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Abstract

Obtained is the uniform almost sure convergence for a kernel esti-
mate of the variance function in the diffusion model for a ρ̃−mixing
process when the data belong to a sequence of compact sets which in-
creases to R.
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1 Introduction

The problem of estimating the diffusion coefficient is subject to several inves-
tigations when using diffusion process for modeling financial data. Consider a
diffusion (Xt) defined as the solution of the stochastic differential equation:

dXt = σ(Xt)dWt , t ∈ R+ (1)

where (Wt; t ∈ R+) is a standard Brownian motion, σ is a Lipschitz and
unknown function of class C1, strictly positive. Under Lipschitz conditions
about σ, there exists for any given initial X0 independent of (Wt; t ∈ R+),
a unique solution with probability one, to equation (1) and this solution is a
measurable Markov process (Wong [17], Prop. 4.1, P5 and P6, p. 150).

Also, under suitable conditions ( Banon [4]), the unique solution of equation
(1) must have a stationary transitional density, say fXt|X0=., satisfying the
forward equation of Kolmogorov:

1

2

∂2

∂x2

(
σ2(x)fXt|X0=(x)

)
=

∂

∂t
fXt|X0=(x)

the limit of fXt|X0=. being a density, say f , as t goes to infinity.
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For simplicity, suppose that the initial distribution of X0 has a density
f , so that (Xt) is a stationary process and study the estimation of σ2(x) for
each x ∈ E, where E is the nonempty set {x ∈ R / f(x) > 0}. In some
practical instances, for the estimation of the volatility in mathematical finance
models of Black and Scholes type, the diffusion term σ is of major interest.

The above problem has been considered by Donhal [8] when the diffusion
coefficient depends on a parameter θ, and by Genon-Catalot and Jacod [9]
in the multidimensional case. Genon-Catalot et al. [10] used the wavelets
method to estimate σ2, Arfi [2] considered the estimation of σ2 under the
ergodic condition and Arfi & Lecoutre [3] studied the estimation of σ2 when the
observed process is strong mixing and established an almost-sure convergence.
Hoffman [12] estimated the diffusion coefficient from a 1-dimensional diffusion
process sampled at time. Abdolsadeh [1] considered the least squares method
to estimate the diffusion coefficient.

In this paper; a study of the nonparametric kernel type estimate of the
diffusion coefficient is conducted and the uniform almost sure consistency under
ρ̃− mixing condition (see Bradley [5] ) is obtained.

Let ∆ be positive and fixed and n ∈ N; the Markov observation (Xi∆, 1 ≤
i ≤ n) permits to write:

Xi∆+∆ −Xi∆ = σ∆(Xi∆)εi∆+∆

where

σ2
∆(Xt) = V (Xt+∆|Xt)

is supposed to exist and defines a discrete version of σ2, (εt) being a stationary
Gaussian process such that:

E(εt+∆|Xs; s ≤ t) = 0 and E(ε2
t+∆|Xs; s ≤ t) = 1

First, consider an estimator of σ2
∆ based on the discrete observation (Xi∆, 1 ≤

i ≤ n):

S∆,n(x) =

∑n
i=1K

(
x−Xi∆

hn

)
(Xi∆+∆ −Xi∆)2

∑n
i=1K

(
x−Xi∆

hn

) ∀x ∈ E

where (hn) is a positive sequence of real numbers such that hn → 0 and
nhn −→∞ when n →∞, K is a Parzen-Rosenblatt kernel, that is a bounded
function satisfying

∫
R K(x)dx = 1 and lim|x|→∞|x|K(x) = 0; moreover it will

be assumed to be strictly positive and with bounded variation.
The uniform almost sure convergence of S∆,n to σ2

∆ is established under
ρ̃−mixing hypothesis when the data belong to a sequence of compact sets
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which increases to R when n →∞. Then, using the fact that:

σ2(x) = lim
∆→0

1

∆
E{(Xt+∆ −Xt)

2|Xt = x}

S∆,n

∆
is shown to be a consistent estimate of σ2 if ∆ = ∆(n) such that N =

n∆ →∞, which is a necessary condition for Nhn →∞ and the use of the ρ̃−
mixing assumption.

