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Abstract

In this paper, we introduce the concepts of relaxed M -n-o-
P_-pseudomonotonicity and relaxed M -n-a-P_-pseudomonoton
icity-type mappings. Using the KKM techniques, we obtain
the existence of solutions for generalized vector wvariational-
like inequalities with relared M -n-a-P_-pseudomonotone-type
mappings in reflexive Banach spaces. The results presented
in this paper generalize, unify and itmprove a number of pre-
viously known results.
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1 Introduction

Vector variational inequalities were initially introduced and considered by Gi-
annessi [5] in a finite-dimensional Euclidean space in 1980, which is gener-
alization of a scalar variational inequality to the vector case by virtue of
multi-criterion consideration. Later on vector variational inequalities and their
generalizations have been investigated and applied in various directions; see
for example [1,2,7,9,10,12,13] and references therein. In recent years, many
authors proposed several important generalizations of monotonicity such as
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pseudomonotonicity, relaxed monotonicity, relaxed n-a-monotonicity, quasi-
monotonicity and semimonotonicity and applied to establishing existence re-
sults for vector variational inequality problems; see for example [2,4,6,8,17].

Recently in 1997, Verma [17] studied a class of variational inequalities with
relaxed monotone operators. Very recently in 2003, Fang et al. [4] introduced a
new concept of relaxed n-a-monotone mappings and obtained the existence of
solutions for variational-like inequalities with relaxed n-a-monotone mappings
in reflexive Banach spaces.

Inspired and motivated by Verma [17] and Fang et al. [4], in this paper
we introduce the concept of relaxed M-n-a-P_-pseudomonotone and relaxed
M-n-a-P_-pseudomonotone-type set-valued mappings. Further, we consider
generalized vector variational-like inequality problem involving relaxed M-n-
a-P_-pseudomonotone-type set-valued mappings. Furthermore, by using the
KKM techniques, we established some existence results for this generalized vec-
tor variational-like inequalities involving relaxed M-n-a-P _-pseudomonotone-
type mappings in reflexive Banach spaces. Our results are the generalization
of many existing works of [4,11,16-17].

2 Problem Formulations

Throughout the paper unless otherwise specified, let X and Y are two Banach
spaces and let K be a nonempty subset of X and N a nonempty subset of
L(X,Y), where L(X,Y) denotes the space of all linear continuous mappings
from X into Y. Let P : K — 2Y be a set-valued mapping such that for each
x € K, P(z) is closed, pointed and convex cone with int P(x) # (). An ordered
Banach space (Y, P) is a real Banach space Y with an ordering defined by a
cone P CY with an apex at the origin in the form of

r<y & y—xeP

Let M : KxN — LX) Y),n: KxK — Xand f: K xK — Y
are bi-mappings and T : K — 2V be a set-valued mapping. In this paper
we consider following generalized vector variational-like inequality problem (in
short, GVVLIP): Find x € K such that for all y € K there exists an u € T'(z)
satisfying that

<M(‘r7u)7n(y>x)> + f(y7x> ¢ —int P(:C)
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Some special cases of (GVVLIP)

()

(I11)

If f is zero mapping, then (GVVLIP) reduces to the problem of finding
x € K such that for all y € K, 3 u € T'(x) such that

(M(z,u),n(y,v)) ¢ —int P(z).

which was introduced and studied by Ansari et al. [1], that generalizes
some kinds of vector variational inequalities considered by many authors;
see for details [1, 9-11,13].

If K=N and M(z,u) =Au, where A : K — L(X,Y) then (GVVLIP)
reduces to the problem of finding € K, such that for all y € K,
Ju € T'(z) such that

which has been studied by Usman et al. [16].

If f is zero mapping, K =N, M (z,u)=u, and n(y,x) =y —x, Vz,y € K,
then (GVVLIP) reduces to the problem of finding x € K such that for
all y € K, 3 u € T(z) such that

<U,y - :C> € —int P(CE),
which has been studied by Lee et al. [12].

