W<Q(Z)- (0 < A<1l,u e{ p-1p-2 },ZEU ,pe N )

Proof. Define the analytic function g(z) in U by

A}:—;,/Hl,w—l f (Z)

) (0 <4<1,uelp-Llp-2}zeU peN].

g(z)=

(2.21)
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Using (2.21), we get

! !

29()_z (&3] 2 (8510

= ’ - : . 2.22

oW NPT AT @2
By making use of the relation (1.8) in (2.22), we get
AA+2,y+2,v+2f(Z) 1 |:Z gr(z)

() +(p-u) 9z)-1]. (2.23)
Nt (z)  p-u-1| 9(2)
Further computations show that
Aﬂ+§,p+3,v+3f(z) 1 |: 7 gr(z)

T —2+— = +(p-u) 9(2)
Aperii(z) (p-p-2) 9(z)

! ! 2_
"(7 ' z9'(z zg'(z
5ot ot 7
+ (2.24)

Define the transformation from C* to C by

1 S
=1, = —1 — — ,
u=r,x p—,u—l{ +r+(p 1) r}

Let®(r,s,t;z)=D(u,x,w;2)

:d{r, 1 |:—1+E+(p—,u) r},

p-—u-1
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t s (s)
(rj+(l3—ﬂ) S+r_(rj
1z |. (2.26)

1 2434 (p-p)r+
s
—1+F+(p—ﬂ) r

(p—u-2) r

Using equations (2.21),( 2.23) and (2.24), then (2.26) implies
¥(g(z)2 9'(2).2%9"(2) ;2)

(A):;,;Hl,vﬂ f (Z) Aﬁs,wz,wz f (Z) A).+3,//+3,v+3 f (Z) J

Z,p

N AR K

(2.27)

Hence (2.20) becomes W (g(z),z g'(z),2%g"(2)z)e Q.
The proof is completed, if it can be shown that the admissibility condition

for ® e(DA’Z[Q,q] is equivalent to the admissibility condition for ¥ as given in
definition 1.1. Note that

(p-u-1) x [ (p-p-2) w=(p-p-1) x+1]

t
—+1= -2Ap-p)u+(p-pu-1) x+1,
s (p-=1) x=(p-p) u+l (p=se)u+ )
AA+1,/1+1,V+1 f (Z)
and hence ¥ € P[Q,q]. By Lemma 1.3, g(z)<q(z) or Z'A"MV—f()<q(z).
Z’,p’ Z
O

If Q=C is a simply connected domain, then Q:h(U) for some conformal
mapping h(z) of U onto Q. In this case, the class ®,,[h(U ) q] is written as

(DA,Z[h’q]' Proceeding similarly as in Theorem 2.13, the following result is
immediate consequence of Theorem 2.19.

Theorem 2.20. Let ® e @, [h,q] and AL f(z)=0. If f(z)e A(p) satisfies

LAT?),#H,‘/H f (Z) Aﬂ;—j—s,y+2,v+2 f (Z) Aﬂ;—’o—s,y+3,v+3 f (Z) -

v ! +1, 1, v+ ’ +2,1+2,v+ 2 -<h(Z),(228)
T ) )
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A+L p+1,v+1
then Aep f2)
N

(0 <4< 1,,ue£{p—1,p—2},ZGU pe N )

<q(2)

In the particular case q(z)=M z ,M >0, the class of admissible functions

@, ,[Q,q], denoted by @, , [, M], is described below.

Definition 2.21. Let Q be a set in C and M >0 . The class of admissible

functions @, , [©2,M], consists of those functions @ : C*xU — C such that

10 1 i0
p—y—l[k_1+(p_ﬂ)Me a(p_—ﬂ_z){k—2+(p—ﬂ)Me

cD(M e'?,

(2.29)

(p—u) k M€’ +k M—k*M+Le™ o
- Ny )
(=) Mo+ (p— ) MZe” ’

whenever zeU,0eRR{Le™}>(k-1) kM for all real
O, ue{p-1p-2},peN and k >1.

