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Abstract

In this paper, a nonlinear boundary value problem is consid-
ered. The use of Faedo-Galerkin techniques and a compactness
result, when passing to the limit, permits to prove the existence of
the variational solution of the considered problem. The most im-
portant results given in this paper, consists to demonstrating the
uniqueness of the solution without hypothesis that has been con-
sidered by many authors for a similar problem governed by the
Laplace operator.
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1 Introduction

In this work, we consider a nonlinear hyperbolic boundary value problem gov-
erned by partial differential equations which describe the evolution of linear
elastic materials with Dirichlet-Neumann boundary conditions. Assume cer-
tain hypotheses on the data functions. Then, by using Faedo-Galerkin tech-
niques and compactness method, we will prove the existence of the solution.
Our main goal is, without taking into account the condition imposed by Lions
(cf. J.L. Lions [?] ), to prove the uniqueness of the solution. This presents an
important result in this work which deserves to be announced. The techniques
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used are that of Lions (cf. J.L. Lions [?] ) for a particular problem by chang-
ing the elasticity equation by the Laplace operator and with the Neumann
boundary conditions.

2 Problem Formulations

Let Ω be an open and bounded domain in Rn, the boundary Γ of Ω is assumed
to be regular and is divided as follows: Γ = Γ1∪Γ2 where Γ1, Γ2 are two disjoint
parts. We assume that meas (Γ1) > 0. We pose Σi = Γi × (0, T ) , i = 1, 2,
where T is a finite real. We indicate by u a vector u = (u1, u2..., un), where
∀i, ui : Q = Ω× ]0, T [ → R. u′ = ∂u

∂t
, u′′ = ∂2u

∂t2
denote the time derivative. Let

η be the unit outwarde normal vector on Γ.
The classical formulation of the problem is as follows.
Find a displacement u : Q → Rn, a stress σ : Q → Sn, such that

∂2u

∂t2
− divσ (u) + |u|ρ u = f, in Q, (1)

σ (u) = F (ε(u)) in Q, (2){
a) u = 0 on Σ1,
b) σ(u)η = 0 on Σ2,

(3){
a) u(x, 0) = u0(x),
b) u′(x, 0) = u1(x),

in Ω. (4)

Where ρ is an integer > −1, Sn will denote the space of second-order symmetric
tensors on Rn. u , f and σ (u) represent the displacement field, the density
of volume forces and the tensor of constraints, respectively. div denotes the
divergence operator of the tensor valued functions and σ = (σij), i, j = 1, ..., n,
stands for the stress tensor field. The latter is obtained from the displacement
field by the constitutive law of linear elasticity defined by (2). F is a linear
elastic constitutive law, and ε(u) = 1

2

(
∇u +∇T u

)
represents the linearized

strain tensor. The equation (1), without the nonlinear term |u|ρ u , describes
the evolution of linear elastic materials, while relations (3) and (4) are the
boundary conditions on Σi, i = 1, 2 and the initial conditions, respectively.
We define the space:

H= L2(Ω)n×n
s =

{
σ = (σij) ∈ Sn : σij = σji ∈ L2(Ω)

}
,

which is a Hilbert space endowed with the inner product

〈σ,τ〉 =

∫
Ω

σijτijdx,
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and the associated norm is denoted ‖.‖H. When no ambiguousness is to fear,
we will put :

‖v‖L2(Ω) = |v| ,

and we will use the notation ‖v‖L2(Ω) in possible ambiguousness case.
We assume that the function F : Ω × Sn → Sn satisfies the following

hypotheses: (a) ∃ m > 0; (F (x, ε), ε) ≥ m ||ε||2 , ∀ε ∈ Sn, a.e. x ∈ Ω,
(b) (F (x, ε), τ) = (F (x, τ), ε), ∀ ε, τ ∈ Sn, a.e. x ∈ Ω,
(c) For any ε ∈ Sn, x → F (x, ε) is measurable on Ω.

(5)

And we assume that the following given data verify

f ∈ L2(Q), (6)

u0 ∈ V ∩ Lp(Ω), p = ρ + 2, (7)

u1 ∈ L2(Ω). (8)

where
V =

{
v ∈ H1(Ω), v = 0 on Σ1

}
.

Remark 2.1 The hypothesis (5) permits us to consider the operator, noted
again by F , define by

F : H −→ H, F (ε(.)) = F (., ε(.)) , a.e.on Ω

Remark 2.2 As the linear operator F satisfy

(F (ε), ε) ≥ 0, ∀ε ∈ H.

