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Abstract
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1 Introduction and Preliminaries

Let b be a locally integrable function on R™ and 7' be the Calderén-
Zygmund operator. The commutator [b, T generated by b and 7T is defined
by

b, T]f(x) = b(x)T f(z) = T(bf) ().

Janson [3][8] proved that [b,T] is bounded on L? for 1 < p < oo if and only if
b € BMO. Chanillo(see [2]) proved that the commutator [b, [,] generated by
b € BMO and the fractional integral operator I, is bounded from LP(R™) to
LI(R"™), where 1 < p < g < oo and 1/p — 1/q = a/n. Then Paluszynski(see
[12]) showed that b € Lipg(the homogeneous Lipschitz space) if and only if the
commutator [b, T is bounded from L to L%, where 1 < p < g<o0,0< <1
and 1/q = 1/p — B/n. Also Paluszyiiski (see [12]) obtain that b € Lipg if and
only if the commutator [b, I,] is bounded from L? to L", where 1 < p < r < o0,
O<p<landl/r=1/p—(B+«a)/n with 1/p > (B+ «a)/n.
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On the other hand, In [1][6], the boundedness for the commutators gener-
ated by the singular integral operators and the weighted BM O and Lipschitz
functions on LP(R™)(1 < p < o0) spaces are obtained. The purpose of this
paper is to establish boundedness for the multilinear commutators related to
the Bochner-Riesz operator with b € Lipg, (R")(the weighted Lipschitz space).

2 Notations and Results

A non-negative function v defined on R" is called a weight if it is locally
integral function. A weight v is said to belong to the Muckenhoupt class
A,(R™) for 1 < p < o0, if there exists a constant C' such that

5/ u(x)dx(ﬁ / <u<x>>p11dw)p1 <C

for every ball B C R". The class A;(R") is defined replacing the above in-
equality by

1
—/ v(z)de < Cv(x), ae. z€R",
1Bl J5
for every ball B C R™(see [5]).

A locally integral non-negative function v is said to A(p,q)(1 < p,q <
oo)(see [11]) if there exists C' such that

<ﬁ /B y(m)qczx> Uq(ﬁ /B (V(x))_p/dx)l/p/ <c

for every ball B C R" and 1/p'+ 1/p = 1.
Then let us introduce some notations(see [5][10][14][15]). In this paper, B
will denote a ball of R", and for a ball B let fz = |B|™" [, f(x)dz and the

sharp function of f is deﬁned by

# _
f7(x) = sup —: ] / |f(y) — faldy.

B>x

It is well-known that (see [14])

f#(a:)wsupmf 3] / |f(y) — C|dy.

Bz c€C

For 0 < r < oo, we denote f# by

FE @) = (A7

Let M be the Hardy-Littlewood maximal operator, that is

M) = s oz [ 1wl

B>z
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We write that M,(f) = (M(|f[P))'/? for 0 < p < co. Let M, be the fractional
maximal operator, that is

1
My(F)(@) = sup ey / F)dy, 0<~ <.

And following [6], we will say that a locally integral function f belongs to the
weighted Lipschitz space Lipj, for 1 <p <o00,0 < < 1and v € A (R"),
that is

1/p
5 ﬁ/" { / |f( fB|pV(m)1_pdm} < C < oo,
B

where the supremum is taken over all balls B C R".

Modulo constants, the Banach space of such functions is defined by Lipgjy.
The smallest bound C' satisfying conditions above is then taken to be the
norm of f in these spaces, and is denoted by || f|| Lif),- Put Lipg, = Lz’p};’y.
Obviously, for the case v = 1, then the Lipg,(R") is the classical Lips(R"™)
space.

Let v € A;(R"™), Garcia-Cuerva in [4] proved that the spaces [|f|| Lis,
coincide, and the norm of || - || Lipf,, are equivalent with respect to different
values of provided that 1 < p < 0.

For b; € Lips,(R")(j =1,--- ,m), set

m
101 ips, = [T 1105 Lip -
j=1

Given a positive integer m and 1 < j < m, we denote by C]" the family of
all finite subsets ¢ = {o(1),- - -,0(j)} of {1,---,m} of j different elements.
For o € CT", set O'C_‘: {1,---,m}\ o. For b = (by, - ,by) and o = {o(1), -

o(j)} € CF, set by = (bory, -, bo(j)), bo = boq) = - - bo(j) and |[bs||Lips, =

bl Lips,, -+ oo |Lips, -
In this paper, we will study some multilinear commutators as follows.

