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Abstract: In this paper, we combine the Sumudu transform method with the 

Adomian decomposition method in the sense of local fractional derivative, 

for solving linear and nonlinear local fractional partial differential 

equations. This method is called the Local Fractional Sumudu Variational 

Iteration Method (LFSVIM). The LFSVIM can easily be applied to many 

problems and is capable of reducing the size of computational work to find 

non-differentiable solutions to local fractional partial differential equations. 

Some illustrative examples are given, revealing the effectiveness and 

convenience of the method. 
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1      Introduction     

          It is known that some of the methods, such as Adomian decomposition   

method (ADM) [1], homotopy perturbation method (HPM) [2], variational 

iteration method (VIM) [3], Fourier transform method [4], Fourier series method 

[5], Laplace transform method [6], and Sumudu transform method [7] are used for 

solving differential equations, and then extended it to solve differential equations 

of fractional orders. Recently, there appeared a large part of scientific researchs 

concerning local fractional differential equations or local fractional partial 

differential equations, adopted in its entirety on the above mentioned methods to 

solve this new types of equations. For example, among these research we find, 

local fractional Adomian decomposition method ([8],[9]), local fractional 
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homotopy perturbation method ([10],[11]), local fractional homotopy perturbation 

Sumudu transform method [12], local fractional variational iteration method 

([13],[14]), local fractional variational iteration transform method ([15]-[17]), 

local fractional Fourier series method ([18]-[20]), Laplace transform series 

expansion method [21], local fractional Sumudu transform method ([22],[23]) and 

local fractional Sumudu transform series expansion method ([24],[25]).  

          The basic motivation of present study is to combine two powerful methods, 

the first method is "variational iteration method (VIM)", the second method is 

called "Sumudu transform method" in the sense of local fractional derivative, 

thus, we get the modified method local fractional Sumudu variational iteration 

method (LFSVIM), then we apply this modified method to solve some examples 

related with local fractional partial differential equations. 

          The present paper has been organized as follows: In Section 2 some basic 

definitions and properties of the local fractional calculus and local fractional 

Sumudu transform method. In section 3 We present an analysis of the proposed 

method. In section 4 We give three examples show how to apply this modified 

method (LFSVIM). Finally, the conclusion follows.  

2      Local Fractional Calculus       

           In this section, we present the basic theory of local fractional calculus and 

we focus specifically on the definitions of the following concepts: local fractional 

derivative with some results, local fractional integral with some results, and some 

important results concerning the local fractional Sumudu transform method (see 

[26], [27]). 

2.1      Local fractional derivative    

Definition 2.1.4 The local fractional derivative of ƒ(x) of order α at x=x₀ is 

defined by ([26], [27])   
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where 
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             For any x∈(a, b), there exists  

             ),()( )()( xfDxf x

    

denoted by   
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            Local fractional derivative of high order is written in the form 
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and local fractional partial derivative of high order 
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2.2      Local fractional integral   

Definition 2.2.1 The local fractional integral of ƒ(x) of order α in the interval [a, 

b] is defined as ([26], [27])   
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where Δtj =tj+1-tj, Δt=max{Δt0, Δt1, Δt2,…} and [tj, tj+1], t0=a, tN=b is a partition of 

the interval [a, b]. 

             For any x∈(a, b), there exists, 
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2.3      Some important results                                     

Definition 2.3.1 In fractal space, the Mittage Leffler function, sine function and 

cosine function are defined as 
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             The properties of local fractional derivatives and integral of non-

differentiable functions are given by 
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2.4      Local fractional Sumudu transform 

              We present here the definition of local fractional Sumudu transform 

method (denoted in this paper by Sα) and some properties concerning this 

transformation ( for mor see [28]). 

              If there is a new transform operator  Sα:ƒ(x)→F(u), namely 
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              As typical examples, we have 
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Definition 2.4.1 The local fractional Sumudu transform of ƒ(x) of order α is 

defined as  
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             Following (21), its inverse formula is defined as 

          (22)   .10),()(1   xfuFS  
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Theorem 2.4.2 (linearity). If Sα{ƒ(x)}=Fα(u) and Sα{g(x)}=Gα(u), then one has 
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Theorem 2.4.3 (local fractional Laplace-Sumudu duality). If Lα{ƒ(x)}= Lƒs
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and Sα{ƒ(x)}=Fα(u), then one has 
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Theorem 2.4.4 (local fractional Sumudu transform of local fractional derivative).   