Let (Ω,F , P ) be a probability space, and let (Xi, i ≥ 1) be a sequence of
random variables; then write F2 = σ(Xi, i ∈ S ⊂ N). Given the σ-algebras B,
R in F , let

ρ(B,R) = sup {corr(X, Y), X ∈ L2(B), Y ∈ L2(R)} ,

where corr(X, Y ) = (EXY −EXEY )/
√

var(X)var(Y). Bradley [5] introduced
the following coefficients of dependence:

ρ̃(k) = sup {ρ(FS,FT )} , k ≥ 0,

where the supermum is taken over all finite subsets S, T ⊂ N such that
dist(S, T ) ≥ k. Obviously, 0 ≤ ρ̃(k + 1) ≤ ρ̃(k) ≤ 1, k ≥ 0, and ρ̃(0) = 1.

1.1 Definition

A random variable sequence (Xi,i ≥ 1) is said to be a ρ̃−mixing sequence
if there exists k ∈ N such that ρ̃(k) < 1.

Without loss of generality, assume that (Xi∆,i ≥ 1) is such that ρ̃(1) < 1.

Such an approach has been subject to several investigations and a number of
distinguished papers is devoted to this topic. There are among others Bradley
([5] , [6]) for the central limit theorem, Bryc and Smolenski [7] for moment
inequalities and almost sure convergence, Peligrad &Gut [14] for almost-sure
results , Shixin [15] who studied the almost sure convergence and obtained
some new results, Guang-Hui [11] and Meng-Hu [13] both of them sudied the
strong law of large numbers under different conditions, Sung [16] for complete
convergence for weighed sums.
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2 General assumptions

H1. The process (Xi∆), i ∈ N , is strictly stationary and ρ̃−mixing.

H2. The (Xi∆) have a continuous and bounded density f in R.

H3. The initial random variable X0 is of second order: EX2
0 < ∞.

H4. The function σ(.) is Borel measurable on R, satisfying, for x, y ∈R,

σ(x) ≥ σ0 > 0, the uniform Lipschitz condition:

|σ(x)− σ(y)| ≤ c1|x− y|

and the linear growth condition:

σ(x) ≤ c2

√
1 + x2

where c1 and c2 are two positive constants.

H5. ∃ a > 0, ∀x ∈ Cn, f(x) ≥ n−a for n ≥ 1

where Cn = {x : ||x|| ≤ cn} , cn →∞.

H6. The density f is twice differentiable and its derivatives are bounded.

3 Results

3.1 Theorem

Suppose that the assumptions H1 - H6 hold and further assume that the
function σ∆ is Lipschitz and bounded, the sequence hn is such that hn = o(n−a).

If the kernel K is Lipschitz, even with
∫

z2K(z)dz < ∞ then:

sup
x∈Cn

|S∆,n(x)− σ2
∆(x)| −→ 0, a.s. , n →∞.

3.2 Corollary

Under the assumptions of the Theorem , with the new choice of hn and
∆ = ∆(n) such as:

∆ → 0, n∆ →∞,
hn

∆
= o(1), lim

n→∞n∆hn = ∞,

then :

sup
x∈Cn

∣∣∣∣∣
S∆,n(x)

∆
− σ2(x)

∣∣∣∣∣ −→ 0, a.s. n →∞.
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3.2.1 Remarks

1) The sequence hn in the Theorem can be chosen such as: hn = h0n
−τ/2 for

0 < τ < 1/2 with h0 being a positive constant.
2) Similarly, in Corollary one can choose hn = h0n

−τ/2, ∆ = δ0n
−τ/4 with

h0 and δ0 being some positive constants.
3) The construction of the estimator requires a choice of K and hn. If the

choice of K does not much influence the asymptotic behavior of S∆,n, on the
contrary the choice of hn turns to be crucial for the estimator’s accuracy. One
can employ a cross-validation or plug-in method.

4) If X0 is independent of (Wt, t ∈ R+), the condition σ(x) ≤ c2

√
1 + x2

implies that (Xt) is stationary ( Wong [17]).
5) Assumptions H1 and H2 are satisfied in the case of an Ornstein-Uhlenbeck

process if X0 follows a centered normal law.

4 Preliminary results

The following decomposition is used:

S∆,n(x)− σ2
∆(x) =

1

f(x)

{
[gn(x)− σ2

∆(x)f(x)]− S∆,n(x)[fn(x)− f(x)
}

with

gn(x) =
1

nhn

n∑

i=1

K
(

x−Xi∆

hn

)
(Xi∆+∆ −Xi∆)2

fn(x) =
1

nhn

n∑

i=1

K
(

x−Xi∆

hn

)
.