If f is zero mapping, let K = R", N =R™, Y =Rlandlet L : K x K —
R! be such that M(x,u) = L'(z,u), V(z,u) € K x K, where L’ denotes
the Frechet derivative of L at = and let T : K — 2V is defined by
T(x) = {ye€ N:L(z,2) — L(z,y) € —intR,", ¥z € N} then above
(GVVLIP) reduces to problem of finding x € K such that for all y € K,
Ju € T(x) such that

(L(z,u),n(y,z)) & —int R,

which has been studied by Kazmi [7] in finding out the weak saddle point
of non convex mapping L.

Throughout the paper, unless otherwise specified, let P~ = [ P(x) is a

zeK

closed, convex, solid and pointed cone. Now we recall the following concepts
and results which are needed in the sequel.

Definition 2.1 A mapping f : K x K — Y s said to be
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(a) P_-convex in first argument, if for all o € [0,1] and x1, 29 € K,
f(Oé.iEl—l-(l—Oé)[BQ, y) <p_ Ckf(ﬂfl,y)‘i‘(l_a)f(fljg, y)v
(b) P_-concave, if —f is P_-conver.

Definition 2.2 [3] Let K be a subset of a topological vector space X. A
mapping T : K — 2% is called Knaster-Kuratowski-Mazurkiewieqg mapping
(KKM mapping), if for each nonempty finite subset {x1,zs,--+,x,} C K, we

have Co{zy,---,x,} C [LJ T(x;).
i=1

Lemma 2.3 [2] Let (Y, P) be an ordered Banach space with a closed, pointed
and convex cone P with int P # (). Then Vz,y,z € Y, we have

(i) y—z € intP and y &€ int P = z & int P;
(ii)) y—z¢€ —P andy & —intP = z ¢ —int P.

Theorem 2.4 (KKM-Fan Theorem) [3] Let K be a subset of a topo-
logical vector space X and let F : K — 2% be a KKM mapping. If for each
r € K, F(x) is closed and for atleast one v € K, F(x) is compact, then

N F(z) # 0.

zeK

We have following fixed point theorem which play an important role in
establishing existing theorem for (GVVLIP).

Theorem 2.5 [15] Let K be a nonempty convez subset of a Hausdorff topo-
logical vector space X and let S : K — 25 be a set-valued mapping such that

(i) for each x € K, S(x) is a nonempty convex subset of K;

(ii) for eachy e K, S™'(y) :={z € K: y e S(x)} contains an open subset
O, of K, where O, may be empty;

(iii) U O, =K;
yeK

(iv) K contains a nonempty subset Ko contained in a compact subset Ky of

K such that the set D = [\ Oy is compact, where D may be empty and
yEKo
O, denotes complement of O, in K.

Then dx¢ € K such that xy € S(xg).



108 Suhel Ahmad Khan et al.

3 Existence results for (GVVLIP)

First, we define the following concepts.

Definition 3.1 Let M : K x N — L(X,Y), f: Kx K — Y andn :
K x K — X be mappings, let T : K — 2V are the set-valued mapping and let
a: X —Y be a mapping such that a(tz) = tPa(z), Vz € X for allt > 0 and
a constant p > 1. Then T is said to be

(a) relazed M-n-a-P_-pseudomonotone, if for every pair of points x,y € K
and for allu € T(x), v € T(y), we have

(M(z,u),n(y,x)) + f(y,z) & —int P(x) implies
(M(y,v),n(y, 2)) + [y, 2) — aly — x) & —int P(x);

(b) relaxed M-n-a-P_-pseudomonotone-type, if for every pair of points x,y €
K and for all uw € T(z), we have

(M(z,u),n(y,2)) + f(y,z) § —int P(z) implies
(M(y,v),n(y, 2)) + [y, 2) — aly —x) ¢ —int P(x), for some v € T(y)
Remark 3.2 (1) (a) implies (b)) but not conversely.

(1) If « =0, f(y,2) = fly) — f(z), M(z,u) = v and n(y,z) =y — =,
Va,y € K, then we obtain Definition 2.1 (iii) and (vi) in [9], respectively.

