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Abstract

Clonal selection algorithms are considered. Two algorithms
are designed and executed to obtain purely empirical analy-
sis conclusions in order to turn to purely theoretical analy-
sis results about the behavior of clonal selection algorithms
as Markov chains, which confirm the conjectures from these
experiments and in order to introduce a complete framework
toward a new philosophy of MCMC method and of statistical
inference method about Markov chains. First, we model clonal
selection algorithms using Markov chains. Second, we carry
on a particle analysis and analyze the convergence properties
of these algorithms. Third, we propose the unified MCMC the-
orem and unique chromosomes method for a purely successful
optimization of these algorithms.

Keywords: Clonal selection algorithms; MCMC; Classification; central limit
theorem; Stationary multivariate normal distribution; Unique chromosomes

1. Introduction

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for
sampling from probability distributions based on constructing a Markov chain
that has the desired distribution as its equilibrium distribution.
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There are works in the literature that attempt to introduce an architecture
for the construction of artificial immune systems (e.g., Hofmeyr and Forrest
[15]), a physical model for it (e.g., Zak [23]).

Genetic algorithms within the framework of Markov chains have been stud-
ied by (e.g., Eiben et al. [1], Fogel [12], Davis et al. [8], Rudolph [22], Nix et
al. [21], De Jong et al. [10], and Spears et al. [11]).

Clark et al. [5] have introduced a Markov chain model of the B-cell al-
gorithm. The convergence of immune algorithms has been studied by (e.g.,
Villalobos-Arias [6]and Cutello et al. [7]. There are works that attempt to
contribute for AIS (e.g.,Hon et al. [17]and Timmis et al. [16]).

These works do not develop a unified stochastic model for genetic and clonal
selection algorithms, analyze their performance and convergence properties to
provide a general framework.

There are works that attempt to combine three areas (simulation, opti-
mization, and analyzing sets of data)(e.g., Conley [24]).

The rest of the paper is organized as follows. In Section 2, we give the
formulation of the problem. In Section 3, we state the main result. Then in
Section 4, the proof of the main result is given in nine steps. In Section 5, we
propose the two algorithms. In Section 6, we give two numerical examples. In
Section 7, we give some concluding remarks. In Section 8, we we give some
open problems.

2. Formulation of the problem

In this paper, we consider a problem, namely: Why are clonal selection
algorithms MCMC?.

Throughout this paper, we consider any objective real valued function of
n-variables f(x1, x2, ..., xn), where ai ≤ xi ≤ bi for i = 1, 2, ..., n are domains
of each variable xi and ai and bi are real numbers, de Castro and Von Zuben
[9]proposed a clonal selection algorithm, named CLONALG.

Proposition 2.1. We restrict an arbitrary uncountable set S={ai ≤ xi ≤ bi

for i = 1, 2, ..., n} to be a subset of n-space Rn as a sample space, restrict an
arbitrary countable set T to be set of all (x1, x2, ..., xn) in S={ai ≤ xi ≤ bi}
for which P (x1, x2, ..., xn) > 0 as a sample space (see Apostol [3]).

Proposition 2.2. We restrict an arbitrary countable set U to be set of all
possible simple random samples with replacement in the ith trail

D(i)
y = ( (x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . , (xm1, xm2, . . . , xmn) )

for which
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P ((x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . , (xm1, xm2, . . . , xmn)) > 0

as a sample space (see [20] and [18]), where for each (xj1, xj2, . . . , xjn) in a
common sample space T , j = 1, 2, . . . , m and y = 1, 2, . . . , h, where m = a
sample size and h = number of samples

3. Main result

In this section, we shall state the main theorem.

Theorem 3.1. For any clonal selection algorithm, the following holds:

(1) The sequence of (m × n)-dimensional random matrices X0, X1, X2, . . .
converges in distribution to the (m × n)-dimensional random matrix X(has
unique stationary distribution) if and only if for each (a1, a2, . . . , a(m×n))

φxi
(a1, a2, . . . , a(m×n))→φx(a1, a2, . . . , a(m×n)) as i →∞

, uniqueness of characteristic function (see Goldman [14]), where

n = number of variables

m = number of sets of measurements on n variables = sample size = number
of chromosomes

φx(a1, a2, . . . , a(m×n)) is the characteristic function of X of m × n real vari-
ables.
(a) If P is a transition matrix for any clonal selection algorithm (regular chain)
and the probability vector t is a fixed point of the matrix P, then

∑2(k×m)

j=1

∑2(k×m)

i=1 tiP
n
ij → (

∑2(k×m)

j=1 tj = 1) as n →∞.

