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Abstract
In this paper, a particular family of meromorphic functions, which

omits a function set is considered. By using the famous Zalcman-
Pang lemma, we derive a sufficient condition for the normality of
this particular meromorphic functions family.
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1 Introduction and Main Results

In complex analysis, the analytic or meromorphic functions family with partic-
ular analytic or meromorphic structure is interesting and significant (see [1], [2], [3] and
[4] for examples).

In this paper we deal with the normality of the meromorphic functions
family omitting some functions. In [5], Yang proved that for a family of mero-
morphic functions F on a domain D in C, and let h be a function holomorphic
on D and h (z) 0. Suppose that for each f ∈ F , f (z) 6= 0 and f (k) (z) 6=
h (z) for z ∈ D, then F is a normal family on D.

More recently, Pang and Zalcman [6] and [7] observed the following results:

Theorem 1.1 Let F be a family of functions meromorphic on a domain
D in C, all of whose zeros have multiplicity at least 4, and h be a function
holomorphic on D such that h (z) 0. Suppose that for each f ∈ F , f (z) 6=
0 and f

′
(z) 6= h (z) for z ∈ D, then F is a normal family on D.

Theorem 1.2 Let F be a family of functions meromorphic on a domain
D in C, all of whose zeros have multiplicity at least k+3, and h be a function
holomorphic on D such that h (z) 0. Suppose that for each f ∈ F , f (z) 6=
0 and f (k) (z) 6= h (z) for z ∈ D, then F is a normal family on D.
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In this paper, we deal with a generalization of the meromorphic functions
family omitting a function, and study a particular family of meromorphic func-
tions which omit a function set. We prove that this particular family of mero-
morphic functions has a well normality by using the famous Zalcman-Pang
lemma. Firstly we present the definition of meromorphic functions omitting a
function set.

Definition 1.3 (Meromorphic Functions Omitting a Function Set)
Let D be a domain in C, f be a function meromorphic on D and S is a set
including finite meromorphic functions on D:

S = {hi (z) |z ∈ D, i = 1, · · · l} .

If for arbitrary 1 ≤ i ≤ l and z ∈ D we have f (z) 6= hi (z), then the meromor-
phic function f is said to omit the function set S.

Remark 1. It obvious that the meromorphic functions family which omits
a function set is a natural generalization of the one omitting a function.

In this paper we will generalize the results in [5], [6] and [7] for the mero-
morphic functions family which omits a function to the one omitting a function
set, and the main result of our paper is as follows:

Theorem 1.4 Let F be a family of functions meromorphic on a domain D
in C, all of whose zeros have multiplicity at least k, and S = {hi (z) |z ∈ D, i = 1, · · · l} be
a holomorphic functions set on D such that hi (z) 0 for arbitrary 1 ≤ i ≤
l, the zeros of hi (z) have multiplicity mi which satisfies k - mi for arbi-
trary 1 ≤ i ≤ l. Suppose that for each f ∈ F ,

∣∣f (k) (z)
∣∣ < min

1≤i≤l
|hi (z)| when-

ever f (z) = 0 and f (k) (z) omits the function set S, then F is a normal family
on D.

The paper is organized as follows. In section 2, we present some prelim-
inary lemmas. In section 3, we prove Theorem 1.4 by using Zalcman-Pang’s
approach. In section 4, we give two interesting open problems.

2 Preliminary Results

In order to prove our main theorem, we need the following preliminary results.

Lemma 2.1 (Zalcman-Pang) Let F be a family of functions meromor-
phic on the unit disc ∆, all of whose zeros have multiplicity at least k, and
suppose that there exists M ≥ 1, such that

∣∣f (k) (z)
∣∣ ≤ M whenever f (z) =

0. Then if F is not normal at z0, for each −1 ≤ α ≤ k, there exist
a) points zn ∈ ∆, zn → z0;
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b) functions fn ∈ F ;
c) positive numbers ρn → 0+, such that

fn (zn + ρnξ)

ρα
n

= gn (ξ) → g (ξ) (1)

uniformly with respect to the spherical metric

‖f (z)− g (z)‖ =
|f (z)− g (z)|√

1 + |f (z)|2
√

1 + |g (z)|2
(2)

on compact subsets of C, where g is a nonconstant meromorphic function
on C, all of whose zeros have multiplicity at least k, such that g# (ξ) ≤ g# (0) =
kM + 1. In particular, g has order at most 2 and g# denotes

g# (z0) = lim
z→z0

‖g (z)− g (z0)‖
|z − z0|

=

∣∣g′
(z0)

∣∣
1 + |g (z0)|2

Lemma 2.2 (Hurwitz) Let {fn (z)} be a family of functions meromorphic
on a domain D in C and converge to f (z) uniformly on compact subsets of
D. If f (z) = a has a solution on D, then when n is large enough, fn (z) = a also
has solutions on D.