Definition. Suppose b)s are the fixed locally integral functions on R"

and m € N,(j = 1,---,m). The maximal operator Bg* associated with the
multilinear commutator generated by the Bochner-Riesz operator is defined by

B}()(x) = sup [ B, (f)(x)],

t>0

where

BL(Nw) = [ B =t ][0 - b,

J=1
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Bj(z) = t7"B%(x/t) and (BJ(f))(€) = (1 — t|€])3.f(€). We also define

BI(f)() = sup | BY(f)(a)] = sup

t>0

/n B (x —y)f(y)dy|,

which is the Bochner-Riesz operator([7][9][10][15]).
Let H be the space H = {h : [|h|| = sup,.|h(t)] < oo}, then,B},(f)(x)
may be viewed as a mapping from R" to H, and it is clear that

BI(f)(w) = 1B} (f)(@)]]

and B B
Bg.(f)(x) = |IBs,()(@)I]

Note that when by = - - - = b,,, Bg* is just the commutator of order m. It
is well known that commutators are of great interest in harmonic analysis and
have been widely studied by many authors.

Now we state our theorems as following.

Theorem 2.1 Let v € Ay(R") and b; € Lipg,(R") for j = 1,---,m,
1/g=1/p—mf/nfor0 < <1,0<e<1<s<n/B. Then there exists a
constant C' > 0 such that

ME(BL () (@) < w@)mnéuupﬁ,u(z 3 Mmﬁ,y,xBEf<f>><f>+Mmﬂ,y,s<f><:f>)

j=1ceCm

for any smooth function f and a.e. £ € R", and where

Moo 1e) =300 gt [ ) "

B>x
Theorem 2.2 Let v € Ai(R"), 1/q¢ = 1/p — mfB/n for 0 < § < 1 and
1 <p<gq<oo Ifb; € Lipg,(R") for j = 1,---,m, then the commutator
By, is bounded from LP(v) to L(v'~7).
3. Some lemmas

Lemma 3.1(see [5]) Let 0 < p,e < oo and v € J,., . A-(R"). There
exists a positive C' such that

M. f(x)Pv(x)de < C | MFf(x)Pv(x)ds
Rr Rn

for any smooth function f for which the left-hand side is finite.
Lemma 3.2([5, p.485]) Let 0 < p < ¢ < oo and for any function f > 0.
We define that, for 1/r =1/p—1/q

| fllwie = sup Al € B < £(2) > A} Ny () = sup | xell oo/ o
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where the sup is taken for all measurable sets F with 0 < |F| < co. Then

HfHWLq < Np,q(f) < <Q/(C] _p))l/prHWLq-

4. Proof of Theorem 2.1 and 2.2

Proof of Theorem 2.1. It suffices to prove for f € C{°(R") and some
constant Cp, the following inequality holds:

1/e
(\B[/'B‘S* — Cy| edx))

< CV HbH[ﬂpBV(Z Z Mmﬁus Bg* ( )+Mmﬁ,u,s(f>(‘i‘))‘

j=1 UECm

Fix a ball B = B(zo,r) and & € B. We first consider the Case m=1 . Write,
for fi = fxep and fo = fX(2B)C,
Bglt(f)(f) = (bl(x)_(bl)B)Bf<f)(x)_Bf((bl_(bl)B)fl)(x)_Bf((bl_(bl)B)fQ)(x)'
Let Oo = Bf(((bl)B - bﬁfg)(fﬁo), then
|BSL(f) () = B2(((b1) s — b1) f2) (o)
H|B H@)|| = I1B(((b1) 5 — b1) f2) (0 H|
HB§1t< (@) = BH(((b1)g — b1) f2) (o) |
(b () = (b)) By () (@) + 1B (b — (b)) f1) ()]
(
)-

IAINA

HIB7 (b = (01)p) f2)(x) = B (b1 = (b1)5) f2) (w0
= I(x)+I1I(z)+I11(x

For I(x), by Holder’s inequality with exponent 1/s+1/s' = 1land 1 < s < n/j,
we get

(5 /. \I(:c)|€dx> S
1/s
< (g [, @) = @sl v d) <|B\/'Ba ()

1 ) 1/s
B/n 1/5 1-s
< c—|2B|1/8 VB ( /|b1 ~ (b1)as]* V() dm)
1 1/s—B/n 5
o (i sﬁ/n/ o)
oV(B)

|B‘ ||b1||LZpguMBVS(Béf)< )

< Cv(@)lbllLins,, Mpw,s(BL) (7).
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For I1(z), by Lemma 3.2 and Holder’s inequality, we have

(o)