(b) For any clonal selection algorithm, a real valued function f(x1, x2, ..., xn),
where ai ≤ xi ≤ bi for i = 1, 2, ..., n is one that contains an infinite number of
Markov chains(every chain has different Unique chromosomes for purely suc-
cessful optimization and has different globally optimum value(s)).
(2) The sequence of n-dimensional random vectors X0,X1,X2, . . . converges
in distribution to the n-dimensional random vector X(has unique stationary
multivariate normal distribution) if and only if for each (a1, a2, . . . , an)

φxi
(a1, a2, . . . , an)→φx(a1, a2, . . . , an) as i →∞,



40 K.E. El-Nady et al.

uniqueness of characteristic function, where

n = number of variables.

φx(a1, a2, . . . , an) is the characteristic function of X of n real variables.

(a) All possible conditional multivariate normal distributions of transition
probability matrix have the following form: (see proof of the main theorem)

The conditional distribution of Xq+1, given that Xq = L?, is multivariate
normal and has

Mean = µ? = µ + Σt1t2Σ
−1(L? − µ)

and

Covariance = Σ? = Σ− Σt1t2Σ
−1Σt2t1 .

The distribution of X is stationary multivariate normal distribution.
(b) For any clonal selection algorithm, a real valued function f(x1, x2, ..., xn),
where ai ≤ xi ≤ bi for i = 1, 2, ..., n is one that contains an infinite num-
ber of lumped Markov chains(every chain has different Unique chromosomes
for purely successful optimization and has different globally optimum value(s)).

4. Proof of the main result

In this section, we prove the main result in Theorem 3.1. We start with a
useful theorem.

Theorem 4.1.Let (S, β, P ) be a probability space and let T denote the set of
all x in S for which P (x) > 0. Then T is countable. (see [3])

We shall prove Theorem 3.1 in nine steps.

Proof of Theorem 3.1. Step 1. For clonal selecton algorithms, we define
a probability space(S, β, P ).

For clonal selecton algorithms, let a real valued function f(x1, x2, ..., xn),
where ai ≤ xi ≤ bi for i = 1, 2, ..., n. we restrict an arbitrary uncountable set
S to be a subset of n-space Rn as a sample space, we shall assume that this set
is a Borel set. The Borel subsets of S themselves form a Boolean σ-algebra β.
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A nonnegative completely additive set function P defined on β with P (S)=1
is called a probability measure. We have a probability space (S, β, P ).

Step 2. We prove that T is a countable subset of S, and define n-dimensional
random variable defined on a sample space T .

Proof By Theorem 4.1, we restrict an arbitrary countable set T to be set
of all (x1, x2, ..., xn) in S for which P (x1, x2, ..., xn) > 0 as a sample space.
T denotes a countable subset of S (whenever we use a set T in n-space as a
sample space, we shall assume that this set is a Borel set).

Let a sample space T of possible solutions to be coded as strings of k bits
{0,1} and let each possible configuration have a fitness fi, i = 1, .., 2k, let f ?

be the globally optimum value. Hence T is countable.

Let T be a set in n-space for some n ≥ 1 and if τ consists of all subsets
of T , the probability function P is completely determined on τ . We have a
probability space (T, τ, P ).

Next, we define an n-dimensional random variable defined on a sample
space T .

Let X be an n-dimensional random variable defined on a sample space T .

X = (X1(x1) = x1,X2(x2) = x2, ..., Xn(xn) = xn)′ = (x1, x2, ..., xn)

for each (x1, x2, ..., xn) in T .