Then F is continuous on H.

Under hypotheses (6),(7) and (8), then by multiplying the equation (1) by
v ∈ H1(Ω) and integrating on Ω, using the density of D (Ω) in V ∩ Lp(Ω),
p = ρ+ 2 and the Green‘s formula, it is easy to verify that the problem (1)-(4)
is equivalent to the following variational problem.

Find u ∈ V ∩ Lp(Ω) such that
(u′′, v) + a (u, v) + (|u|ρ u, v) = (f, v), ∀v ∈ V ∩ Lp(Ω), p = ρ + 2,

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω,

where a(u, v) =
∫

Ω
σ(u)ε(v)dx.



4 Rahmoune A, Benabderrahmane B

3 Existence and uniqueness

Our main existence and uniqueness result concerning problem (1)-(4), which
we establish in this section, is the following.

3.1 Existence

Theorem 3.1 Assume that (5)-(8) hold. Then there exists at least one
solution to problem (1)-(4) and it satisfies

u ∈ L∞(0, T ; V ∩ Lp(Ω)), p = ρ + 2, (9)

u′ ∈ L∞(0, T ; L2(Ω)). (10)

Lemma 3.2 Assume that (5)-(8) hold. Then the initial conditions (4) have
a sense.

Proof of Lemma 3.2
Since hypotheses (5)-(8) are satisfied. Then the results of Theorem 3.1 are

satisfied. Since V ∩ Lp(Ω) ⊂ L2(Ω), from (9), (10) it follows

u, u′ ∈ L∞
(
0, T ; L2(Ω)

)
.

Thus, referring to [?] it results that u : [0, T ] → L2(Ω), is continuous, possibly
after a modification on a subset of [0, T ] with zero measure, then is well defined
at point 0.

It remains to verify that the second condition in (4) has a sense. From the
equation (1), we have

∂2u

∂t2
= f + divσ (u)− |u|ρ u. (11)

Using the fact that ε(u) ∈ L∞ (0, T ; L2(Ω)) and F is continuous in L2(Ω), then

F (ε(u)) ∈ L∞
(
0, T ; L2(Ω)

)
.

Therefore,
divF (ε(u)) ∈ L∞ (0, T ; V ′) ,

where V ′ designates the dual space of V. It is easy to verify that if u ∈ Lp(Ω),
then |u|ρ u ∈ Lp′

(Ω) such as 1
p

+ 1
p′ = 1. Then, using (11) we have

∂2u

∂t2
∈ L2

(
0, T ; L2(Ω)

)
+ L∞

(
0, T ; V ′ + Lp′

(Ω)
)

.
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Hence, in particular case we have:

∂2u

∂t2
∈ L2

(
0, T ; V ′ + Lp′

(Ω)
)

.

Then, referring to J.L.Lions [?], by (10) it results that u′ : [0, T ] −→ V ′ +
Lp′

(Ω), is continuous, possibly after a modification on a subset of [0, T ] with
zero measure, then u′ is well defined at point 0.

Proof of Theorem 3.1
A sequence (wn) of functions having the following properties is introduced:

∗ ∀j = 1, ...,m : wj ∈ V ∩ Lp(Ω);
∗ The family {w1, w2, ..., wm} is linearly independent;
∗ The space Vm = [w1, w2, ..., wm] generated by the family,

{w1, w2, ..., wm} , is dense in V ∩ Lp(Ω).
Let um = um(t) be an approached solution such that

um(t) =
m∑

i=1

Kjm(t)wi. (12)

The Kjm being to determined by the following expression:

(u′′m(t), wj) + a(um, wj) + (|um|ρ um, wj) = (f, wj), 1 ≤ j ≤ m, (13)

which is a nonlinear system of ordinary deferential equations and will be com-
pleted by the following initial conditions um(0) = u0m,

u0m =
m∑

i=1

αimwi
m−→∞−→ u0, in V ∩ Lp(Ω),

(14)

 u′(0) = u1m,

u1m =
m∑

i=1

βimwi
m−→∞−→ u, in L2(Ω).

(15)

As the family {w1, w2, ..., wm} is linearly independent, the system (13), (14)
and (15) admits at least one solution um in the interval [0, tm] having the
following regularity

um (t) ∈ L2 (0, tm; Vm) , u′m (t) ∈ L2 (0, tm; Vm) .

