Int. J. Open Problems Compt. Math., Vol. 4, No. 3, September 2011
ISSN 1998-6262; Copyright ©ICSRS Publication, 2011
WWW. 4-CSTS. 0Tq

Normal Families of Meromorphic Functions

which Omit a Function Set

Xiang Gao

Department of Mathematics, Ocean University of China
e-mail:gaoxiangshuli@126.com

Abstract
In this paper, a particular family of meromorphic functions, which
omits a function set is considered. By using the famous Zalcman-
Pang lemma, we derive a sufficient condition for the normality of
this particular meromorphic functions famaly.
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1 Introduction and Main Results

In complex analysis, the analytic or meromorphic functions family with partic-
ular analytic or meromorphic structure is interesting and significant (see [1], [2], [3] and
[4] for examples).

In this paper we deal with the normality of the meromorphic functions
family omitting some functions. In [5], Yang proved that for a family of mero-
morphic functions F on a domain D in C, and let h be a function holomorphic
on D and h(z)0. Suppose that for each f € F, f(2) # 0 and f® (z) #

h(z) for z € D, then F is a normal family on D.
More recently, Pang and Zalcman [6] and [7] observed the following results:

Theorem 1.1 Let F be a family of functions meromorphic on a domain
D in C, all of whose zeros have multiplicity at least 4, and h be a function
holomorphic on D such that h(z)0. Suppose that for each f € F, f(z) #
0 and f' (2) # h(2) for z € D, then F is a normal family on D.

Theorem 1.2 Let F be a family of functions meromorphic on a domain
D in C, all of whose zeros have multiplicity at least k+3, and h be a function
holomorphic on D such that h(z)0. Suppose that for each f € F, f(z) #
0 and f® (2) # h(2) for z € D, then F is a normal family on D.
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In this paper, we deal with a generalization of the meromorphic functions
family omitting a function, and study a particular family of meromorphic func-
tions which omit a function set. We prove that this particular family of mero-
morphic functions has a well normality by using the famous Zalcman-Pang
lemma. Firstly we present the definition of meromorphic functions omitting a
function set.

Definition 1.3 (Meromorphic Functions Omitting a Function Set)
Let D be a domain in C, f be a function meromorphic on D and S is a set
including finite meromorphic functions on D:

S={hi(z)|]z€D,i=1,---1}.

If for arbitrary 1 < i <l and z € D we have f (z) # h; (2), then the meromor-
phic function fis said to omit the function set S.

Remark 1. 1t obvious that the meromorphic functions family which omits
a function set is a natural generalization of the one omitting a function.

In this paper we will generalize the results in [5], [6] and [7] for the mero-
morphic functions family which omits a function to the one omitting a function
set, and the main result of our paper is as follows:

Theorem 1.4 Let F be a family of functions meromorphic on a domain D
in C, all of whose zeros have multiplicity at least k, and S = {h; (z) |z € D,i=1,---1} be
a holomorphic functions set on D such that h; (2)0 for arbitrary 1 < i <
[, the zeros of h;(z) have multiplicity m; which satisfies k + m; for arbi-
trary 1 < i < I. Suppose that for each f € F, |f®) (2)| < llillill |hi (2)| when-

ever f(2) =0 and f®) (2) omits the function set S, then F is a normal family
on D.

The paper is organized as follows. In section 2, we present some prelim-
inary lemmas. In section 3, we prove Theorem 1.4 by using Zalcman-Pang’s
approach. In section 4, we give two interesting open problems.

2 Preliminary Results

In order to prove our main theorem, we need the following preliminary results.

Lemma 2.1 (Zalcman-Pang) Let F be a family of functions meromor-
phic on the unit disc A, all of whose zeros have multiplicity at least k, and
suppose that there exists M > 1, such that |f®) (z)| < M whenever f(z) =
0. Then if F 1is not normal at zy, for each —1 < o < k, there exist
a) points z, € A, z, — zo;
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b) functions f, € F;
¢) positive numbers p, — 07, such that

[ (20 + pn€)

p =gn (&) = 9 (&) (1)

uniformly with respect to the spherical metric
f (2) =g (2)]

\/1+!fz|\/1—|—|g

on compact subsets of C, where g is a nonconstant meromorphic function
on C, all of whose zeros have multiplicity at least k, such that g* (&) < g# (0) =
kM + 1. In particular, g has order at most 2 and g* denotes

# (%) = lim lg (z) — g (20)| _ I(Zo)‘
R e T

I1f (2) (2)

Lemma 2.2 (Hurwitz) Let {f, (z)} be a family of functions meromorphic
on a domain D in C and converge to f (z) uniformly on compact subsets of
D. If f (z) = a has a solution on D, then when n is large enough, f, (z2) = a also
has solutions on D.