We will use notation xjk to indicate the particular value of the kth vari-
able that is observed on the jth item, or trail. That is, xjk = measurement
(commonly called data) of the kth variable on the jth item consequently, m
measurements on n variables can be displayed as a rectangular array. We need
to make assumptions about the variables whose observed values constitute the
data set.

Step 3. We prove that U is a countable set of all possible simple random
samples with replacement in the ith trail, and define an (m × n)-dimensional
random variable defined on a sample space U .

Proof. Let the jkth entry in the data matrix be the random variables Xjk.Each
set of measurements Xj on n variables is a random vector, and we have the
random matrix X. A random sample can now be defined. X1, X2, . . .,Xj,
. . ., Xm form a random sample if their joint probability mass function is
given by the product P (X1)P (X2) . . . P (Xj) . . . P (Xm), where P (Xj) =
P (xj1, xj2, . . . , xjk, . . . , xjn) is the probability mass function for the jth row
vector.

We restrict an arbitrary countable set U to be set of all possible simple
random samples with replacement in the ith trail



42 K.E. El-Nady et al.

D(i)
y = ( (x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . , (xm1, xm2, . . . , xmn) )

for which

P ((x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . , (xm1, xm2, . . . , xmn)) > 0

as a sample space, where for each (xj1, xj2, . . . , xjn) in a common sample
space T , y = 1, 2, . . . , h(h = number of samples) and j = 1, 2, . . . ,m(m =
a sample size.

All possible simple random samples with replacement in the ith trail can be
defined by every possible configuration of an entire population of m bit strings.
There are h = 2k×m such samples. Hence U is countable.

Let U be a set in (m × n)-space for some (m × n) ≥ (2 × 1 = 2) and if ν
consists of all subsets of U , the probability function P is completely determined
on ν. We have a probability space (U, ν, P ).

Next, we define an (m×n)-dimensional random variable defined on a sample
space U .

Let X be an (m × n)-dimensional random variable defined on a sample
space U .

X = (X1, X2, . . ., Xm)

= ( (x11, x12, . . . , x1n),(x21, x22, . . . , x2n), . . . ,(xm1, xm2, . . . , xmn) )

for each

( (x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . , (xm1, xm2, . . . , xmn) )

in U , where Xj = (xj1, xj2, . . . , xjn) for each (xj1, xj2, . . . , xjn) in T .

Step 4. We prove that U1 is a countable set of all possible repeated depen-
dent two trails without replacement, define an 2(m × n)-dimensional random
variable defined on a sample space U1, and describe Markov chain process.

Proof. We restrict an arbitrary countable set U1 to be set of all possible
repeated dependent two trails without replacement (D(1)

r ∩ D(2)
s ) for which

P (D(1)
r ∩D(2)

s ) ≥ 0 as a sample space, where for each D(i)
y in a common sample

space U , y = r or s, r = 1, 2, . . . , h and s = 1, 2, . . . , h. Each conditional
probability can be defined and can be obtained by the equation

P (D(2)
s |D(1)

r ) = P (D
(1)
r ∩D

(2)
s )

P (D
(1)
r )

≥ 0 such that P (Dr) 6= 0.
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There are 2(2k×m) such repeated dependent two trails without replacement.
Hence U1 is countable.

Let U1 be a set in 2(m × n)-space for some 2(m × n) ≥ (2(2×1) = 4)
and if ν1 consists of all subsets of U1, the probability function P is completely
determined on ν1. We have a probability space (U1, ν1, P ).

We define an 2(m × n)-dimensional random variable defined on a sample
space U1.

Consider q ∈ Q where Q is the discrete parameter space of the Markov
chain process {Xq, q = 0, 1, 2, . . .}(parameter homogeneous).

Let Xq be an (m × n)-dimensional random variable defined on a sample
space U during q (initial value of time parameter), and Xq+1 be an (m × n)-
dimensional random variable defined on a sample space U during q + 1. The
possible outcomes for Xq are D1, D2, . . ., Dh, and the same holds for Xq+1.

Let X be an 2(m × n)-dimensional random variable defined on a sample
space U1.