(1) Ifa =0, f(y,z) = f(y) = f(x), L(X,Y) = X*, Y = R and P(z) = R",
Vx € K, then we obtain Definition 2.1 (i) in [14].

Definition 3.3 Let M : K x N — L(X,)Y), f: K x K — Y and n :
K x K — X are bi-mappings and let T : K — 2V be a set-valued mapping.
Then T is said to be M -n-hemicontinuous if, for any x,y € K, u,, € T(z+ny),
Jug € T'(z) such that

(M(z +ny, un),n(y, x)) + f(y, 1) = (M(2,u0),n(y, ) + f(y,x) asn—0".

Now, we give Minty’s-type lemma for (GVVLIP).

Lemma 3.4 Let X be real reflexive Banach space and Y be a Banach space.
Let K C X be a nonempty, closed and convez subset of X and N a nonempty
subset of L(X,Y). Let P : K — 2Y be such that for each x € K, P(x) is a
proper, closed, convex cone with intP # (). Let M : K x N — L(X,Y) be a
mapping and f : K x K — Y is P_-convex in first argument with f(x,x) =
0,Vx € K. Suppose following conditions hold
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(i) n: K x K — X is a mapping such that n(x,z) =0, Vo € K;

(i) for any fivzed x € K, uw € T(x) the mapping y — (M(z,u),n(y,x)) is
P_-convex;

(iii) T : K — 2N be M -n-hemicontinuous and relazed M -n-o-P_-pseudomonotone-
type mapping.

Then following two problems are equivalent:

(A) Find x € K such that for all y € K, there exists an u € T'(x) satisfying

that
(M(z,u),n(y,2)) + f(y, x) & —int P(z). (3.1)
(B) Find x € K such that for all y € K, there ezists an v € T(y) satisfying
that

(M(y,v),n(y,z)) + f(y,z) — aly — ) € —int P(z). (3.2)

Proof. Let x € K be a solution of problem (3.1), therefore there exists
u € T'(z) such that

(M(z,u),n(y,z)) + f(y,x) & —int P(x).

Since T is relaxed M-n-a-P -pseudomonotone-type, which implies that there
exists v € T'(y) such that

(M(y,v),n(y,z)) + f(y,z) — aly — z) € —int P(z).

Conversely, suppose that there exists x € K such that

(M(y,v),n(y,z)) + fly,z) —aly —z) € —int P(z) VyeK, veT(y).

For any given y € K, we know that y, := (1 —t)x +ty € K, Vt € (0,1), as K
is convex.

Since x € K is a solution of problem (3.2), so for each v; € T'(y;) it follows
that

(M (ye, ve), nye, ) + f(ye, 2) — alye — x) & —int P(x). (3.3)

(M (ye, ve),n((1 = )z + by, 2)) + f((1 = )x + by, z) — a(t(y — x)) ¢ —int P(z).
As f is P_-convex in first argument, we have

F(A =tz +ty,2) <pa) (1—1)f(z,2) +tf(y,2) = tf(y, x). (3.4)

By using the conditions (i) and (ii) on 7, it follows

(M (ye, ve),n(ye, ©)) = (M (ye, ve),n((1 = t)x + ty, x))
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<p(w) (1=t)(M (ys, vr), n(2, 2))+E{M (yz, ve), 0(y, ©))
<p() M (3, v0), n(y, ) (3.5)
It follows from inclusions (3.3)-(3.5) and Lemma 2.3, that for t > 0 and p > 1
t(M (e, ve), 0y, @) +1f(y, 2) — "y — x) € —int P(z).
<M(yt7 Ut)a 77(9» IL‘)) + f(ya :L‘) - tp_la(y - :L‘) g —Int P(:L‘)
Since T is M-n-hemicontinuous and p > 1, there exists u € T'(x) such that
(M (z,u),n(y, z)) + f(y,z) & —int P(x).
as t — 0%. This completes the proof.
Now, we have following existence theorem for (GVVLIP).