A priori estimates which follow will show that tm is independent of m.

a) A priori estimates
If we pose

‖u‖1 = (a(u, u))
1
2 =

(∫
Ω

F (ε(u)) ε(u)dx

) 1
2

.
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Using the hypothesis (5), it is easily to show that ‖u‖1 is a norm on V equiv-
alent to the norm ‖u‖ of H1 (Ω) .

Multiplying the equation (13) by K ′
jm(t) and performing the summation

over j = 1, ..., m, yields

(u′′m(t), u′m(t)) + a (um(t), u′m(t)) + (|um|ρ um(t), u′m(t)) = (f, u′m(t)) . (16)

But as um ∈ L2 (0, tm; Vm) , u′m ∈ L2 (0, tm; Vm) . Therefore,

ε(um), ε(u′m) ∈ L2
(
0, T ; L2 (Ω)

)
,

using Remark 2.2, we have

Fε(um)), F (ε(u′m) ∈ L2
(
0, T ; L2 (Ω)

)
.

Also, we have

d

dt
a (um(t), um(t)) = (F (ε(um (t))) , ε(u′m (t))) + (F (ε(u′m (t))) , ε(um (t)))

= a (um(t), u′m(t)) + a (u′m(t), um(t)) .

Then, using hypothesis (5b), it exists a constant C1 > 0 such that

a (um(t), u′m(t)) = 1
2

d
dt

a (um(t), um(t)) = 1
2

d
dt
‖um (t)‖2

1

≥ 1
2
C1

d
dt
‖um (t)‖2 .

(17)

Therefore, from (16) it follows

(u′′m(t), u′m(t)) +
1

2
C1

d

dt
‖um (t)‖2 + (|um|ρ um(t), u′m(t)) = (f(t), u′m(t)) . (18)

On the other hand, we have

1
2

d

dt
|u′m(t)|2 = (u′′m(t), u′m(t)) ,

1
p

d

dt
‖um(x, t))‖p

Lp(Ω) = (|um|ρ um(t), u′m(t)) , p = ρ + 2.

Then from (18), it results

1

2

d

dt

[
|u′m(t)|2 + C1 ‖um (t)‖2

]
+

1

p

d

dt
‖um(x, t))‖p

Lp(Ω) ≤ (f, u′m) . (19)

Then, by passing to the absolute value in (19), it comes

1
2

d

dt

[
|u′m(t)|2 + C1 ‖um (t)‖2] + 1

p

d

dt
‖um(x, t))‖p

Lp(Ω)

≤ |(f(s)| |u′m(s)| .
(20)
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Hence, by integrating over (0, t), using Cauchy-Schwarz’s inequality, from (20)
it follows

1
2

(
|u′m(t)|2 + C1 ‖um(t)‖2) + 1

p
‖um(t)‖p

Lp(Ω)

≤ 1
2
|u1m|2 + 1

2
C1 ‖u0m‖2 + 1

p
‖um(0)‖p

Lp(Ω) +
t∫

0

|(f(s)| |u′m(s)| ds.
(21)

Then, using Young’s inequality we have:

|(f(s)| |u′m(s)| ≤ 1

2
|(f(s)|2 +

1

2
|u′m(s)|2 .

Then from (21), it results

1
2

(
|u′m(t)|2 + C1 ‖um(t)‖2) + 1

p
‖um(t)‖p

Lp(Ω) ≤
1
2
|u1m|2

+1
2
C1 ‖u0m‖2 + 1

p
‖u0m‖p

Lp(Ω) + 1
2

t∫
0

|(f(s)|2 ds + 1
2

t∫
0

|u′m(s)|2 ds.
(22)

Thus, using (14), (15) and (6) it results

1

2
|u1m|2 +

1

2
C1 ‖u0m‖2 +

1

p
‖u0m‖p

Lp(Ω) +
1

2

t∫
0

|(f(s)|2 ds ≤ C2, ∀m ∈ N∗.

Then, from (22) it deduces

1

2

(
|u′m(t)|2 + C1 ‖um(t)‖2

)
+

1

p
‖um(t)‖p

Lp(Ω) ≤ C2 +
1

2

t∫
0

|u′m(s)|2 ds. (23)

Therefore,

|u′m(t)|2 ≤ 2C2 +

t∫
0

|u′m(s)|2 ds, ∀t ∈ [0, T ] .