X = (Xq, Xq+1) = (Xq = Dr, Xq+1 = DS) = (Dr, Ds) = (Xb1 , Xb2)

=((Xb11,Xb12,. . .,Xb1m), (Xb21,Xb22,. . .,Xb2m))

for each (Dr, Ds) in U1, where

Xv = Dy = (Xb1, Xb2, . . ., Xbm) = Xb

=((x(b1)1,x(b1)2,. . .,x(b1)n), (x(b2)1,x(b2)2,. . .,x(b2)n),. . .,(x(bm)1,x(bm)2,. . .,x(bm)n))

for each

((x(b1)1,x(b1)2,. . .,x(b1)n), (x(b2)1,x(b2)2,. . .,x(b2)n),. . .,(x(bm)1,x(bm)2,. . .,x(bm)n))

in U , v = q or q + 1, y = r or s and b = b1 or b2.

Next, we describe Markov chain process.

A Markov chains requires a finite collection of states, denoted by U = {D1,
D2, . . ., Dh}, an h×h probability matrix P is called a transition matrix and a

probability vector p(0) = ( P (D1), P (D2), . . ., P (Dh) ) = (p
(0)
1 , p

(0)
2 , . . ., p

(0)
h )

is called the initial probability vector. We can also interpret p(0) as stationary
distribution.

Step 5. We prove that clonal selecton algorithms are regular chains.

Proof. From Step 2, We get unique chromosomes (= 2k). From Step 3 and
Step 4, we generate all possible combinations of states of unique chromosomes
(= 2(k×m)) and give each state a number.
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Now we recall a theorem in [19].

Theorem 4.2. If P is a transition matrix for ergodic chain, then:

(1) There is a unique probability vector fixed point t : t = tP .
(2) All components of t are positive.

(3) If h
(n)
j is the average number of times the process is in state j in the first

n steps, then for any ε > 0,

P (| h(n)
j − tj |> ε) → 0 as n →∞

no matter what the starting state is.

We apply clonal selecton algorithms on each generated state for n-iterations,
where n is a large number. We count for each state with specific number the
number of times it appeared, calculate the probability of each state (P ), where

P = number of times it appeared
n

and get the stationary distribution ordered by the state number and its prob-
ability P . All states in this chain will be ergodic.

We conclude and have that all stationary distributions (= 2(k×m)) are the
same unique probability vector fixed point. Hence clonal selecton algorithms
are ergodic chains.

We take each generated state and its chain, get the position numbers se-
quences for each unique state ( of 2k×m ) in the chain, starting with index zero
in the initial state. We conclude and have that all sequences of positions are
even positions or odd positions or random positions sequences. Hence clonal
selecton algorithms are regular chains.

Step 6. We describe the partition L of all possible combinations of states
of unique chromosomes, prove that L is a countable set and define an n-
dimensional random variable defined on a sample space L.

Let L = {L1, L2, . . . ,Lg} be a partition of all possible combinations of states
of unique chromosomes. We get Lz for each state in combination and combine
states according their equal Lz’s ( (x̄1, x̄2, . . . , x̄n)’s )-Taking into account that
Lz’s are unique for each set of states.

We prove that L is a countable set.

We restrict an arbitrary countable set L to be set of all possible outcomes
in the ith trail L(i)

z = (x̄1, x̄2, . . . , x̄n) for which P (x̄1, x̄2, . . . , x̄n) > 0 as a sam-
ple space, where z = 1, 2, . . . , g

x̄k = x1k+x2k+...+xmk

m
=

∑m
j=1

xjk

m
for k = 1, 2, . . . , n
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and xjk = measurement of the kth variable on the jth item. Hence L is a
countable.

Let L be a set in n-space for some n ≥ 1 and if ζ consists of all subsets
of L, the probability function P is completely determined on ζ. We have a
probability space (L, ζ, P ).

Next, we define an n-dimensional random variable defined on a sample
space L.

Let X be an n-dimensional random variable defined on a sample space L.
For each (x̄1, x̄2, . . . , x̄n) in L,

X = (X1(x̄1) = x̄1, X2(x̄2) = x̄2, . . . , Xn(x̄n) = x̄n)

= (x̄1, x̄2, . . . , x̄n).