3 Proof of the Main Theorem

With the help of above lemmas, we then prove our main theorem.

Proof of Theorem 1.4. First we show that F is normal on the subset D" of D, where
hi (z) # 0 for arbitrary 1 < i < [. Suppose then that F is not normal at z, €
D', we may assume that D = A and let M = 1r1<11£11 |hi ()| +1 > 1. By Lemma

2.1, there exist f, € F, z, € A, z, — 29 and ,on_; 0" such that

[ (20 + pn€)

- =gn (&) = 9 ()

spherically uniformly on compact subsets of C, where g is a nonconstant mero-
morphic function on C, all of whose zeros have order at least k£ and satisfies

g#(g)gg#(O)_kMH_k(mmm()|+1)+1. (3)
We then claim that:

Claim 3.1 If g (§) =0, then |g® (§)| < min |h; (20)]

1<i<i
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Proof of Claim 3.1. Indeed, suppose that if g () = 0 and ¢ (£) 0, by Hurwitz’s
Theorem there exists &, — &, such that (for n sufficiently large)

fn (20 + pnn)

o = gn (&) =0,

thus f,, (2, + pn&n) = 0. It follows from the hypotheses on F that fT(Lk) (zn + Pnén)| <

1I£111£Il ’hz (zn + pnfn)’a hence

‘ggk) (gn” = ‘fT(Lk) (2n + pn£n)| < 1H<1212[ |hi (zn + pnn)]
Let n — oo, then we complete the proof of Claim 3.1.

Since

90 (€) = hi (20 + pa€) = [ (20 + pu€) = hi (20 + pu€) # 0

for arbitrary 1 < ¢ <[, by Hurwitz’s Theorem we have either
(i) there exists 1 <4y <[ such that g*) (¢) = hy, (20), or
(ii) for each 1 < i < [ we always have g®) (€) # h; (20).

If (i) satisfies, since the zeros of g have order at least k, we have g (§) =

mok—([ZO) (§ - §0>k7
by Claim 3.1 it follows that

|hiy (20)] = |9®) (&0)] < 1%% hi (20)] - (4)

Moreover from the expression of g, one gets

k
# 2 |€0| >1
gm0 = { | 2(20)|> ol <1, (5)

then (4) and (5) lead a contradiction to (3).

If (ii) satisfies, it follows that g®) (&) = hy, (20) + €®*? for some 1 < iy <
[. We divided this case into two parts:

(a) If @ = 0, then g® (¢) = hy, (20) + ¢, since the zeros of g have order at least

k, we have g (€) = 20C0% (¢ _ ¢))F then it follows from Claim 3.1 that

|hi (20) + | = [¢™ (&1)] < 1%121 i (20)] - (6)

Moreover N
& > 1

g (0) < { b (o) 4 ¢l el < 1, (7)
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thus (6) and (7) also lead a contradiction to (3).

€a§+b

(b) It @ £ 0, we have g () = 806k 4 ayht gty 4225
there exist infinite &, — oo such that ¢ (&,) = 0, that is to say

. It follows that

a® <_o]§'20)€71§ +a & ay — Oa(:O)) = —hi, (20) — e®n TP,

By Claim 3.1 we have

hi, (20)
k!

hi Z|
Gt a4t a — Oa(,f())

o]

— |h¢0 (20) +ea£n+b‘ — ‘g(k) (fn)| < 1122121|hZ (z0)] 5
which has a contradiction to &, — oo.

By all of above, we prove that F is normal on the subset D’ of D, where h; (z) #
0 for arbitrary 1 < <.

We now turn to prove F is normal at points for which exists 1 < 75 < [ such
that h;, (2) = 0. Making standard normalizations, we may assume that h;, (z) =
2"b (2)
for z€ D, m>1,b0(0)=1and hy, () # 0 for 0 < |z| < 1. Let

6—{o=Lrer],

since | f®) (0)] # 1r£111£1[|hl (0)] = 0, f(0) # 0, we have F'(0) = co. We then

prove G is normal at 0. Suppose not, then by Lemma 2.1, there exist G,, €
G, 2z, — 0 and p,, — 0" such that

_Gn(zn"_pnf) _ fa (20 + pnf) -
e B T NI

spherically uniformly on compact subsets of C, where g is a nonconstant mero-
morphic function on C, all of whose zeros have order at least k£ and satisfies

g7 (&) < g7 (0) = kM + 1. (8)
We then consider the following two cases:

(i) Suppose z,/p, — oo, we have

k
PP (2) = 2"GP (2) + ) 2" G (2),

j=1
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where
_fmm=-1)(m—-j+1), j<m
= 0, j>m.