Theorem 3.5 Let X be real reflexive Banach space and Y be a Banach
space. Let K C X be a nonempty, bounded, closed and convex subset of X
and N a nonempty subset of L(X,Y). Let P : K — 2Y be such that for
each x € K, P(x) is a proper, closed, convex cone with int P # (). Let M :
K x N — L(X,Y) be a mapping, o : X — 'Y is weakly lower semicontinuous
and P_-convexr mapping. Suppose following conditions hold:

(i) The set-valued mapping W : K — 2¥ defined as W (x) = Y \{—int P(z)}
such that graph of W is weakly closed in X xXY;

(i) n: K x K — X is continuous in second arqgument such that n(z,x) =0,
Vo € K;

(iii) f: K x K — Y is lower semicontinuous and P_-convez in second and
first arguments, respectively, with f(z,x) =0, Yo € K;

(iv) for any fized x € K and u € T(x), the mapping y — (M (x,u),n(y, z))
18 P_-convex;

(v) T : K — 2N be M-n-hemicontinuous and relaxed M -n-a-P_-pseudomonotone-
type mapping with compact-values.

Then (GVVLIP) is solvable.

Proof. Let Fy,F, : K — 2% be two set-valued mappings such that for any
yeK,

Fi(y) ={x € K :3u € T(x) such that (M(x,u),n(y,x))+f(y,x) & —int P(z)}.

Fy(y) ={x € K:3v € T(y) such that (M(y,v),n(y,z))+f(y,x)—a(y —x) & —int P(z)}.
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We claim that F; is KKM mapping. Indeed, let o; > 0, 1 < i < n, with
a; = 1. Suppose that z = > ayz; ¢ U Fi(x;). Then, for any u € T(x),
=1 i=1 i=1

(M (z,u),n(z;,x)) + f(z;,x) € —int P(z), 1=1,2,...n.
We have
0= (M(m,u),n(z,x)) + f(wi)

= <M($au)a77(i T, T)) + f(z: T, T)

spﬁgaz-KM(x,u),n(:ci,x» + f(zs )]

i.e., 0 € —int P(x), which is not possible for a pointed cone and thus our claim
is verified.

Next, we prove that Fi(y) C Fy(y) for each y € K. For any given y € K, let
x € Fi(y) then there exists u € T'(z) such that

(M(z,u),n(y, z)) + f(y,z) & —int P(z).

Since T is relaxed M-n-a-P_-pseudomonotone-type, we have

(M(y,v),n(y,z)) + f(y,z) — aly —x) € —int P(x).

i.e., x € Fy(y). It follows that Fy(y) C Fa(y) for each y € K. Hence F, is also
a KKM mapping.

Now, we claim that F,(y) is weakly closed in K for each y € K. Indeed, let
{z,} C F»(y) such that z,, — z9 € K. Since x,, € Fy(y), there exists v, € T(y)
such that

(M(y,vn),n(y, zn)) + f(y, ) — aly — x,) & —int P(x,),

e,  (M(y,vn),n(y, xn)) + f(y, 2n) —a(y — x,,) € Y\{~int P(z,)} € W(x,).

Since T'(y) is compact, {v,} has a convergent subsequence in T'(y) without
loss of generality, we can assume that there exists vy € T'(y) such that v, —
vg. Since graph of W is weakly closed, T is continuous, f and « are lower
semicontinuous, it follows that

(M(y,vn), 0y, zn)) + [y, 2n) — aly — x,) —

(M(y,vo),n(y, o))+ f(y, v0) —aly — x0) € W (o)

i.e, zg € Fy(y) and hence Fy(y) is closed. Since K is closed, bounded and
convex subset of a reflexive Banach space X, then K is weakly compact. Fy(y)
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is also weakly compact because Fy(y) € K. Hence by KKM-Fan Theorem 2.4,

we have
) Fa(y) # 0.
yeK

By Lemma 3.4, we have
) Fi(y) # 0.
yeK

Consequently, there exists xq € K such that for each y € K and ug € T'(x)
such that

(M (zo,u0),n(y, o)) + f(y,w0) & —int P(xo).
This completes the proof.