3 Proof of the Main Theorem

With the help of above lemmas, we then prove our main theorem.

Proof of Theorem 1.4. First we show that F is normal on the subset D
′

of D, where
hi (z) 6= 0 for arbitrary 1 ≤ i ≤ l. Suppose then that F is not normal at z0 ∈
D

′
, we may assume that D = ∆ and let M = min

1≤i≤l
|hi (z)|+ 1 ≥ 1. By Lemma

2.1, there exist fn ∈ F , zn ∈ ∆, zn → z0 and ρn → 0+ such that

fn (zn + ρnξ)

ρk
n

= gn (ξ) → g (ξ)

spherically uniformly on compact subsets of C, where g is a nonconstant mero-
morphic function on C, all of whose zeros have order at least k and satisfies

g# (ξ) ≤ g# (0) = kM + 1 = k

(
min
1≤i≤l

|hi (z)|+ 1

)
+ 1. (3)

We then claim that:

Claim 3.1 If g (ξ) = 0, then
∣∣g(k) (ξ)

∣∣ ≤ min
1≤i≤l

|hi (z0)|
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Proof of Claim 3.1. Indeed, suppose that if g (ξ0) = 0 and g (ξ) 0, by Hurwitz’s
Theorem there exists ξn → ξ0 such that (for n sufficiently large)

fn (zn + ρnξn)

ρk
n

= gn (ξn) = 0,

thus fn (zn + ρnξn) = 0. It follows from the hypotheses on F that
∣∣∣f (k)

n (zn + ρnξn)
∣∣∣ <

min
1≤i≤l

|hi (zn + ρnξn)|, hence∣∣g(k)
n (ξn)

∣∣ =
∣∣f (k)

n (zn + ρnξn)
∣∣ < min

1≤i≤l
|hi (zn + ρnξn)|

Let n →∞, then we complete the proof of Claim 3.1.

Since

g(k)
n (ξ)− hi (zn + ρnξ) = f (k)

n (zn + ρnξ)− hi (zn + ρnξ) 6= 0

for arbitrary 1 ≤ i ≤ l, by Hurwitz’s Theorem we have either
(i) there exists 1 ≤ i0 ≤ l such that g(k) (ξ) ≡ hi0 (z0), or
(ii) for each 1 ≤ i ≤ l we always have g(k) (ξ) 6= hi (z0).

If (i) satisfies, since the zeros of g have order at least k, we have g (ξ) =
hi0

(z0)

k!
(ξ − ξ0)

k,
by Claim 3.1 it follows that

|hi0 (z0)| =
∣∣g(k) (ξ0)

∣∣ ≤ min
1≤i≤l

|hi (z0)| . (4)

Moreover from the expression of g, one gets

g# (0) ≤
{

k
2
, |ξ0| ≥ 1

|hi0 (z0)|, |ξ0| < 1,
(5)

then (4) and (5) lead a contradiction to (3).

If (ii) satisfies, it follows that g(k) (ξ) = hi0 (z0) + eaξ+b for some 1 ≤ i0 ≤
l. We divided this case into two parts:

(a) If a = 0, then g(k) (ξ) = hi0 (z0) + c, since the zeros of g have order at least

k, we have g (ξ) =
hi0

(z0)+c

k!
(ξ − ξ1)

k, then it follows from Claim 3.1 that

|hi0 (z0) + c| =
∣∣g(k) (ξ1)

∣∣ ≤ min
1≤i≤l

|hi (z0)| . (6)

Moreover

g# (0) ≤
{

k
2
, |ξ1| ≥ 1

|hi0 (z0) + c|, |ξ1| < 1,
(7)
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thus (6) and (7) also lead a contradiction to (3).