< Oﬁ . |(b1(w) — (b1)28) f(z)X25(7)|dx

< C@ |b1(x) — (b1)2s]|f(z)|dx
< Cv(z )\\blﬂLz’pg,uMﬁ,u,s(f)(f)a

For I11(x), we have, for = € B,

C(z) = [[BY((br — (b1)2p) f2)(x) — Bl ((by — (b1)2s) f2) (o) ]

= sup
t>0

We consider the following two cases:
Case 1. 0 < t < d. In this case, notice that([9])

[B(2)] < C(1L+ [a]) G072,

/( )= () B — ) = Bl = )]

121

we obtain
‘ / (b b1>23>f<y><Bf<x—y>—Bfm—y))dy\
QB
< o Z / n(9) — (b0 )asl PG+ [ — gl /1)y
2k+1B\2k B
1
< 5—(n—1)/2 k((n—1)/2—5) B
< cja) 22 (et [, ) = Gulesll sy
2 ok((n-1)/2-9)
< C - b — (b1)ok+1 d
< O gy oy O~ OO0y
0 ok((n—1)/2-0)
C —|(b — (b1)okt1 d
+ ; |2k+1B| |< I)QB ( 1)2 + B| 2k+1B|f(y)| Y
< CZQk bRy, )||b1||L1pﬁuMﬁV5(f)(j>
+O§jk2k W25 by iy M ) ()
< o)1 lLsps, M (D)D),
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Case 2. t > d. In this case, we choose §y such that (n — 1)/2 < § <
min(d, (n + 1)/2), notice that (see [9])

(0/0) B3 (z)| < O(1 + |z|)~+(n+1/2),

we obtain

/(23)c(b1 (y) = (01)28) [ (W) (B (z — y) — B} (w0 — y))dy

IA

o /(QB)C |b1(y) — (bl)QBHf(y)HB‘S((x —y)/t) - B‘S((a:o —y)/t)ldy

= C‘t‘"‘lf b1(y) = (b1)251 £ (W)l|wo — 2|(1+ 2o — y| /£)~ T2y
(2B)e

= Ct"lz/ b1(y) = (b)asllf W)l lwo — 2|1+ |mg — yl/ 1)~ Dy
k=1 2k+1B\2kB

n — - n— - 1
< C(d/t)mtH/? 5022k(( 1)/2—80) <|2’f+1B] o |b1(y) — (61)23\|f(y)|dy>
k=1

< CV(.%)||b]_HLipﬁ’,,Mﬁ7V,$(f) (57)’

where we use the fact that [(b1)ap — (b1)ar+1p] < C(Z)v(257B)P||b1]|Lip,., .
thus

1 1/e
(E/B|[I]($)|de> SCy(j>||b1||Lip5’UMﬁ,y,s(f)({i‘).

Now, we consider the Case m > 2. we have, for b = (by, -, by,),
B / nH v) B (x — ) (y)dy

_ /R n ﬁ[<bj<x> — (by)28) — (b5(y) — (b)) B (& — 9) f(y)dy

— g; ezcm(_nmj(b(x) — (b)25)s / (o) = (b)an)oe By (x — y) f(y)dy

_ .T”l(bj(x) () B (@) + <—1>m33<ﬁ1<bj<y> () ) (@)

+

5 S (")~ O [ (O0) ~ (e Bl ) (0)dy

Jj=1 UEC’J’.” R
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| CEROMEIRTE
B0 = )0
+Z > o B (o),
thus, recall that Cy = B3([T™, (b(y) — (b;)25) f2) (x0).
1555)(5) = BT 000) (o) )2
= {NBE ()@~ 1B m o)) )|
< 1B = BT~ G
< B

m

+ ||BY(

ZC
+ 1B H )28) f1) ()]
et

J=1

= ©(z)+ L(z) + I3(z) + Li(x).

For [;(z), by Hélder’s inequality with exponent 1/s 4 1/sy + -+ +

and 1 < s <n/f, set p>m, we get

1

Jop) f2) (@) = B ([ [(45(%) — (0))25)f2) (o)l

123

1/sm =1

. 2] bj)ap | v (x)' =" dx " = [ 1B (@) 'v(x)de v
(\ \/ > (‘ |/ )

< C——v(2B)""V™y(2B)5/"

2B 1/31
= |ZB|1/81 v(2B)

v(2B)B/n
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1/s1

Y (23)1 Ymy(2B)PI————u(2B)/m
|QB| |2B]|/sm v(2B)#/

1/sm
X( / |b1 bl QB’ m (.T)l_Smdl')

1 »
\Bll/s v(B)Y*~ mﬁ/N(W/B|Bf(f)($)|sy($)d$>
B)™ -
V(’B)| 6] Lins., Mg, (BLf) ()

v(B) . v(B) 7 -
|B’1/m T ’B|1/m Hb|’Lipﬁ,uMmﬂyv,S(Bffxx)