Theorem 3.6 Let X be real reflexive Banach space and Y be a Banach
space. Let K C X be a nonempty, bounded, closed and convex subset of X
and N a nonempty subset of L(X,Y). Let P : K — 2Y be such that for
each x € K, P(x) is a proper, closed, convex cone with int P # (). Let M :
K x N — L(X,Y) be a mapping, o : X — 'Y is weakly lower semicontinuous
and P_-convex mapping. Let the conditions (i)-(v) of Theorem 3.5 hold and
also the following conditions hold:

(vi) Foreachx € K, 3xy € K, such thatug € T(xo) and (M (xg,ug), n(xo, z))+
f(zo,x) — a(zg — x) & —int P(x);

(vii) There exists a nonempty set Ko contained in a compact and convex subset
K of K such that

D= () [ {zeK:(Mxyuo) n(zo,x)) +f(xo,z)—a(zo — x) € W(z)}.

20€Ko upeT (z0)

Then (GVVLIP) is solvable.

Proof. Suppose on contrary that (GVVLIP) admits no solution, then for each
xo € K, there exists ug € T'(zy) and = € K such that

(M (w0, up),n(w,20)) + f(z,70) € —int P(z0)
then the set
F(zo) :={x € K : Jug € T(x0) such that (M (zg,uo),n(x,x0))+f(x,x0)) € —int P(x0)},

is nonempty. We claim that the set F'(z) is convex. Indeed, let z1,x9 € F(x)
and let m,n > 0 be such that m +n =1 then Juy € T'(x)) such that

m[(M (xo,uo), n(x1,z0)) + f(21,20)] € m(—int P(xy)) = —intP(xo)
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n[{(M(xo,up),n(xe, x0)) + f(x2,20)] € n(—int P(xg)) = —intP(zo)

Since 7(.,zo) and f(.,z) are P_-convex, then from preceding two inclusions,
we have mzy + nxy € F(x), i.e., the set F(zg) is convex for each zy € K.
Thus F : K — 2% is a nonempty and convex set-valued mapping. Now
FYzo) ={r € K :29 € F(x0)}

={z € K :3Ju € T(x) such that (M(z,u),n(xo,z))+f(x0,z) € —int P(z)}

[FHx))*={x € K :Fu e T(x), (M(x,u),n(xo, z))+f(x0,7) & —int P(x)}

Since T is relaxed M-n-a-P _-pseudomonotone-type mapping, therefore above
inclusion implies that

CH{z e K : Jug € T(x0), (M (xo,u0),n(xo, z))+f(x0, x)—c(vo—2) & —int P(x)}

={x € K :3Juy € T'(zo), (M (xo,up), N, x))+f(x0,x)—a(xo—2) € Y\ (—int P(z))}
=: B(xy) C K.
Since «, f(.,x) are P_-convex and 7(.,z) is affine, we can easily show that

B(xy) is convex. Also lower semicontinuity of f(.,z), continuity of n(zo, .) and
closeness of Y\ (—int P(x)) yield the relatively closeness of B(xy).

Hence, for each g € K, O,, := [B(x)] is a relatively open subset of K. Now,

by assumption (vi), it follows that |J O,,. Finally from assumption (vii)
roEK

roEKo uoET(iﬂo) ro€Ko uoET(iﬂo)

is compact or empty. Hence from fixed point Theorem 2.5, there exists zg € K
such that ¢ € F(xy), i.e., 0 € —int P(x), which is not possible for a pointed
cone. Hence (GVVLIP) admits a solution. This completes the proof.

4 Open Problem

It is of further research effort to study and establish existence results for the
strong generalized vector variational-like inequality problem, i.e., to find z € K
such that for all y € K there exists an u € T'(z) satisfying that

(M(z,u),n(y,z)) + f(y,z) & —P(x)\{0}.
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