(b) If a 6= 0, we have g (ξ) =
hi0

(z0)

k!
ξk +a1ξ

k−1 + · · ·+ak + eaξ+b

ak . It follows that
there exist infinite ξn →∞ such that g (ξn) = 0, that is to say

ak

(
hi0 (z0)

k!
ξk
n + a1ξ

k−1
n + · · ·+ ak −

hi0 (z0)

ak

)
= −hi0 (z0)− eaξn+b.

By Claim 3.1 we have

∣∣ak
∣∣ ∣∣∣∣hi0 (z0)

k!
ξk
n + a1ξ

k−1
n + · · ·+ ak −

hi0 (z0)

ak

∣∣∣∣ =
∣∣hi0 (z0) + eaξn+b

∣∣ =
∣∣g(k) (ξn)

∣∣ ≤ min
1≤i≤l

|hi (z0)| ,

which has a contradiction to ξn →∞.

By all of above, we prove that F is normal on the subset D
′
of D, where hi (z) 6=

0 for arbitrary 1 ≤ i ≤ l.

We now turn to prove F is normal at points for which exists 1 ≤ i0 ≤ l such
that hi0 (z) = 0. Making standard normalizations, we may assume that hi0 (z) =
zmb (z)
for z ∈ D, m ≥ 1, b (0) = 1 and hi0 (z) 6= 0 for 0 < |z| < 1. Let

G =

{
G (z) =

f (z)

zm
|f ∈ F

}
,

since
∣∣f (k) (0)

∣∣ 6= min
1≤i≤l

|hi (0)| = 0, f (0) 6= 0, we have F (0) = ∞. We then

prove G is normal at 0. Suppose not, then by Lemma 2.1, there exist Gn ∈
G, zn → 0 and ρn → 0+ such that

gn (ξ) =
Gn (zn + ρnξ)

ρk
n

=
fn (zn + ρnξ)

ρk
n (zn + ρnξ)

m → g (ξ)

spherically uniformly on compact subsets of C, where g is a nonconstant mero-
morphic function on C, all of whose zeros have order at least k and satisfies

g# (ξ) ≤ g# (0) = kM + 1. (8)

We then consider the following two cases:

(i) Suppose zn/ρn →∞, we have

f (k)
n (z) = zmG(k)

n (z) +
k∑

j=1

cjz
m−jG(k−j)

n (z),
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where

cj =

{
m (m− 1) (m− j + 1) , j ≤ m

0, j > m.

Since ρj
ng

(k−j)
n (ξ) = G

(k−j)
n (zn + ρnξ) for arbitrary 0 ≤ j ≤ m, we obtain

f
(k)
n (zn + ρnξ)

hi0 (zn + ρnξ)
=

(
g(k)

n (ξ) +
k∑

j=1

cj
g

(k−j)
n (zn + ρnξ)

(zn/ρn + ξ)j

)
1

b (zn + ρnξ)
. (9)

Now
lim

n→∞

cj

(zn/ρn + ξ)j = 0 (10)

for arbitrary 1 ≤ j ≤ m and

lim
n→∞

1

b (zn + ρnξ)
= 1. (11)

It follows from (9), (10) and (11) that

f
(k)
n (zn + ρnξ)

hi0 (zn + ρnξ)
→ g(k) (ξ) (12)

uniformly on compact subsets of C disjoint from the poles of g.
By ρj

ng
(k−j)
n (ξ) = G

(k−j)
n (zn + ρnξ) and (9) we obtain that the M in (8) is

equal to 1, thus by using (12) we can prove the following claim as the proof of
Claim 3.1.

Claim 3.2 If g (ξ) = 0, then
∣∣g(k) (ξ)

∣∣ ≤ 1.

Moreover since it follows from (12) that

g(k)
n (ξ) + o (1) =

f
(k)
n (zn + ρnξ)

hi0 (zn + ρnξ)
6= 1,

Hurwitz’s Theorem implies that either
(i) g(k) (ξ) ≡ 1, or
(ii) g(k) (ξ) 6= 1 for arbitrary ξ.

If (i) satisfies, since the zeros of g have order at least k, one get g (ξ) =
1
k!