From above definition and Theorem 2.19, we have the following corollary

Corollary 2.22. Let ® € @, ,[Q,M] and A%%" f(z)#0. If f(z)e A(p) satisfies

A};’F;,;Hl,wrl f (Z) A +2 A2, v42 f (Z) A +3 MA+3,v+3 f (Z) ., o
NETT@) AT ) A () )

};—0—1 ALV +L f (Z)
then Ap“”f(z) % (03/1<1,,u g{p—l,p—z },ZEU,DEN).
In the special case Q=g ( { w:w <M } the class @, ,[Q,M] is simply

denoted by @, ,[M], then Corollary 2.22 takes the following form.

Corollary 2.23. Let ® € @, ,[M] and A} f(z)=0. If f(z)e A(p) satisfies
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q)[ A);’L;,,u+1,v+1 f (Z) Aﬁg,yﬁ,wz f (Z) A?g,yﬁ,ws f (Z) - Zj M
A);;év f (Z) A);T;,/Hl,erl .I: (Z) A);’Ls,erZ,vaZ f (Z)

A/1+l,y+l,v+1 f (Z )|

zZ,p

NTTTR) ‘<M. (0<7<1,ue|p-Llp-2}zeu peN).

then

3 Superordination of the Derivative Operator A%

The dual problem of differential subordination, that is, differential
superordination of the derivative operator Aﬁ'f;'“ is investigated in this

section. For this purpose, the class of admissible functions is given as the
following definition.

Definition 3.1. Let Q be a set in C,q(z) < H[0, p] with g'(z)=0 . The class of

admissible functions @', [Q,q], consists of those functions ®:C*xU —C that
satisfy the admissibility condition :

D(u, x,w;¢) e Q
whenever

z q'(z)—m u a(z)
m (p— )

u=q(z)x=

g (P=) (pmp=Ywop(u+lu | 1 [ 2
R{ (p—4) x+pu 2 l}_m m{l q(z)

where zeU,{edU,u=p,peNand m>p.

Theorem 3.2 follows by using the same technique to prove Theorem 2.2 and by
application of Lemma 1.4.

Theorem 3.2. Let ® e @, [Q,q]. If f(z)e A(p), AL“" f(z)e ¥, and

DN 1) AT 1 (2) X222 1(2) 52) s univalentin U

zZ,

then
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Qc{ o Ak £ (2) AL (2), AL 242 £ (2) z):zeU },3.1)
implies q(z) < AL%" £(z). (O < A<1l,u §£{ p,p-1 },ZEU pe N )
Proof. From (2.7) and (3.1), we have

ac{ ¥(g(2)z 9'(z).2%9"(2) ;2):zeU }.

From (2.5), we see that the admissibility condition for ®e®’ [Q,q] is
equivalent to the admissibility condition for ¥ as given in Definition 1.2. Hence
Yew [q] , and by Lemma 1.4, q(z)<g(z) or q(z)=<Av4"f(z) .
O

If Q= C is asimply connected domain, then Q = h(U ) for some conformal

mapping h(z) of U onto Q. In this case, the class @' [h(U) q] is written as
@', [h,q]. The following result is immediate consequence of Theorem 3.2.

Theorem 3.3. Let ® e @', [h,q]. If f(z)e A(p),A " f(z)eN, and

1 z,p

CD(A’“;'V f(z) AL (2), AL 2422 £ (2) z) is univalent in U , then

z,

h(z) < D(AL“Y £(2), A2t f (2), A2 02 £ (2) 5 2), (3.2)

p p
implies q(z) < AL%" £(z). (0<A<tue{ppt}zeu peN)
Theorems 3.2 and 3.3 can only be used to obtain subordinants of differential

superordination of the form (3.1) or (3.2). The following Theorem proves the
existence of the best subordinant of (3.2) for certain®.

Theorem 3.4. Let h(z) be univalent in U and ®:C®>xU — C. Suppose that the
differential equation

o(a(2).z q'(2).2%q"(2) ;2)=h (2)
has a solution q(z)e H[O, p]. If ® e @', [h,q] , f(z)e A(p), A%“" f(z)eN, and

o NV § (2), Nbrir st f (2), Ar2as202 £ (7) :2) is univalent in U , then

z,
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h(z) < CD(AAZ’,‘;'V f(z) AT (2), A2 2 (2) z),
implies q(z) < A% f(z) and qg(z) is the best subordinant.
(0<i<iluel{ppijzey,peN)

Proof. The proof is similar to the proof of Theorem 2.6 and therefore omitted.
O

Combining Theorems 2.3 and 3.3, we obtain the following sandwich-type
corollary.