Then,

sup
x∈Cn

∣∣∣S∆,n(x)− σ2
∆(x)

∣∣∣ ≤ 1

inf
x∈Cn

f(x)

{
sup
x∈Cn

∣∣∣gn(x)− σ2
∆(x)f(x)

∣∣∣ + sup
x∈Cn

|S∆,n(x)| |fn(x)− f(x)|
}

.

Now, if supx∈Cn
|S∆,n(x)| ≤ Mn a.s. where Mn = nξ with ξ ∈]0, 1/2[

sup
x∈Cn

∣∣∣S∆,n(x)− σ2
∆(x)

∣∣∣ ≤ na

{
sup
x∈Cn

∣∣∣gn(x)− σ2
∆(x)f(x)

∣∣∣ + Mn sup
x∈Cn

|fn(x)− f(x)|
}

.

4.1 Lemma 1

Under the assumptions of the Theorem :

na sup
x∈Cn

|gn(x)− σ2
∆(x)f(x)| a.s.−→ 0, n →∞.



6 Mounir ARFI

Proof. Split into a stochastic part [gn(x) − Egn(x)] and a deterministic part
[Egn(x)− σ2

∆(x)f(x)] and study each component apart.

Consider the stochastic component.

Because of the possible large values for the variables (Xi∆+∆ − Xi∆)2, a
truncation technique is used which consists in decomposing gn(x) to g+

n (x)
and g−n (x) where:

g+
n (x) =

1

nhn

n∑

i=1

K
(

x−Xi∆

hn

)
(Xi∆+∆ −Xi∆)2I[(Xi∆+∆−Xi∆)2≥Mn]

and g−n (x) = gn(x)− g+
n (x) where Mn = nξ for some fixed ξ in ]0, 1/2[.

Then,

na sup
x∈Cn

|g+
n (x)− Eg+

n (x)| a.s.−→ 0, n →∞.

For the purpose, write

na sup
x∈Cn

|g+
n (x)− Eg+

n (x)| ≤ En + Fn

where,

En =
1

n1−ahn

sup
x∈Cn

∣∣∣∣∣
n∑

i=1

K
(

x−Xi∆

hn

)
(Xi∆+∆ −Xi∆)2I[(Xi∆+∆−Xi∆)2≥Mn]

∣∣∣∣∣ .

Having (En 6= 0) ⊂ {∃i0 ∈ [1, 2, ..., n] such that(Xi∆+∆ − Xi∆)2 ≥ Mn} then:

(En 6= 0) ⊂
n⋃

i=1

{
(Xi∆+∆ −Xi∆)2 ≥ Mn

}

P (En 6= 0) ≤
n∑

i=1

P ((Xi∆+∆ −Xi∆)2 ≥ Mn) = nP ((Xi0∆+∆ −Xi0∆)2 ≥ Mn)

∞∑

n=1

P (En 6= 0) ≤
∞∑

n=1

nP ((Xi0∆+∆ −Xi0∆)2 ≥ Mn) ≤ c3

∑

n≥1

n

Mβ
n

where c3 is a positive constant and β such that β > 2/ξ. Then En −→ 0, a.s.
when n →∞ and sup1≤i≤n(Xi∆+∆ −Xi∆)2 ≤ Mn.

The kernel K being strictly positive, conclude that supx∈Cn
|S∆,n(x)| ≤ Mn

a.s.
Moreover,
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Fn =
1

n1−ahn

sup
x∈Cn

∣∣∣∣∣
n∑

i=1

E
(
K

(
x−Xi∆

hn

)
(Xi∆+∆ −Xi∆)2I[(Xi∆+∆−Xi∆)2≥Mn]

)∣∣∣∣∣

Fn ≤ K1

n−ahn

E
(
(Xi∆+∆ −Xi∆)2I[(Xi∆+∆−Xi∆)2≥Mn]

)

where K1 is an upperbound of K. The fact that σ∆ is bounded and the prop-
erties of the process (εt) permit to write

Fn ≤ K1

n−ahn

(E(Xi∆+∆ −Xi∆)4)1/2
(
P

(
(Xi∆+∆ −Xi∆)2 ≥ Mn

))1/2 ≤

c4n
ah−1

n M−β/2
n −→ 0, n →∞

with the choice Mn = nξ for ξ ∈]0, 1/2[, hn = n−τ/2 for τ ∈]0, 1/2[ and
β > (2a + τ)/ξ with c4 being a positive constant.

Now, the following is established:

na sup
x∈Cn

|g−n (x)− Eg−n (x)| a.s.−→ 0, n →∞.