(ξ − ξ0)
k, thus

g# (0) ≤
{

k
2
, |ξ0| ≥ 1

1, |ξ0| < 1,

which contradicts g# (0) = k + 1.
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If (ii) satisfies, it follows that g(k) (ξ) = 1 + eaξ+b. We divided this case into
two parts:

(a) If a = 0, then g(k) (ξ) = 1 + c, since the zeros of g have order at least k, it
follows that g (ξ) = 1+c

k!
(ξ − ξ1)

k. By Claim 3.2 we have

|1 + c| =
∣∣g(k) (ξ1)

∣∣ ≤ 1. (13)

Moreover from the expression of g, one gets

g# (0) ≤
{

k
2
, |ξ1| ≥ 1

|1 + c| , |ξ1| < 1,
(14)

thus (13) and (14) also lead a contradiction to g# (0) = k + 1.

(b) If a 6= 0, we have g (ξ) = 1
k!

ξk + a1ξ
k−1 + · · · + ak + eaξ+b

ak . It follows that
there exist infinite ξn →∞ such that g (ξn) = 0, that is to say

ak

(
1

k!
ξk
n + a1ξ

k−1
n + · · ·+ ak −

1

ak

)
= −1− eaξn+b.

By Claim 3.2, we have∣∣ak
∣∣ ∣∣∣∣ 1k!

ξk
n + a1ξ

k−1
n + · · ·+ ak −

1

ak

∣∣∣∣ =
∣∣1 + eaξn+b

∣∣ =
∣∣g(k) (ξn)

∣∣ ≤ 1,

which has a contradiction to ξn →∞.

(ii) So that we may assume that zn/ρn → α, which is a finite complex
number. Then we have

Gn (ρnξ)

ρk
n

=
Gn (zn + ρn (ξ − zn/ρn))

ρk
n

→ g (ξ − α) = g̃ (ξ) ,

the convergence being spherically uniform on compact sets of C, hence uniform
on compact disjoint from the poles of g̃. Clearly, all zeros of g̃ have order at
least k, and the pole of g̃ at ξ = 0 has order at least m. Now

Kn (ξ) =
fn (ρnξ)

ρk+m
n

=
Gn (ρnξ)

ρk
n

(ρnξ)
m

ρm
n

→ ξmg̃ (ξ) = K (ξ) (15)

uniformly on compact subsets of C disjoint from the poles of g̃, and lim
n→∞

hi0
(ρnξ)

ρm
n

=

ξm uniformly on compact subsets of C. Note that since g̃ has a pole of order at
least k at ξ = 0, K (0) 6= 0 and all zeros of K have order at least k. Furthermore
since

K(k)
n (ξ)− hi0 (ρnξ)

ρm
n

=
f

(k)
n (ρnξ)− hi0 (ρnξ)

ρm
n

6= 0,
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it follows from lim
n→∞

hi0
(ρnξ)

ρm
n

= ξm and Hurwitz’s Theorem that either

(i) K(k) (ξ) ≡ ξm, or
(ii) K(k) (ξ) 6= ξm for arbitrary ξ.

If (i) satisfies, it follows that K is a polynomial of multiplicity m+k. If all zeros
of K has order k, we have m+k = pk, which has a contradiction to the zeros of
hi (z) having multiplicity mi such that k - mi for arbitrary 1 ≤ i ≤ l. If there
exists a zero of K with order at least k+1, then K(k) (ξ) must vanish at any
points where K (ξ) vanishe. On the other hand, K(k) (ξ) 6= 0 for ξ 6= 0, thus
we have K (0) = 0, a contradiction.

If (ii) satisfies, we have g(k) (ξ) = 1 + eaξ+b, firstly we claim that:

Claim 3.3 If K (ξ) = 0, then
∣∣K(k) (ξ)

∣∣ ≤ |ξ|m.

Proof of Claim 3.3. Indeed, suppose that if K (ξ0) = 0 and K (ξ) 0, by Hur-
witz’s Theorem there exists ξn → ξ0 such that (for n sufficiently large)

fn (ρnξn)

ρk+m
n

= Kn (ξn) = 0,

thus fn (ρnξn) = 0. It follows from the hypotheses on F that
∣∣∣f (k)

n (ρnξn)
∣∣∣ <

min
1≤i≤l

|hi (ρnξn)|,
hence

∣∣K(k)
n (ξn)

∣∣ =

∣∣∣∣∣f (k)
n (ρnξn)

ρm
n

∣∣∣∣∣ <
∣∣∣∣hi0 (ρnξn)

ρm
n

∣∣∣∣ =

∣∣∣∣(ρnξn)m b (ρnξn)

ρm
n

∣∣∣∣ = |ξn|m |b (ρnξn)| .