Corollary 3.5. Let h,(z) and h,(z) are univalent functions in U and
®ed,[h,,q,]N®, [h,q,]. If f(z)eA(p), AL f(z)eH [0, p]NN, and
D(ALY £ (2), AL (2), AE2402042 £ (2) 5 2) s univalent in U, then
h,(2) < D(A% £ (2), AL £ (2), N 240272 £(2) 5 2) < hy(2),
implies q,(z)< A““* f(z)<q,(z). (0 <2<1,ue{ppL}zeU peN).
Now, we introduce down a new class of admissible functions @', , [©.q].

Definition 3.6. Let Q be asetin Cand g(z)e H, with g'(z)=0. The
class of admissible functions @', ,[€2,q], consists of those functions

®:C*xU — C that satisfy the admissibility condition :
DU, x, W, ¢)eQ
whenever
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,\where zeU,{edU,u=p,peNand m>1.
Now, we give the dual result of Theorem 2.12 for differential superordination.

Aﬁ.,,u,v f
”’—_(Z) eN, and
p-1

Theorem 3.7. Let ® € @), ,[Q,q]. If (z)e A(p)
z

A A+ u+1,v+1 A+2,u+2,v+2
CI)[AZ"3 f(z)’ A f(z), Ay f(Z); ZJ is univalent in U , then

zP? zP? zP*

Al,y,v f Al+1,,u+1,v+1 f AA+2,/¢+2,V+2 f
QC{ (1)( z,p —1(2)’ z,p (Z)’ z,p (Z);ZJIZEU}, (3.3)

zP A zPt
ﬂ.,,u,vf
impliesq(z)<z';Tl(z). (03/1<1,y g{p,p—l},ZEU,pe N).

Proof. From (2.17) and (3.3), we have
ac{¥(g2)z 9'(z).2%9"(z) ;z):z€U }.

From (2.15), we see that the admissibility condition for ® e ®',,[Q,q] is

equivalent to the admissibility condition for ¥ as given in Definition 1.2.

¥ il
Hence ¥ e¥’'[Q,q], and by Lemma 1.4, q(z)<g(z) or q(z)<—>—-~

zP?

O

If Q=C is a simply connected domain, then Q:h(U) for some conformal
mapping h(z) of U onto Q. In this case, the class @',[h(U),q] is written as

‘D'A,l[h’ CI]. The following result is immediate consequence of Theorem 3.7.

Nl
”’—_(Z) eN, and
p-1

Theorem 3.8. Let ® € @), [h,q]. If f(z)e A(p)
z

7 p—1 ! -1 7 p—1

of 210 i) e
zP ’

;ZJ is univalent in U , then
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Aﬂ;,u,v.lz z A};+1,y+1,v+1f 7 Aﬂ;+2,y+2,v+2.|: z
h(Z)—<CD[ ’;p—l( )’ - zp—l ( )’ - zp—l ( );ZJ’ (3'4)
A f
impliesq(z)<L(z) (0£/1<1,y e{p,p—l},ZGU,pe N).

zP?

Combining Theorems 2.13 and 3.8, we obtain the following sandwich-type
corollary.

Corollary 3.9. Let h,(z) and h,(z) are univalent functions in U and
N4 £(2)
A

q)eq)A,l[hZ’qZ]ﬂq)'A,l[hﬂql]' If f(Z)eA(p), e Hy N¥, and

A, v A+1, pu+1,v+1 A+2,u+2,v+2
®[Az'p Q) Avp @) Avp ) ;z) is univalent in U , then

zPt zPt ’ zPt
A);,,u,v f 7 Aﬂ;rl,,qul,erl f 7 Aﬁé+2,y+2,v+2 f Z)
hl(Z)-<CD( ’;p—l( )’ P = ( )’ P = ( ;Z]-<h2(2),
A1 (2)

implies ql(z)<T<q2(z). (0 <A<l,u e{ p,p-1 },ZEU pe N).

Finally, we introduce down a new class of admissible functions @', , [,q].

Definition 3.10. Let Q be asetin C,q(z)=0,q'(z)=0 and g(z)e H.
The class of admissible functions @', ,[Q,q], consists of those functions

®:C*xU — C that satisfy the admissibility condition :

DU, x,w;¢) e Q
whenever

u=4@x= o)
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9{{(p—y—l) X [ p—pu-2) w—(p—pu-1) x+1 ]_
—u=1) x=(p-u) u+l

where zeU,fedU,u#p-LpeN and m>1.