For simplicity, define for fixed i , Ki(x) = K (h−1
n (x−Xi∆)),

Yi∆ = (Xi∆+∆ −Xi∆)2 and write:

g−n (x)− Eg−n (x) =
n∑

i=1

Zi

with

Zi =
1

nhn

{
Ki(x)Yi∆I[Yi∆≤Mn] − E

(
Ki(x)Yi∆I[Yi∆≤Mn]

)}

then the following is obtained: |Zi| ≤ 2K1Mn / (nhn) ,
E |Zi| ≤ 2K1Mn / n where K1 is an upperbound of K.

Now, write:

∑

n≥1

P
(
na

∣∣∣g−n (x)− Eg−n (x)
∣∣∣ > ε

)
=

∑

n≥1

P
(∣∣∣g−n (x)− Eg−n (x)

∣∣∣ > n−aε
)

=

∑

n≥1

P

(∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > n−aε

)
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and,

Wni = ZiI(|Zi|≤nα) Vni = ZiI(|Zi|>nα) for 1 ≤ i ≤ n and α > 1.

Then,

∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

i=1

(Wni − EWni)

∣∣∣∣∣ +

∣∣∣∣∣
n∑

i=1

Vni

∣∣∣∣∣ +

∣∣∣∣∣
n∑

i=1

EWni

∣∣∣∣∣ . (2)

The following are to be shown:

∑

n≥1

P

(
na

∣∣∣∣∣
n∑

i=1

(Wni − EWni)

∣∣∣∣∣ > εnα/3

)
< ∞ (3)

∑

n≥1

P

(
na

∣∣∣∣∣
n∑

i=1

Vni

∣∣∣∣∣ > εnα/3

)
< ∞ (4)

na

∣∣∣∣∣
n∑

i=1

EWni

∣∣∣∣∣ /n
α −→ 0, n →∞. (5)

Start by showing (3).

The Markov inequality leads to:
For εn = εn−a write

∑

n≥1

P

(
na

∣∣∣∣∣
n∑

i=1

(Wni − EWni)

∣∣∣∣∣ > εnα/3

)
=

∑

n≥1

P

(∣∣∣∣∣
n∑

i=1

(Wni − EWni)

∣∣∣∣∣ > εnn
α/3

)
≤

c5

∑

n≥1

n∑

i=1

E|Wni|β/nαβ ≤ c6

∑

n≥1

nξ−αβ < ∞

where c5 and c6 are two positive constants, a > 0 and β such that β > 2/ξ for
ξ ∈]0, 1/2[.Then the Borel-Cantelli lemma concludes for (3).

To show (4) note that:

(∣∣∣∣∣
n∑

i=1

Vni

∣∣∣∣∣ > εnα/3

)
⊂

n⋃

i=1

(|Zi| > nα)

hence for εn = εn−a,

∑

n≥1

P

(∣∣∣∣∣
n∑

i=1

Vni

∣∣∣∣∣ > εnnα/3

)
≤ ∑

n≥1

nP (|Zi0| > nα) ≤
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∑

n≥1

nE|Zi0|β
nαβ

≤ c7

∑

n≥1

nξ−αβ < ∞

where c7 is a positive constant, β and a defined previously.

It remains to show that (5) holds.

na

∣∣∣∣∣
n∑

i=1

EWni

∣∣∣∣∣ /n
α ≤ na

∣∣∣∣∣
n∑

i=1

EVni

∣∣∣∣∣ /n
α = na−α

n∑

i=1

E|Zi|I(|Zi|>nα) =

na+1−αE|Zi|I(|Zi|>nα) −→ 0, n →∞

with the choice α > 1 + a, α > 1 and a > 0.
Next, cover Cn by µn spheres in the shape of {x : ||x− xnj|| ≤ cnµ−1

n } with
1 ≤ j ≤ µn and µn → ∞, to be defined later. Then make the following
decomposition:

∣∣∣g−n (x)− Eg−n (x)
∣∣∣ ≤

∣∣∣g−n (x)− g−n (xnj)
∣∣∣+

∣∣∣E[g−n (x)− g−n (xnj)]
∣∣∣+

∣∣∣g−n (xnj)− Eg−n (xnj)
∣∣∣ .