Let n →∞, we complete the proof of Claim 3.3.

We then divided this case into two parts:

(a) If a = 0, as the proof of case (i) we obtain a contradiction.

(b) If a 6= 0, we have

K (ξ) =
1

(k + m) · · · (m + 1)
ξk+m + a1ξ

k−1 + · · ·+ ak +
eaξ+b

ak
.

It follows that there exist infinite ξn →∞ such that K (ξn) = 0, that is to say

ak

(
1

(k + m) · · · (m + 1)
ξk+m
n + a1ξ

k−1
n + · · ·+ ak −

ξm
n

ak

)
= −ξm

n − eaξn+b.
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By using Claim 3.3, we have

∣∣ak
∣∣ ∣∣∣∣ 1

(k + m) · · · (m + 1)
ξk+m
n + a1ξ

k−1
n + · · ·+ ak −

ξm
n

ak

∣∣∣∣ =
∣∣ξm

n + eaξn+b
∣∣ =

∣∣K(k) (ξn)
∣∣ ≤ |ξn|m ,

which also has a contradiction to ξn →∞.

The contradiction establishes G is normal at 0. It remains to prove that F is
normal at 0. Since G is normal at 0 and G (0) = ∞ for each G (z) ∈ G, there
exists δ > 0 such that if G (z) ∈ G, then |G (z)| ≥ 1 for all z ∈ ∆δ =
{z ∈ ||z| < δ}. Thus f (z) 6= 0 for z ∈ ∆δ and for all f ∈ F , which is equivalent
to 1/f is analytic in ∆δ for all f ∈ F . Therefore, for all f ∈ F , we have∣∣∣∣ 1

f (z)

∣∣∣∣ =

∣∣∣∣ 1

G (z)

1

|z|k

∣∣∣∣ ≤ 2k

δk
, |z| = δ

2
. (16)

By the Maximum Principle and Montel’s Theorem, F is normal at ξ = 0. This
completes the proof of Theorem 1.4.

4 Open Problem

There are two interesting open problems related to our paper, one open prob-
lem is related to the meromorphic differential polynomial which omit a function
set:

Problem 4.1 Let F be a family of functions meromorphic on a domain D
in C, all of whose zeros have multiplicity at least k, and S = {hi (z) |z ∈ D, i = 1, · · · l} be
a holomorphic functions set on D such that hi (z) 0 for arbitrary 1 ≤ i ≤ l, the
zeros of hi (z) have multiplicity mi which satisfies k - mi for arbitrary 1 ≤
i ≤ l. Suppose that for each f ∈ F , max

1≤j≤k

∣∣f (j) (z)
∣∣ < min

1≤i≤l
|hi (z)| when-

ever f (z) = 0 and the differential polynomial
k∑

j=1

pj (z) f (j) (z) omits the func-

tion set S, is F is a normal family on D?

Another open problem is related to the meromorphic functions family which
shares a function set, firstly we present the definition of meromorphic functions
sharing a function set as follows:

Definition 4.2 (Meromorphic Functions Sharing a Function Set) Let
D be a domain in C, f and g meromorphic on D and S is a set including finite
meromorphic functions on D:

S = {hi (z) |z ∈ D, i = 1, · · · l} .
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If f and g satisfies

Ef (S) = {z ∈ D |f (z) = hi (z) ,∃1 ≤ i ≤ l}
= {z ∈ D |g (z) = hj (z) ,∃1 ≤ j ≤ l}
= Eg (S) ,

then the two meromorphic functions f and g on D are said to share the function
set S.

The open problem is as follows:

Problem 4.3 Let F be a family of functions meromorphic on a domain D
in C, all of whose zeros have multiplicity at least k. If there exists a holomorphic
function set on D

S = {hi (z) |z ∈ D, i = 1, · · · , l} ,

where hi (z) 6= 0 for arbitrary z ∈ D and 1 ≤ i ≤ l, such that for each f ∈
F , Ef (S) = Ef (k) (S) and 0 <

∣∣f (k) (z)
∣∣ ≤ sup

1≤i≤l
|hi (z)| whenever z ∈ Ef (0), is F is

a normal family on D?
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