Using Gronwall’s inequality, it is concluded that

|u′m(t)| ≤ C, (24)

where C is a constant independent of m.
Consequently, from (23), we deduct

‖um(t)‖Lp(Ω) + ‖um(t)‖ ≤ C. (25)

So, the independence of tm with respect to m. Passing to the limit where
m →∞, from (24), (25), we conclude{

um remains in a bounded set of L∞ (0, T ; V ∩ Lp(Ω)) ,
u′m remains in a bounded set of L∞ (0, T ; L2(Ω)) .

(26)
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b) Passage to the limit
From (26), we deduce that it can extract a sub sequence (uµ) of (um) such

as
uµ

weak star−→ u in  L∞ (0, T ; V ∩ Lp(Ω)) , (27)

u′µ
weak star−→ u′ in L∞

(
0, T ; L2(Ω)

)
. (28)

Since V ∩Lp(Ω) ⊂ L2(Ω), from (26) it concludes that the sequences (um) and
(u′m) are bounded in L2 (0, T ; L2(Ω)), Then, in particular, (um) is bounded in
H1 (Q) . Referring to J.L. Lions [?], it is known that the injection of H1 (Q)
in L2(Q) is compact.

This permit us to assume that the extracted sub sequence (uµ) verify, in
addition to relations (27) and (28),

uµ −→ u in L2(Q). (29)

As |um|ρ um is in a bounded set of L∞
(
0, T ; Lp′

(Ω)
)
, 1

p
+ 1

p′ = 1, then we can
verify that

|uµ|ρ uµ
weak star→ |u|ρ u in L∞

(
0, T ; Lp′

(Ω)
)

. (30)

Let j be fixed and µ > j. Then, using (13) we have(
u′′µ(t), wj

)
+ a (uµ, wj) + (|uµ|ρ uµ, wj) = (f, wj) , j = 1, ...,m. (31)

Then, from (27) and (28), it results

a(uµ, wj)
weak star−→ a(u, wj) in L∞(0, T ),

(u′µ, wj)
weak star−→ (u′, wj) in L∞(0, T ).

Therefore, (
u′′µ(t), wj

)
−→ (u′′(t), wj) in D′(0, T ). (32)

Thus, using (30) we deduce that

(|uµ|ρ uµ, wj)
weak star−→ (|u|ρ u, wj) in L∞(0, T ).

Then (31) takes the form

∂2

∂t2
(u, wj) + a(u, wj) + (|u|ρ u, wj) = (f, wj) .

Finally, be using the density of Vm in V ∩ Lp(Ω) we obtain

(u′′, v) + a (u, v) + (|u|ρ u, v) = (f, v) , ∀v ∈ V ∩ Lp(Ω).
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Then u satisfies (1).
Remains to verify the initial conditions. Using (27), we have

uµ(0) → u(0) in L2(Ω) weak.

Then, using (14) we deduce in particular that

uµ(0) = u0µ → u0 in V ∩ Lp(Ω).

Hence, it results the first condition in (4). On the other hand, by using (32)
we have (

u′′µ(t), wj

) weak star−→ (u′′(t), wj) in L∞(0, T ).

Therefore, (
u′µ(0), wj

)
−→ (u′(0), wj).

Since
(
u′µ(0), wj

)
−→ (u1, wj), we have (u′(0), wj) = (u1, wj),∀j. Then the

second condition in (4) is satisfied.

3.2 Uniqueness

Many authors, for some particular problems have showed the uniqueness of the

solution basing on the condition, see [?], ρ ≤ 2

n− 2
, for particular problems.

However, we will give in this subsection a new result concerning the unique-
ness of the solution of the problem considered, where we will demonstrate the
uniqueness of the solution without this assumption.

Theorem 3.3 Under the hypotheses of the Theorem 3.1, then the solution
u obtained is unique

Proof of Theorem 3.3 Let u, v be two solutions of problem (1)-(4), to the
sense of the Theorem 3.1.