2 (p—p) u+(p—u-1) X+1}

Now, we give the dual result of Theorem 2.19 for the differential superordination.

Theorem 3.11. Let ® e @, ,[Q,q] and A" f(z2)=0. If f(z)e A(p),

Aﬂ:-;,,uﬂ,vﬂ f (Z)
Nk £(z)

Al+l,/1+1,v+1 f Al+2,y+2,v+2 f AA+3,,u+3,v+3 f
e N, and d)[ e () &5 () &% (Z)'ZJ is

Aﬂ;;;v f (Z) ! Aﬂ:;,,uﬂ,w—l f (Z) ! A/?-S,/.HZ,V—*—Z f (Z)’

univalent in U , then

Al+1,,u+1,v+l f Aﬂ+2,,u+2,v+2 f A&+3,,u+3,v+3 f
Qc { CD( Z’pﬂ,,u,v (Z)’ Zfl,/wl,vﬂ (Z)’ ;;2,}11’2,1/#»2 (Z) ; ZJ izeU } (35)
Nowvf(z) A f(z) AL f(2)

Aﬁzrl),/ﬁl,wrl f (Z)

VTR (0<a<1,ueflp-1p-2}zeU, peN)

implies q(z) <

Proof. From (2.27) and (3.5), we have
ac{ ¥(9(2)z 9'(2).2%9"(z) ;2): 2 €U |.

From (2.25), we see that the admissibility condition for ® € @', ,[Q,q] is
equivalent to the admissibility condition for ¥ as given in Definition 1.2.

Aﬁ.+l,/1+1,v+1 f (Z)
Hence ¥ € ¥'[Q,q], and by Lemma 1.4, q(z)<g(z) or q(z)<z'AplW—f(Z)
z,p
u

If Q=C is a simply connected domain, then Q:h(U) for some conformal
mapping h(z)of U onto Q. In this case, the class @', ,[h(U),q] is written as

d)'sz[h, q]. The following result is immediate consequence of Theorem 3.11.
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Theorem 3.12. Let ® e @, , [h,q] and A%%" f(z)=0.

Aﬁ:;,/ﬁl,wrl f (Z)

If f(z)e A(p), —5——~—€¥N, and
N4V 1 (z) '

Aﬂz,—’n—;,y+1,v+1 f (Z) A/YZ,—;—FZ),;:+2,V+2 f (Z) A};—j-s,y+3,v+3 f (Z) .
NI AT AL ()]

is univalent in U , then

ALyl f (Z) A/;i—'f,,u+2,v+2 f (Z) Aﬂ;—j—g#+3,v+3 f (Z) - (3 6)
M@ A ) A ) )

h(z) =< cp[ 2P

Aﬂ;-’i—;,,u+l,v+1 f (Z)

A4V F(2)
(0<4<1,uelp-Lp-2}zeu,pe N)

implies q(z) <

Combining Theorems 2.20 and 3.12, we obtain the following sandwich-type
corollary.

Corollary 3.13. Let h,(z) and h,(z) are univalent functions in U ,

ded,,[h,,q,]N®,, [h,q,] and AL f(z)=0.

A/?;r;,;ﬁl,vﬂ f (Z)

If f(z)eA(p), —=2———~—eHNX, and
Nk £ (z) '

o Aﬂ;%,,u+1,v+l f (Z) A};J’rs,y+2,v+2 f (Z) A};J’rs,;t+3,v+3 f (Z) .
Aﬂ;,v/;,v f (Z) ! Aﬂ,+1,,u+1,v+1 f (Z) ! AZ;—’O—S,,U+2,V+2 f (Z) ’

z,p

is univalent in U , then

Aﬂ+l,,u+l,v+l f (Z) A);f,,u+2,v+2 f (Z) A};’LS,,LHB,WLS f (Z) -

h(z)< D [ 2.P

NETR) ATET) K ()

zj ~<h,(z)
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implies
Al+1,,u+1,v+1 f (Z)

Z,p

Wﬂh(z} (0<2<1,ueglp-1p-2}zeU.peN).

o (z) <

4 Open Problem

One can define another class by using another fractional calculus operator or a
multiplier operator the samae way as in this paper and hence new results can be
obtained.
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