Since pZLgff_j) (&) = G (zn + pp€) for arbitrary 0 < j < m, we obtain

(k) (Zn + png) ( zk: g7(lk ]) Zn + pnf)) b( 1 . (9)

iy (2n 4 pn&) = (2n/pn + f) Zn + pné)

Now 5
lim —2—— =9 (1())
oo (zn/pn + 5)

for arbitrary 1 < j < m and
li ! =1 (11)
im ——— .
n—c0 b (2p + ppé)

It follows from (9), (10) and (11) that

(k) (20 + pn)
hi, (Zn + png)

— g® (9 (12)

uniformly on compact subsets of C disjoint from the poles of g.

By p{lgfffj) (&) = G (zn + pn€) and (9) we obtain that the M in (8) is
equal to 1, thus by using (12) we can prove the following claim as the proof of
Claim 3.1.

Claim 3.2 If g (&) =0, then |g(k) (5)‘ <1.

Moreover since it follows from (12) that

P (2 4 puf)

(k) o(1) =
gn’ (§) +0o(1) T (on - o)

#1,

Hurwitz’s Theorem implies that either
(i) g™ (&) =1, or
(ii) g® (¢) # 1 for arbitrary €.

If (i) satisfies, since the zeros of g have order at least k, one get g (&) =

L(6—&)", thus

which contradicts g7 (0) = k + 1.
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If (ii) satisfies, it follows that g (¢) = 1+ %+’ We divided this case into
two parts:

(a) If a = 0, then g™ (€) = 1 + ¢, since the zeros of g have order at least k, it

follows that g (€) = 1< (¢ — &)". By Claim 3.2 we have

11+ =|g™ (&) < 1. (13)

Moreover from the expression of g, one gets

k &) >1
g#m)g{\licr, &<l (14)

thus (13) and (14) also lead a contradiction to g% (0) = k + 1.

(b) If a # 0, we have g (§) = H&" + a1 &1 + -+ ap + eaj,jb. It follows that

there exist infinite &, — oo such that ¢ (§,) = 0, that is to say

1 1
a (—5,’; tardl g — —) = —1— " P,
k! ak

By Claim 3.2, we have

%fﬁ o e - % = [1+ e =]g® (6)] < 1,

which has a contradiction to &, — oo.

(ii) So that we may assume that z,/p, — «, which is a finite complex
number. Then we have

P o —g(E—a)=3(S),

the convergence being spherically uniform on compact sets of C, hence uniform
on compact disjoint from the poles of §. Clearly, all zeros of § have order at
least k, and the pole of g at £ = 0 has order at least m. Now

phrm Jud o

Ky ()

uniformly on compact subsets of C disjoint from the poles of g, and lim iy (Pn)

77
n—0o0 Pn

&M uniformly on compact subsets of C. Note that since g has a pole of order at
least k at £ = 0, K (0) # 0 and all zeros of K have order at least k. Furthermore
since

hio (0n€) ) () — hiy (paf)

K (€) = = #0,
Pn Pu'
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it follows from lim Lfn"@

n—oo n

(i) KW (§) =¢m, or
(ii) K®) (&) # €™ for arbitrary €.

= ¢™ and Hurwitz’s Theorem that either

If (i) satisfies, it follows that K is a polynomial of multiplicity m+#. If all zeros
of K has order k, we have m+k = pk, which has a contradiction to the zeros of
h; (z) having multiplicity m; such that k { m; for arbitrary 1 < i < [. If there
exists a zero of K with order at least k41, then K® (£) must vanish at any
points where K (¢) vanishe. On the other hand, K® (¢) # 0 for ¢ # 0, thus
we have K (0) = 0, a contradiction.

If (i) satisfies, we have g (&) = 1 + e®* | firstly we claim that:
Claim 3.3 If K (&) =0, then |[K® ()| < [¢™.

Proof of Claim 3.3. Indeed, suppose that if K (§) = 0 and K (£)0, by Hur-
witz’s Theorem there exists &, — &y such that (for n sufficiently large)

% =K, (gn) =0,

<

thus f, (pn&,) = 0. It follows from the hypotheses on F that (k) (Pnén)

1<i<l
hence

ék) nSn h’io nSn nsn "b nsn m
K0 (6] = |E A0 Lo )] _ | &S Mn)| _ ).

Let n — oo, we complete the proof of Claim 3.3.
We then divided this case into two parts:

(a) If @ = 0, as the proof of case (i) we obtain a contradiction.