The first and the second terms in the right-hand side of the inequality
above are considered similarly. Having:

∣∣∣g−n (x)− g−n (xnj)
∣∣∣ ≤ Mn

nhn

n∑

i=1

|Ki (x)−Ki(xnj)|

The kernel K being Lipschitz in the sense that :
|K(u)−K(v)| ≤ LK ||u− v||k, we obtain:

∣∣∣g−n (x)− g−n (xnj)
∣∣∣ ≤ LKMn

h1+k
n

||x− xnj||k ≤ LKMnck
n

h1+k
n µk

n

=
1

Logn

with the following choice for µn:

µn =
L

1/k
K M1/k

n cn(Logn)1/k

h
(1+1/k)
n

−→∞.

Thus

sup
x∈Cn

∣∣∣g−n (x)− Eg−n (x)
∣∣∣ ≤ sup

1≤j≤µn

∣∣∣g−n (xnj)− Eg−n (xnj)
∣∣∣ +

2

Logn

so that for all n ≥ n1(εn), ∀εn > 0 and for εn,1 = n−aεn
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P

(
na sup

x∈Cn

∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > 2εn

)
≤

µn∑

j=1

P
(∣∣∣g−n (xnj)− Eg−n (xnj)

∣∣∣ > εn,1

)
.

Now, using similar decomposition as in (2) µn times; permits to conclude
that

na sup
x∈Cn

|g−n (x)− Eg−n (x)| −→ 0, a.s. n →∞.

It remains to show that:

na sup
x∈R

|Egn(x)− σ2
∆(x)f(x)| −→ 0, n →∞.

Properties of the process (εt) permit to write:

|Egn(x)− σ2
∆(x)f(x)| ≤ D1 + D2

with

D1 =
1

hn

∫

R
K

(
x− u

hn

)
|σ2

∆(u)− σ2
∆(x)|f(u)du

D2 = σ2
∆(x)

∣∣∣∣
1

hn

∫

R
K

(
x− u

hn

)
f(u)du− f(x)

∣∣∣∣

The function σ2
∆ being Lipschitz in the sense:

∀ (x, y) ∈ R× R |σ2
∆(x)− σ2

∆(y)| ≤ c6|x− y|

where c6 is a positive constant.
By change of variable, z = (x− u)/hn the following is obtained:

D1 ≤ Γc6n
ahn

∫

R
|z|K(z)dz → 0, n →∞,

where Γ is an upperbound of f and where hn = o(n−a).
On the other hand writing z = h−1

n (x− u) , a Taylor expansion gives

D2 ≤ σ2
∆(x)

(
nahn

∫
zK(z)dz + 0.5nah2

n

∫
z2K(z)dz

)
.

The fact that σ2
∆ is bounded, the choice hn = n−τ/2 with a < τ/2 imply

that D2 goes to zero when n approaches infinity.

Thus, the result:

na sup
x∈R

|Egn(x)− σ2
∆(x)f(x)| −→ 0, n →∞.
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4.2 Lemma 2

Under the assumptions of the Theorem :

Mnna sup
x∈Cn

|fn(x)− f(x)| a.s.−→ 0, n →∞.

Proof. This is a particular case of the Lemma 1, with Mnna instead of na and
(Xi∆+∆ −Xi∆)2 = 1.

5 Proof of the Theorem

It is sufficient to write:

sup
x∈Cn

|S∆,n(x)− σ2
∆(x) ≤

supx∈Cn
|gn(x)− σ2

∆(x)f(x)|+ supx∈Cn
|S

∆,n
(x)||fn(x)− f(x)|

infx∈Cnf(x)

The result follows from the Lemmas 1 and 2.

6 Proof of the corollary

It suffices to write:

S∆,n(x)

∆
− σ2(x) =

S∆,n(x)− σ2
∆(x)

∆
+

(
σ2

∆(x)

∆
− σ2(x)

)

then,

sup
x∈Cn

∣∣∣∣∣
S∆,n(x)

∆
− σ2(x)

∣∣∣∣∣ ≤ sup
x∈Cn

∣∣∣∣∣
S∆,n(x)− σ2

∆(x)

∆

∣∣∣∣∣ + sup
x∈R

∣∣∣∣∣
σ2

∆(x)

∆
− σ2(x)

∣∣∣∣∣ .

Similar arguments to those in the proof of the Theorem , and the conditions
of the Corollary allow to conclude.
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7 Open Problem

In absence of smoothness assumptions, the rate of convergence is not easy
to control, the addition of more assumptions is relevant.

An open problem is to get the optimal rate in absence of smoothness without
affecting the ρ̃−mixing condition.

ACKNOWLEDGEMENTS. The author would like to thank the referees
for their helpful comments and criticisms.
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