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Abstract: In this paper, we combine the Sumudu transform method with the
Adomian decomposition method in the sense of local fractional derivative,
for solving linear and nonlinear local fractional partial differential
equations. This method is called the Local Fractional Sumudu Variational
Iteration Method (LFSVIM). The LFSVIM can easily be applied to many
problems and is capable of reducing the size of computational work to find
non-differentiable solutions to local fractional partial differential equations.
Some illustrative examples are given, revealing the effectiveness and
convenience of the method.
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1 Introduction

It is known that some of the methods, such as Adomian decomposition
method (ADM) [1], homotopy perturbation method (HPM) [2], variational
iteration method (VIM) [3], Fourier transform method [4], Fourier series method
[5], Laplace transform method [6], and Sumudu transform method [7] are used for
solving differential equations, and then extended it to solve differential equations
of fractional orders. Recently, there appeared a large part of scientific researchs
concerning local fractional differential equations or local fractional partial
differential equations, adopted in its entirety on the above mentioned methods to
solve this new types of equations. For example, among these research we find,
local fractional Adomian decomposition method ([8],[9]), local fractional
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homotopy perturbation method ([10],[11]), local fractional homotopy perturbation
Sumudu transform method [12], local fractional variational iteration method
([13],[14]), local fractional variational iteration transform method ([15]-[17]),
local fractional Fourier series method ([18]-[20]), Laplace transform series
expansion method [21], local fractional Sumudu transform method ([22],[23]) and
local fractional Sumudu transform series expansion method ([24],[25]).

The basic motivation of present study is to combine two powerful methods,
the first method is "variational iteration method (VIM)", the second method is
called "Sumudu transform method" in the sense of local fractional derivative,
thus, we get the modified method local fractional Sumudu variational iteration
method (LFSVIM), then we apply this modified method to solve some examples
related with local fractional partial differential equations.

The present paper has been organized as follows: In Section 2 some basic
definitions and properties of the local fractional calculus and local fractional
Sumudu transform method. In section 3 We present an analysis of the proposed
method. In section 4 We give three examples show how to apply this modified
method (LFSVIM). Finally, the conclusion follows.

2  Local Fractional Calculus

In this section, we present the basic theory of local fractional calculus and
we focus specifically on the definitions of the following concepts: local fractional
derivative with some results, local fractional integral with some results, and some
important results concerning the local fractional Sumudu transform method (see
[26], [27]).

2.1 Local fractional derivative

Definition 2.1.4 The local fractional derivative of f(x) of order o at X=X, is
defined by ([26], [27])

5) f@(@:% :A“<1‘(EX_);O)1=&(XO)>,

X=Xq

where
6  AT(F)—f(x)) =T+ a)(f ()~ f(x))
For any x€(a, b), there exists
£ (x) = D (%),
denoted by
f (x) € Dy (a,b).

Local fractional derivative of high order is written in the form



31 Local Fractional Sumudu Variational...

ktimes

@ %) =D*D..D\,

and local fractional partial derivative of high order

ktimes
; of(x) &% o* o~
(®) ox** Ox* ox* T ox*

2.2  Local fractional integral

Definition 2.2.1 The local fractional integral of f(x) of order a in the interval [a,
b] is defined as ([26], [27])

NOTO = o | TOE)

©) N

:mlm;f(tj)(mj)“,

J

where Atj =tj+1-tj, At=max{Ato, At1, At,...} and [tj, tj+1], to=a, tn=Db is a partition of
the interval [a, b].

For any X€&(a, b), there exists,
T,
denoted by
f(x) e 11“(a,b).
2.3 Some important results

Definition 2.3.1 In fractal space, the Mittage Leffler function, sine function and
cosine function are defined as

(100 E,(X) =g%,0<a <1,
) +o0 x (kD)
an  sin ) :;(_N T+ 2k 1oy & =1
+00 X2ka
(12) cos,(x*) = kZ:;,(—l)k Fr ok <@ =L

The properties of local fractional derivatives and integral of non-
differentiable functions are given by
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d a Xna X(n—l)a

W) X T+na) T+ (M-Da)’
14 d E (x,)=E_(x%)
(14) axe —o e “ :

sin_(x_ ) =-cos _ (x“%),
(15) dxa a( a) a( )

cos (X )=-—sin_(x%),
(16) dxa a( a) a( )
(17) (@) Xna X(n+1)a

°> Tl+na) T'A+(M+Da)

2.4 Local fractional Sumudu transform

We present here the definition of local fractional Sumudu transform
method (denoted in this paper by S,) and some properties concerning this
transformation ( for mor see [28]).