            If Sα{ƒ(x)}=Fα(u), then one has 
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            As the direct result of (26), we have the following results. If 

Sα{ƒ(x)}=Fα(u) then we have 
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            When n =2, from (27), we get 
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Theorem 2.4.5 (local fractional Sumudu transform of local fractional integral). If 

Sα{ƒ(x)}=Fα(u), then one has 
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3       Local Fractional Sumudu Variational Iteration 

Method     

            Let us consider the following nonlinear operator with local fractional 

derivative :   

          (32) ),,(),(),(),( txktxWRtxWNtxWL    

where Lα=(∂2α/∂2αt) denotes linear local fractional derivative operator of order 2α, 

Rα denotes linear local fractional derivative operator of order less than Lα, Nα 

denotes nonlinear local fractional operator, and k(x,t) is the non-differentiable 

source term.                                                                             

           Taking the local fractional Sumudu transform (denoted in this paper by Sα ) 

on both sides of Eq.(32), we get: 
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            Using the property of the local fractional Sumudu transform, we have: 
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            Taking the inverse local fractional Sumudu transform on both sides of 

Eq.(34), gives: 

           (35) 

)]).,(),(),([(

)1(
)0,()0,(),(

21

)(

txWRtxWNtxkSuS

t
xWxWtxW t
















  

            Applying (∂α/∂tα) on both sides of Eq.(35), we have: 
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           The correction functional of the variational iteration method (29), is given 

by:   
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           The solution is calculated by the following limit: 
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4        Application    
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           In this section, we will implement the proposed method local fractional 

Sumudu variational iteration method (LFSVIM) for solving some local fractional 

partial differential equations. 

Example  4.1  First, we consider the following local fractional partial differential  

equation: 
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subject to the initial conditions: 
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            From (37) and (39), the formula of successive approximations is given by: 
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            According to the successive formula (41) and the initial conditions (40), 

we obtain: 
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 and so on.  

             Then, the non-differentiable solution of (38), has the form:  
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Example  4.1  Second, we consider the following local fractional partial 

differential equation: 
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              From (37) and (43), the formula of successive approximations is given 
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            According to the successive formula (45) and the initial conditions (44), 

we obtain: 
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            Then, the first terms of local fractional sumudu variational iteration 

method has the form 
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and so on. 

            Then, the non-differentiable solution of Eq.(39), is given by:   
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Example 4.1   Finally, we consider the following Nonlinear local fractional 

partial differential equation: 
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              From (37) and (46), the formula of successive approximations is given by: 
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           Consequently, one can derive the approximations of the first three terms:  
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           According to the formulas (48)-(51), the first terms of local fractional 

Sumudu variational iteration method, has the form: 
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and so on.  

             Then, the non-differentiable solution of Eq.(46), is given by:                    
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4       Conclusion 

            In this article, we have seen that the coupling of variational iteration 

method (VIM) and the Sumudu transform method in the sense of local fractional 

derivative, proved very effective to solve linear and nonlinear local fractional 

partial differential equations. The local fractional Sumudu variational iteration 

method (LFSVIM) is suitable for such problems and is very user friendly. The 

advantage of this method is its ability to combine two powerful methods for 

obtaining exact or approximate solutions for linear and nonlinear local fractional 

partial differential equations. That's why we say that modified LFSVIM is an 

alternative analytical method for solving linear and nonlinear local fractional 

partial differential equations. 
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6      Open Problem 

           In this article, we have combine two methods, namely variational iteration 

method with Sumudu transform method in the sence of local fractional derivative, 

for solving local fractional partial differential equations. The results proved that 

this method is effective in solving this type of equations. 

The question is: does the combination of the variational iteration method and the 

natural transform method yield the same previous results? 
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