(b) If a # 0, we have

! &L a4t Ml
(k+m)---(m+1) ! g

K(§) =

ak -’
It follows that there exist infinite &, — oo such that K (&,) = 0, that is to say

1 m
k k+m k-1 . > | — _em a{n—f—b‘
a <(k+m)(m+1)€n +a1§n + + ay, ak) é-n €
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By using Claim 3.3, we have

1

k‘ n'
(k+m)---(m+1)

GG = 2= [+ e = KO (6] < ™

la
which also has a contradiction to &, — oo.

The contradiction establishes G is normal at 0. It remains to prove that F is
normal at 0. Since G is normal at 0 and G (0) = oo for each G (z) € G, there
exists 6 > 0 such that if G(z) € G, then |G (2)] > 1 for all z € A; =
{z €||z] < d}. Thus f (z) # 0 for z € As and for all f € F, which is equivalent
to 1/f is analytic in A4 for all f € F. Therefore, for all f € F, we have

11
G (2) |2[*

2k )
< lel =2 (16)

7

By the Maximum Principle and Montel’s Theorem, F is normal at £ = 0. This
completes the proof of Theorem 1.4.

4 Open Problem

There are two interesting open problems related to our paper, one open prob-
lem is related to the meromorphic differential polynomial which omit a function
set:

Problem 4.1 Let F be a family of functions meromorphic on a domain D
in C, all of whose zeros have multiplicity at least k, and S = {h; (2)|z € D,i=1,---1} be
a holomorphic functions set on D such that h; (2)0 for arbitrary 1 < i <, the
zeros of h; (z) have multiplicity m; which satisfies k 1 m; for arbitrary 1 <
< . () i . i,
1 < l. Suppose that for each f € F, 11%%@ }f (z)‘ < f;lllgl |hi (2)| when
k
ever f (z) =0 and the differential polynomial " p; (2) fY) (2) omits the func-
j=1
tion set S, is F is a normal family on D?

Another open problem is related to the meromorphic functions family which
shares a function set, firstly we present the definition of meromorphic functions
sharing a function set as follows:

Definition 4.2 (Meromorphic Functions Sharing a Function Set) Let
D be a domain in C, f and g meromorphic on D and S is a set including finite
meromorphic functions on D:

S={hi(z)|z€eD,i=1,---1}.
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If f and g satisfies

then the two meromorphic functions f and g on D are said to share the function
set S.

The open problem is as follows:

Problem 4.3 Let F be a family of functions meromorphic on a domain D
in C, all of whose zeros have multiplicity at least k. If there exists a holomorphic
function set on D

S=A{h;(2)|z€eD,i=1,---,1},

where h; (z) # 0 for arbitrary z € D and 1 < i < I, such that for each f €
F.E;(8) = Ew (S) and0 < | f® (z)| < sup |h; (2)| whenever z € Ef (0), is F is
1<i<l

a normal family on D?

ACKNOWLEDGEMENTS. I would especially like to express my ap-
preciation to my advisor professor Yu Zheng for longtime encouragement and
meaningful discussions. I would also especially like to thank the referee for
meaningful suggestions that led to improvement of the article.

References

[1] K. Hamai, T. Hayami, K. Kuroki and S. Owa, Eztremal Function and Co-
efficient Inequalities for Certain Analytic Functions, Int. J. Open Problems
Complex Analysis, Vol. 2, No. 3, (2010), pp. 174-180.

[2] Alina Alb Lupas, A Note on a Subclass of Analytic Functions Defined
by Multiplier Transformations, Int. J. Open Problems Complex Analysis,
Vol. 2, No. 2, (2010), pp. 154-150.

[3] N. Magesh, G. Murugusundaramoorthy, T. Rosy and K. Muthunagai, Sub-
ordination and Superordination Results for Analytic Functions Associated
with Convolution Structure, Int. J. Open Problems Complex Analysis,
Vol. 2, No. 2, (2010), pp. 67-81.

[4] Alina Alb Lupas, A Note on a Subclass of Analytic Functions Defined by
Ruscheweyh Deriwvativeand Multiplier Transformations, Int. J. Open Prob-
lems Complex Analysis, Vol. 2, No. 2, (2010), pp. 60-66.



Normal Families of Meromorphic Functions 261

[5] L. Yang, Normality for Families of Meromorphic Functions, Sci. Sinica
Ser. A, 29, (1986), pp. 1263-1274.

[6] X. C. Pang, L. Zalcman, Normal Families of Meromorphic Functions with
Multiple Zeros and Poles, Israel J., 136, (2003), pp.1-9.

[7] X. C. Pang, D. G. Yang and L. Zalcman, Normal Families of Meromorphic
Functions whose Derivatives Omit a Function, Comput. Methods Funct.,
2, (2002), pp.257-265.