(|2B|/ mdx) ' (|23‘/ de) 1811 Lipy, Mo ws (B F) (2)
0\23|1/m[(/28 y(x)m-i)rg\zgp—p]l/m...
/u(x)m

> S1yYm
><|2B\1/m[( ) ) |2B\1—p} Blliaps . Moo (B2F) (2)

o(@ | V(x)pdx) - (w | pdx) 190t Mo (BEF) )

CU@)™ 1Bl Lips,, Mingos(BL) (),

IN

C

C

IN

IA

IN

IN

IN

where we use the fact that v satisfies the reverse of Holder’s inequality:

(ﬁ /B V(x)qu> " c|—§| v(z)dz

for all balls B and some 1 < g < oo(see [7]).
For I5(x), by Holder’s inequality with exponent 1/s+1/s" = land 1 < s < n/f,

we get
1 Ve
— L(z)|°dx g—/ L(z)|dx
(57 [mtras) - < o [ 1)

szl > (’23’/ b(x) — (D)2  v(z)'~ s/da:>1/81

j:laECF

(5 [ |B§,f<f)<w>|5u<x>dx) "
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m—1
< CZ Z V ||b||sz5,,MBVs(Bg:f)( )

j=1 ceCy"

For I3(x), similar to 11(x), we have

(37 [, coa) )

1

< 5 /.. [((bi(z) = (b1)28) -+ * (b (x) = (bi)25) f(x)x25(2)|dz

< 2B / (b1(x) = (b1)25) - - (b — (b )ap)||f(x)|d
v(2B) .

< C ‘QB’ ||b||sz5u mﬂus(f)<$)

< Ov(E)™|B]|Liny, Mingws (f)(E)-

For I,(x), similar to the proof of I1I(z) in the Case m = 1. We have :

m m

Iy(z) = HBS(H(bj(y) — (bj)28) f2) () = BY(J [ (05(w) = (b)28) f2) (o)

J=1

= sl [ TI0) ~ (e 0) Bl — ) — Bileo — )

t>0

We consider the following two cases:
Case 1. 0 <t < d. In this case, notice that

By ()] < O(1+ |af)~ O+,

we obtain
| [1®i(w) = (0))28) f W) (B (x — y) — B} (x0 — y))dy]
(2B)¢ j=1
S ct™ / f 1+ T —y t (6+( n+1)/2)dy
S NI COR RO
< 5—(n—1)/2 k((n—1)/2—5)
< C(t/ayr IRy 2 (mkHB‘ N ORI ST >|dy)
k=1 j=1
< 022k OO (F)™ 8] iy, Mings () (F)

k=1

Cv (&)™ bl  Lipy, M () (F).

IN
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Case 2. t > d. In this case, we choose §y such that (n — 1)/2 < § <
min(d, (n + 1)/2), notice that

(0/02) Bl ()] < C(1 + |a|)~OFm+1/2)

we obtain
| (2B)C[H(bj(y) = (0)2m)|f (W)(B) (z — y) — By (20 — y))dy]
<o ITT50) = @h) NI (a = /1) = B = )/
S A | (O R e L e R T
< ottt 1 )oB
< Z /B\rH NI )

Xl = 2l(1+ | — yl/4)" O+ gy

C(d/t)(n+1)/27éo Z 2k((n71)/2750)

k=1

<|2k+1B| /2k+1B H bj)2s)||f(y )|dy>

< Csz =R (2™ D) ips. Mimgans () ()

k=1

< Ov(E) ™8| Liny, Mingws (f)(E):
Thus,

IN

1 1/e ~
(i3 [ oFde) < Cotey Bl Mo (912

This completes the proof of the Theorem 1.

Proof of Theorem 2.2. From Lemma 3.1, since v € A;(R"), then 177 €
A,(R™)(see [7]). Then by Theorem 2.1 with 0 < e <1 < s < p, we get, when
m =1,

185 (@)|| agur-a)

IN

1M (B3 Pl zagr-a) < ClIME (B3 )]l pagr-a

< CHblHLiPB,V <‘|Mﬂ7V7S<B£f)||LQ(y) + HMﬁ,V,s(f)HLq(V))
< Clballzips, |1 o)

When m > 2, we may get the conclusion of Theorem 2.2 by induction.
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5. Open problem

In this paper, the boundedness properties of the multilinear operators gen-
erated by the Bochner-Riesz operator and weighted Lipschitz functions. are
obtained.

The open problem is to study the boundedness of the multilinear oper-
ators generated by the Bochner-Riesz operator and others locally integrable
functions on others spaces.
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