If there is a new transform operator Sg:f(x)—F(u), namely

(18) Sa{i akxk“} =T (1+ka)u*®.
K=0

As typical examples, we have

19) S, {E.(“x")} =3 r@+ka)i“u.
k=0

(20) S, {L} =u“.
i+ a)

Definition 2.4.1 The local fractional Sumudu transform of f(x) of order a is
defined as

S AT} =F, ()
@) __ 1 e agay FO) e
_F(1+a)_£Ea( u“x%) " (dx)*,0<a <1.

Following (21), its inverse formula is defined as

2 SHF,(uw}=f(x),0<a<l.
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Theorem 2.4.2 (linearity). If Sq{ f(x)}=Fu(u) and So{g(x)}=G.(u), then one has
23 S {f()+g()}=F,(u)+G,(u).

Theorem 2.4.3 (local fractional Laplace-Sumudu duality). If Lo{f(x)}= “fs*(s)
and Sq{ f(x)}=Fa(u), then one has

ey S.Ar00}= L] )

Sa{ f (1)}
25) L if(}=——>-.

o

Theorem 2.4.4 (local fractional Sumudu transform of local fractional derivative).
If Su{f(x)}=Fa(u), then one has

o6 S {daf(x)}:Fa(u)—f(O)_

dx“ u”

As the direct result of (26), we have the following results. If
Sa{f(x)}=Fq(u) then we have

d" f(x) 1 T ke g (ka)
S = F (u)-—)> u“f™ ()|
(27) a{ dxna } una |: 0{( ) ; ( )
When n =2, from (27), we get

28) sa{dza f (X)} — ui [F, (u)— f(0)—u”f ()]

dx?®

Theorem 2.4.5 (local fractional Sumudu transform of local fractional integral). If
Sa{f(x)}=Fq(u), then one has

(29) S, {1 () }=u“F,(u).

Theorem 2.4.6 (local fractional convolution). If Sg{f(x)}=Fq(u) and
Se{g(x)}=Gq(u), then one has

30) S, {f(x)*g(x)}=u“F, ()G, (u),

where

@) 1007900 = [ FOg(x-(@n”.
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3 Local Fractional Sumudu Variational Iteration
Method

Let us consider the following nonlinear operator with local fractional
derivative :

(32) LW(xt)+ N W(xt)+RW(Xt)=Kk(xt),

where L,=(0**/6%"t) denotes linear local fractional derivative operator of order 2a,
R, denotes linear local fractional derivative operator of order less than Lo, Nq
denotes nonlinear local fractional operator, and k(x,t) is the non-differentiable
source term.

Taking the local fractional Sumudu transform (denoted in this paper by S, )
on both sides of Eq.(32), we get:

S, [LW(xt)]+S_[NW(xt)+RW(x,t)]
= S_[k(x,t)].
Using the property of the local fractional Sumudu transform, we have:
S_[W (x,t)] =W (x,0) + W, (x,0)u” +u?*S_[k(x,t)]
—u®*S_[N_W (x,t) + R,W(x,1)].
Taking the inverse local fractional Sumudu transform on both sides of
Eq.(34), gives:
W (X, ) =W (x,0) + W, (x,0) ———
(35) INl+ «)
+S S, [K(x,t) — N W (x,t) + R, W (x,1)]).
Applying (0%/ot*) on both sides of Eq.(35), we have:
0“W (x, 1)
(36) ot”
+ S;l(u Z“Sa[NaW (x,t) + R, W(x,t) —k(x,t)]) =0.