Step 7. We prove that L1 is set of all possible repeated dependent two
trails without replacement, define an 2n-dimensional random variable defined
on a sample space L1 and describe lumped Markov chains process.

Proof. We restrict an arbitrary countable set L1 to be set of all possible
repeated dependent two trails without replacement (L(1)

e ∩ L
(2)
d ) for which

P (L(1)
e ∩ L

(2)
d )≥ 0 as a sample space, where for each L(i)

z in a common sample
space L, z = e or d, e = 1, 2, . . . , g and d = 1, 2, . . . , g. Each conditional
probability can be defined and can be obtained by the equation

P (L
(2)
d |L(1)

e ) =
P (L

(1)
e ∩L

(2)
d

)

P (L
(1)
e )

≥ 0 such that P (Le) 6= 0.

Hence L1 is countable.
Let L1 be a set in 2n-space for some 2n ≥ (2(1) = 2) and if ζ1 consists of

all subsets of L1, the probability function P is completely determined on ζ1.
We have a probability space (L1, ζ1, P ).

We define an 2n-dimensional random variable defined on a sample space
L1.

Consider q ∈ Q where Q is the discrete parameter space of the Markov
chain process {Xq, q = 0, 1, 2, . . . }(parameter homogeneous).

Let Xq be an (n)-dimensional random variable defined on a sample space
L during q (initial value of time parameter), and Xq+1 be an (n)-dimensional
random variable defined on a sample space L during q + 1. The possible
outcomes for Xq are L1, L2, . . ., Lg, and the same holds for Xq+1.

Let X be an 2n-dimensional random variable defined on a sample space L1.

X = (Xq, Xq+1) = (Xq = Le, Xq+1 = Ld) = (Le, Ld) = (Xt1 , Xt2)
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= ((X t11, X t12, . . ., X t1n),(X t21, X t22, . . ., X t2n))

for each (Le, Ld) in L1, where Xv = Lz = Xt

= (X t1(x̄t1) = x̄t1, X t2(x̄t2) = x̄t2, . . . , X tn(x̄tn) = x̄tn)

= (x̄t1, x̄t2, . . . , x̄tn) for each (x̄t1, x̄t2, . . . , x̄tn) in L, v = q or q + 1, z = e or
d and t = t1 or t2.

Next, we describe the lumped Markov chains process.
A Markov chains requires a finite collection of states, denoted by L = {L1,

L2,. . ., Lg}, an g × g probability matrix P is called a transition matrix and a

probability vector p(0) = ( P (L1), P (L2), . . ., P (Lg) ) = (p
(0)
1 , p

(0)
2 , . . ., p(0)

g )

is called the initial probability vector. We can also interpret p(0) as stationary
distribution.

Step 8. By Theorems for the mean and covariance of the sampling distri-
bution of X and central limit Theorem ( see[18], [20]), we conclude and have
the following modified forms of the Theorems for an n-dimensional random
variable X defined on a sample space L.

Theorem 4.3. If D1, D2, . . ., Dh represent all possible simple random samples
with replacement from a common joint probability mass function P (x1, x2, ..., xn)
(the parent population, whatever its form, have a mean µ = (µ1, µ2, ..., µn)′

and a finite covariance Σ1), then an n-dimensional density for the random
vector X = (X1, X2, ..., Xn)′(sampling distribution of X) r(X) is centered
around the population mean, regardless of sample size (E(X) = µ).

Theorem 4.4. Each covariance σik, i, k = 1, 2, . . . , n of the distribution of
X decreases with increasing sample size; that is, the distribution of X be-
comes more concentrated around the population mean as the sample size gets
larger (a covariance of X is denoted by cov(X) = Σ1

m
, where m (number of

chromosomes) is a sample size.

For practical problem, often m = 100 = chromosomes and bit = k > 50;
thus there may be more than 25000 possible states in the chain(see [13]). The
distribution of X becomes more symmetrical as the sample size gets larger
and is approximately Nn(µ, Σ = Σ1

m
) for large sample size. An n-dimensional

normal density for the random vector X has the form

f(x) = 1

(2Π)
n
2 |Σ| 12

e
−(x−µ)′Σ−1(x−µ)

2 where −∞ < x̄i < ∞, i = 1, 2, . . . , n.