Setting w = u− v, from then the linearity of F we conclude that

w′′ (t)− divF (ε(w)) + (|u|ρ u− |v|ρ v) = 0, in Q, (33)

w(0) = w′(0) = 0, on Ω, (34)

w = 0 on Σ1, σ(w)η = 0 on Σ2, (35)

w (t) ∈ L∞(0, T ; V ∩ Lp(Ω)), p = ρ + 2, (36)

w′ (t) ∈ L∞(0, T ; Lp(Ω)), p = ρ + 2. (37)
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Multiplying the equation (33) by w′ and integrating on Ω. Then, by using
Green’s formula together with the conditions (34), (35), we obtain

1

2

d

dt

(
|w′(t)|2

)
+ a (w(t), w′(t)) =

∫
Ω

(|v|ρ v − |u|ρ u) w′dx. (38)

Then, using hypothesis (5b), we have

a (w(t), w′(t)) =
d

dt
a(w(t), w(t))−

∫
Ω

d

dt
(F (ε(w))) ε(w)dx

≥ C1
d

dt
‖w‖2 −

∫
Ω

(F (ε(w′)) ε(w)dx ≥ C1
d

dt
‖w‖2 − a (w(t), w′(t)) ,

Then, from (38) it follows

1

2

d

dt

(
|w′(t)|2 + C1 ‖w‖2

)
≤

∫
Ω

(|v|ρ v − |u|ρ u)w′dx. (39)

Without loss of generality, we assume that |u| ≤ |v|.
Then, using Holder’s inequality we can write{ ∣∣∫

Ω
(|v|ρ v − |u|ρ u)w′dx

∣∣ ≤ (ρ + 1)
∫

Ω
|v|ρ |w| |w′| dx

≤ (ρ + 1) ‖|v|ρ‖Ln(Ω) ||w||Lq(Ω) |w′| ,
1
n

+ 1
q

+ 1
2

= 1.

Then, referring to [4], we have

‖v‖Lkq(Ω) =
∥∥∥|v|k∥∥∥ 1

k

Lq(Ω)
∀k, q ∈ N∗. (40)

For all ρ > −1, we put

k = E

(
ρ (n− 2)

2

)
+ 1, k ∈ N∗, ∀n ≥ 2,

where E (x), denotes the integer part of x. Then, we have

ρ ≤ 2k

n− 2
, k ∈ N∗, n 6= 2 (ρ any finished so n = 2).

Thus, if 1
n

+ 1
q

+ 1
2

= 1, then ρn ≤ qk and referring to [?] we have

H1 (Ω) ⊂ Lq(Ω). (41)

Then, using (40) and (41) we have

‖|v|ρ‖Ln(Ω) = ‖v‖ρ
Lρn(Ω) ≤ ‖v‖ρ

Lkq(Ω)
=

∥∥∥|v|k∥∥∥ ρ
k

Lq(Ω)
≤

∥∥∥|v|k∥∥∥ ρ
k ≤ C ‖v‖ρ ,
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which implies that∣∣∣∣∫
Ω

(|v|ρ v − |u|ρ u) w′dx

∣∣∣∣ ≤ C ‖|v|ρ‖Ln(Ω) ||w|| |w
′| ≤ C ‖v‖ρ ||w|| |w′| .

Since v ∈ L∞ (0, T ; V ∩ Lp(Ω)) , then ‖v‖ρ ≤ C, consequently∣∣∣∣∫
Ω

(|v|ρ v − |u|ρ u)w′dx

∣∣∣∣ ≤ C2 ||w|| |w′| .

Therefore, using the Young ’s inequality, then (39) becomes

1

2

d

dt

(
|w′(t)|2 + C1 ‖w(t)‖2

)
≤ C2 ||w(t)|| |w′(t)| ≤ 1

2
C2

(
||w(t)||2 + |w′(t)|2

)
.

Integrating equation above together with the initial conditions (34), we obtain

|w′(t)|2 + ‖w(t)‖2 ≤ C3

t∫
0

(
|w′(s)|2 + ‖w(s)‖2

)
ds.

Finally, use Gronwall ’s inequality to find w = 0.

4 Conclusion

If we put
σ (u) = F (ε(u)) = 2ε(u)− Trace(ε(u))I,

where I denotes the identity operator and denotes the trace operator. Then,
the problem (1)-(4), without the condition σ(u)η = 0 on Σ2, is reduced to the
particular problem studied by J.L. Lions [?]. Since F is linear and satisfies the
hypotheses (5). Then, Theorems 3.1 and 3.3 are verified of particular problem
considered in [?].

5 Open Problem

In this section, we should present an open problem, which consists in obtaining
the same results as in Theorems 3.1 and 3.3 by reducing the assumptions on
the operator F , where F is a non linear. On the other hand, obtaining the
same results found in this work for contact with or without friction problems
is of major concern.
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