The correction functional of the variational iteration method (29), is given

(33)

(34)

_Wt(a) (X,O)

by:

"W 5
W 1 (@ —an_Wt( )(X’O)
(37) Wn+1 _Wn 0 It 61:

+5.(us, [NW, + RW, —k(x,1)])
The solution is calculated by the following limit:
(38) W(x,t) =limW, (x,t).

4 Application
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In this section, we will implement the proposed method local fractional
Sumudu variational iteration method (LFSVIM) for solving some local fractional

partial differential equations.

Example 4.1 First, we consider the following local fractional partial differential

equation:

0°*W (X, t) N 0°*W (X,1)

(39) at 20

subject to the initial conditions:

(40)

W (x,0) =sin_ (x“),

aXZa

o*W (x,0)

o

= 2sin_ (x*).

-3W(x,t1)=0,t >0,xeR,

From (37) and (39), the formula of successive approximations is given by:

(41)

_ (@)
Wn+1 - Wn o I t

[ O%°W,  9°W (x,0)
or?® or”

2a
+ Sal(u 2“80{8 W,

aXZa

)

According to the successive formula (41) and the initial conditions (40),

we obtain:
(43) W, =W, It(a)
@ay W, =W, — I

ta

- Zsina(x"‘)—l_(lJr 2)’

[ 9*W,  &“W (x,0)
or%* or”

2
+ Sal(u 22 [6 Wo

aXZa
[ 9%W,  9°W (x,0)

or?” or”

Ox3“

2
+ Sal(uzasa[a Wy

]

)
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[ 9%W,  9“W (x,0) ]
or* or”
W3 :Wz_olt(a) 52\ !
(45) +sa1(u2“sa[ 2 —3\/\/2D
OX“*

and so on.

From the formulas (42)-(45), the first terms of local fractional Sumudu
variational iteration method is given by:

I'l+ o)
2t” 412« 8t>
+ + :
INl+a) I'l+2a) TI'(l+3a)

W, (x,t) =sin, (x“)(1+ Lj

W, (X, t) :sina(x“)(l+

2t N 4%~ N 8t3~

Nl+a) I'l+2a) TI'(l+3x)
16t*~ 32t°

+ + ,

I'l+4a) TI'(l+5a)

W, (x,t) =sin, (x“)(1+

2t 4t% N 8t>
I'l+a) TI'l+2a) T'(1+3x)
16t* 32t> 64t° 128t"
+ + + + :
I'l+4a) T'(1l+5x) TI'(l+6a) T'(l+7x)

W, (x,t) =sin,, (x“)(1+

and so on.
Then, the non-differentiable solution of (38), has the form:

2t” 4t% 8t>*
1+ + +
INl+a) TI'l+2a) I'(l+3x)
16t* 32t°* 64t°%* 128t~ (2t*)"
+ - + + o ——
Nl+4a) T'(1l+5a) T'l+6a) TI'(l+7x) I'l+na)
=sin,(X*)E_(2t*).

W (x,t) =sin_(x*) rI1im

00
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Example 4.1 Second, we consider the following local fractional partial
differential equation:

%W (X, 1) . %W (x,t)

=1t>0,xeR

(43) 8t2a 8X3a
subject to the initial conditions:
0“W (x,0
sy  W(x0)=E,(2x)%), —6t(“ ) _o.
From (37) and (43), the formula of successive approximations is given
by:
[ 9%°W,  0"W(x,0) |
W W @ or** or”
(45) nt1 — W7ol 3a .
+Sa1[uzasa|:a \ivn - :|j
ox>*

According to the successive formula (45) and the initial conditions (44),

we obtain:
W, (x,t) = E, ((2X)7),

2 o [ A3a
W, =w,— 1@ ZWo O W(X’O)+s—1 u®*s O Wo 4 ,
1 0 0°t o a ax3a

or?” or”

W, =W, —, It(a)|:

2a o [ A3« ]
O*W, _ W (X0) g af joug [ 2 Wl_lJ
2a a 3a N
W, =W2—O|t<"‘>|:a W, W(x0) +S;1(u2“s{a We 1 ] ,

or?” or” “ “1 ox3

ot or” ox3*

Then, the first terms of local fractional sumudu variational iteration

method has the form
W, (x,t) = E, ((2X)%),

tZa

" 9o tZa
W, (x,1) :m+ E, ((2x) )(1—2 mj
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2a t2a
W, (x,t) =— + E_((2x)*)| 1— 2% ———
(1) 'L+ 2a) «((2%) )[ 'L+ 2a)
b _ U ea T
'L+ 4a) rl+6q))
t2a " ou t2a 4ot t4a

W,(x,t) = —+ E_((2xX)*)|1-2°" ——— + _
I'l+2a) I'l+2a) I'l+4a)

t6a t8a

6 8a

- 42 - __9le L
I'l+6q) I'(1+8ax) I'l+10a) /

and so on.
Then, the non-differentiable solution of Eq.(39), is given by:

Wt = — L E (@07 Iim(l— (2™, (@)™
INl+2a) n—o0 INl+2a) I'(l+4a)
B (2t)6a N (2t)8a B (2t)10a . (_1)n (2t)2na
I'l+6a) T'(1+8a) TI(1+10a) r@d+2na) )
t2a " "
ZM-F E((ZX) )COSa((Zt) )

Example 4.1 Finally, we consider the following Nonlinear local fractional
partial differential equation:

@8) W2 (x, 1) ~WE) (x,t) + (W (x,1))2 +W (x,1) =0,

XX
where t>0, Xx€R and subject to the initial conditions

@470 W (x,0) =sin_(x*),W,“(x,0) =0.

From (37) and (46), the formula of successive approximations is given by:

W —W ) (x,0)
W . =W — @ "
n+l — n 0°t (. 2a (2a) 2 '
+S_"u"”S,, —Wn,XX + W) +W,

Consequently, one can derive the approximations of the first three terms:
(48) W, =sin_(x*),
Wos =W, (x,0)
49) W, =W,—1[?| .
(49) SRR S;l(uzasa[—wofif) + (W,)? +WO])
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(a) _ (a)
50) W, :Wl_olt(a) W ~W, (x,0) .
+ S;l(uzasa [_Wl,(f;z) + (\Nl)z +W1])
WS —W ) (x,0)

W, =W, —, 1% ,
Gy ° O L S;(uz“sa[—Wz‘,ii”+(W2)2+W2])}

According to the formulas (48)-(51), the first terms of local fractional
Sumudu variational iteration method, has the form:

W, (x,t) =sin_ (x%),
) . t2a
W, (x,t) =sin_ (X )[1— mj
t2a N t4a B t6a
I'l+2a) T'(l+4a) T'(l+6a))

W, (X,t) =sin,, (x“)[l—
t2a t4a t6a

T(+2a) T+4a) T@+6a)

W, (X, t) = sina(x“)[l—

t8a tha
+ - ’
I'l+8«x) F(l+10a)j

and so on.
Then, the non-differentiable solution of Eq.(46), is given by:

W (x,1) = Li_)rpo[sina (x"‘)i (-~ MJ =sin_(x“)cos,, (t*).

t2ka

4 Conclusion

In this article, we have seen that the coupling of variational iteration
method (VIM) and the Sumudu transform method in the sense of local fractional
derivative, proved very effective to solve linear and nonlinear local fractional
partial differential equations. The local fractional Sumudu variational iteration
method (LFSVIM) is suitable for such problems and is very user friendly. The
advantage of this method is its ability to combine two powerful methods for
obtaining exact or approximate solutions for linear and nonlinear local fractional
partial differential equations. That's why we say that modified LFSVIM is an
alternative analytical method for solving linear and nonlinear local fractional
partial differential equations.
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6 Open Problem

In this article, we have combine two methods, namely variational iteration
method with Sumudu transform method in the sence of local fractional derivative,
for solving local fractional partial differential equations. The results proved that
this method is effective in solving this type of equations.

The question is: does the combination of the variational iteration method and the
natural transform method yield the same previous results?
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