Theorem 4.5.Let X1, X2, . . ., Xm be independent observations from any
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population with mean µ and finite covariance Σ1. Then X has an approximate
Nn(µ, Σ1

m
) distribution for large sample sizes. Here m should also be large rel-

ative to n. The approximation provided by the central limit theorem applies
to discrete, as well as continuous, multivariate populations.

The modified Theorems apply to sampling of finite populations if the sam-
pling fraction is 5 percent or smaller (the sample size m is small relative to the
population size M ; that is, with fraction small) (see [20]).

Step 9. We prove that clonal selecton algorithms are lumped Markov
chains.

Proof. From Step 2, we get unique chromosomes (= 2k). From Step 3 and Step
4, we generate all possible combinations of states of unique chromosomes(=
2(k×m)) and give each state a number.

From Step 6, we get Lz for each state in combination and combine states
according to their equal Lz’s - Taking into account that Lz’s are unique for
each set of states. Let each set of states to be a separate new state. From
Step 6 and Step 7, we identify new state space of Lz’s based on set of states of
unique Lz’s, define L = {L1, L2, . . . , Lg} and define a random variable X on
state space L.

From Step 8, we get sampling distribution of X (Nn(µ, Σ1

m
= Σ)), get

expectation of sampling distribution E(X) = µ, where µ is the expectation of
parent population and get covariance matrix of X (= Σ = Σ1

m
), where m =

sample size and Σ1 = covariance matrix of parent population. We conclude
and have that the distribution of Xq is Nn(µ, Σ), and the same holds for Xq+1.

Let X = (Xq, Xq+1)
′ be distributed as N2n(µ?, Σ?) with

µ? = (µ = µt1 ,µ = µt2)
′, Σ? =

(
Σt1t1 = Σ Σt1t2

Σt2t1 Σt2t2 = Σ

)
,

and | Σt2t2 | > 0. Then the conditional distribution of Xq+1, given that Xq =
L?, is normal and has

Mean = µ? = µ + Σt1t2Σ
−1(L? − µ)

and

Covariance = Σ? = Σ− Σt1t2Σ
−1Σt2t1 .

We select one state from U , get L? for the selected state and replicate the
selected state 2(k×m) times.

We apply clonal selecton algorithms for one transition (iteration) only on
the replicated state to produce new states.
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On the generated new states, we compute Lz. On the set of Lz’s com-
puted, we compute conditional normal distribution N(µ?, Σ?). We compute
Σt1t2 , where µ? = µ + Σt1t2Σ

−1(L? − µ).

By a similar argument, we compute Σt1t2 for all states of L, have that Σt1t2

is the same and have that Σ? is the same. Hence clonal selecton algorithms
are lumped Markov chains. We compute all possible conditional normal dis-
tributions of transition matrix and can also interpret the distribution of X as
stationary normal distribution.

On the basis of Steps 1-9, we complete the proof of Theorem 3.1.

5. Proposed algorithms

We prepared programs by using MATLAB 7.5. Afterwards, two algorithms
are designed and executed to observe the characteristics and to know the be-
havior of the following:

5.1. Clonal selecton algorithms (as Markov chains) We named the first
proposed algorithm regular optimization analysis (ROA), the basic steps of the
ROA algorithm are as follows:

1. Input number of bits k.
2. Get unique chromosomes = 2k.
3. Input number of chromosomes m.
4. Get number of states = 2(k×m).
5. Generate all possible combinations of states of unique chromosomes (= also
2(k×m)).
6. Give each state a number.
7. Pick one state randomly.
8. Apply any clonal selection algorithm on the state for n-iterations, where n
is a large number.
9. Count for each state with specific number the number of times it appeared.
10. Calculate the probability of each state (P ), where

P = number of times it appeared
n

.

11. Get the stationary distribution ordered by the state number and its prob-
ability P .
12. Taking the randomly chosen state and its chain. Get the position numbers
sequences for each unique state ( of 2k×m ) in the chain, starting with index
zero in the initial state.
Check if all sequences of positions are either
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(A) Even positions or

(B) Odd positions only then the chain is cyclic else if also random positions
sequences appear then the chain is regular.

5.2. Clonal selection algorithms (as lumped Markov chains) We
named the second proposed algorithm Central MCMC optimization analysis(C-
MCMC-OA),the basic steps of the C-MCMC-OA algorithm are as follows:

1. Input number of bits k.
2. Get unique chromosomes = 2k.
3. Input number of chromosomes m.
4. Get number of states = 2(k×m).
5. Get all possible combinations of states of unique chromosomes = U (= also
2(k×m)).
6. Get Lz for each state in combination.
7. Combine states according to their equal Lz’s - Taking into account that
Lz’s are unique for each set of states.
8. Let each set of states to be a separate new state.
9. Identify new state space of Lz’s based on set of states of unique Lz’s.
10. Define L = {L1, L2, . . . , Lg}.
11. Define a random variable X on state space L.
12. Get sampling distribution of X (Nn(µ, Σ1

m
= Σ)).

13. Get expectation of sampling distribution E(X) = µ, where µ is the expec-
tation of parent population.
14. Get covariance matrix of X (= Σ = Σ1

m
), where m = sample size and Σ1

= covariance matrix of parent population.
15. Let(Xq,Xq+1)

′be distributed as (N2n(µ?, Σ?)) with

µ? = (µ = µt1 ,µ = µt2)
′, Σ? =

(
Σt1t1 = Σ Σt1t2

Σt2t1 Σt2t2 = Σ

)
,

and | Σt2t2 |> 0, where q is the initial value of time parameter Q of the
Markov chain process {Xq, q = 0, 1, 2, . . .} that the possible outcomes for Xq

are L1, L2, . . . , Lg and the same holds for Xq+1.
16. Get E(Xq) = µ.
17. Get covariance matrix of Xq = Σ.
18. Get E(Xq+1) = µ.
19. Get covariance matrix of Xq+1 = Σ.
20. Group states on U such that

(1) states are globally optimal (all members of states are identical).

(2) All or Some members of states have globally optimum values.
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(3) states are not globally optimal and all members of states are identical.

(4) All or Some members of states have not globally optimum values.

21. Select one state randomly from each group on U .
22. Get L? for the selected states.
23. Replicate each selected state (from each group) 2(k×m) times.
24. Apply any clonal selection algorithm for one transition (iteration) only on
each replicated selected state to produce new states.
25. On the generated new states, compute Lz.
26. On the set of Lz’s computed, compute conditional normal distribution
N(µ?, Σ?).
27. Compute Σt1t2 , where µ? = µ + Σt1t2Σ

−1(L? − µ).
28. check that Σ? is the same for all four groups.
29. If Σt1t2 for the four groups of states are equal then the process is Markov
chain.
30. Substitute all possible Lz’s to compute all conditional expected values µ?.
As a result this computes all possible conditional normal distributions and The
distribution of X is stationary multivariate normal distribution.

6. Numerical results and discussion

6.1. A numerical example for clonal selection algorithms (as Markov
chains)

Consider the following function: f(x) = x · sin(10Π · x) + 1, x ∈ [1.7, 2]

if k = 2 bits, m = 6 chromosomes, n = 70000 iterations, then

Unique chromosomes = { 00 = 1.700000, 01 = 1.800000, 10 = 1.900000,
11 = 2.000000 } = 2k = 22

and the globally optimum value = 1.900000.

All possible combinations of states of unique chromosomes =

{ 0:(00, 00, 00, 00, 00, 00), 1:(00, 00, 00, 00, 00, 01),

. . . , 4095:(11, 11, 11, 11, 11, 11) } = 2(k×m) = 2(2×6) = 212

Pick one state randomly (state 162), apply CLONALG (for mutation see
[25])on the state for n = 70000 and probability of mutation = 0.9, get

162, 3835, 3315, . . . , 63, 424, 1403
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,and then get stationary distribution ordered by the state number

(0, 1, 2, . . . , 4093, 4094, 4095) =

(0.000029, 0.000014, 0.000014, . . . , 0.000129, 0.000129, 0.004600).

Taking the randomly chosen state 162 and its chain. Get the position num-
bers sequences for each unique state (of 22×6) in the chain, starting with index
zero in the initial state. We conclude and have that all sequences of positions
are even positions, odd positions or random positions sequences then the chain
is regular.

162 to 3835(neither even nor odd)
1-351-403-1044-1207-1848-2850-3163-3819-4103-4122-4525-4529-4534-4538-4540-
4592-4655-4750-5080-
...
-53679-53689-53755-55371-55373-55632-56582-56700-56706-56747-56986-56988-
57315-57389-57586-58119-58279-58284-58630-58691-58965-59043-59337-59401-
59848-61050-61489-62044-62509-63199-63228-63415-63552-64330-64438-64492-
64960-65090-65130-65428-65542-66059-66496-66958-67009-67239-68180-68315-
68887-69312-69318-69320-69529
...
162 to 1396(odd)
67639
162 to 641(even)
68110
162 to 1216(odd)
68627
162 to 500(odd)
68697
162 to 2446(odd)
69883

Consider the same function. Pick one state randomly (state 380), apply
CLONALG on the state for n = 90000 and probability of mutation = 0.9, get

380, 884, 951, . . . , 2020, 1197, 3213

,and then get stationary distribution ordered by the state number

(0, 1, 2, . . . , 4093, 4094, 4095) =
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(0.000122, 0.000022, 0.000011, . . . , 0.000089, 0.000144, 0.004889).

Taking the randomly chosen state 380 and its chain. Get the position num-
bers sequences for each unique state (of 22×6) in the chain, starting with index
zero in the initial state. We conclude and have that all sequences of positions
are even positions, odd positions or random positions sequences then the chain
is regular.

380 to 951(neither even nor odd)
2-563-4782-13911-14366-15871-16205-16207-20896-21951-27264-27376-28417-31728-
34596-36192-37499-38747-41289-44987-49454-49618-52106-52501-55824-57879-
58447-59695-60540-63336-64743-65171-68952-70796-78909-80822-84734-85339-
85441-85473-86243-89029-89496
...
380 to 3226(odd)
88367
380 to 3142(odd)
89085
380 to 1922(even)
89498
380 to 2657(even)
89650

From chains of states 162 and 380, we obtain the same unique stationary
distribution, and have regular chain.

6.2. A numerical example for clonal selection algorithms (as lumped
Markov chains)

Consider the same function, unique chromosomes, and all possible combi-
nations of states of unique chromosomes as above. We will use the notation
x̄

x̄value = x̄value.

And we define L as the above C-MCMC-OA algorithm.

L = { {(00, 00, 00, 00, 00, 00)}: 1.700000 = x̄1.700000,

{(00, 00, 00, 00, 00, 01), (00, 00, 00, 00, 01, 00), (00, 00, 00, 01, 00, 00),
(00, 00, 01, 00, 00, 00), (00, 01, 00, 00, 00, 00), (01, 00, 00, 00, 00, 00)}:
1.716667 = x̄1.716667, . . . , {(11, 11, 11, 11, 11, 11)}: 2.000000 = x̄2.000000 }

Sampling distribution of X (N1(1.850000, 0.000004))≡ stationary distribu-
tion. Covariance = -0.000004 for the four groups of states are equal then the
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process is lumped Markov chain. Conditional variance = 0.000001 is the same
for all four groups.

All possible conditional normal distributions of transition matrix =

{x̄1.700000:N1(1.989819,0.000001), x̄1.716667:N1(1.974284,0.000001),

. . ., x̄2.000000:N1(1.710181,0.000001)}.

7. Discussion

In this paper, the main result is the unified MCMC theorem for clonal
selection algorithms.Using this, we propose unique chromosomes method for a
purely successful optimization of these algorithms and obtain purely classifica-
tion of chains, all conditional multivariate normal distributions and stationary
multivariate normal distributions for them.

8. Open problems

For genetic algorithms with or without bit mutation, we can prove the
unified MCMC theorem and can obtain purely classification of chains, all con-
ditional multivariate normal distributions and stationary multivariate normal
distributions for them.
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