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Abstract

In this paper, we calculate a logarithmic integral In,m =∫ 1
0 xn−1 lnm(1− x)dx related to generalized harmonic numbers by
using binomial theorem.
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1 Introduction

In 2015, H. F. Sandham proposed the quadratic series [[2]]
∞∑
n=1

(
Hn

n

)2
named

Au-Yeung series where Hn is the n−th harmonic number defined by

Hn =
n∑

k=1

1

k
= 1 +

1

2
+ · · · +

1

n
.

In this paper, we will also use the donation

H(r)
n

=
n∑

k=1

1

kr
= 1 +

1

2r
+ · · · +

1

nr
.
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So that H(1)
n

= Hn.Recently, C. I. Vǎlean[[3]] give a new proof for classical
quadratic harmonic series

∞∑
n=1

H(2)
n

n3
=

7

2
ζ(5) − ζ(2)ζ(3)

by combining a series of technique based on special logarithmic integral where

ζ(z) is the Riemann zeta function defined by ζ(z) =
∞∑
n=1

1
nz . Later, R. Dutta

give an interesting proof for the cubic series

∞∑
n=1

(
Hn

n

)3

=
93

16
ζ(6) − 5

2
(ζ(3))2

in [4]. In their proofs of references [3],[4], the logarithmic integral plays a
key role. motivated by methods of proofs, we establish an explicit formula
about general logarithmic integralIn,m =

∫ 1

0
xn−1 lnm(1 − x)dx. Throughout

this paper, we always use this donation In,m.

2 main results

Theorem 2.1 Let m,n > 1 be two integers. Then the following equalities
hold:

(i) In,m = (−1)mm!
n−1∑
k=0

(
n− 1
k

)
(−1)k

(k+1)m+1 ;

(ii) In,m = (−1)m+1m!
n

n∑
k=1

(
n
k

)
(−1)k
km

;

(iii) In,m = (−1)m+1m!
n

∑
1m1+2m2+3m3+···

1
m1!m2!m3!···

(
H(1)

n

1

)m1
(

H(2)
n

2

)m2
(

H(3)
n

3

)m3

· · · .

Proof. (i) Using substitution 1 − x = t and binomial theorem, we have

In,m =
∫ 1

0
xn−1 lnm(1 − x)dx

=
∫ 1

0
(1 − t)n−1 lnm tdt

=
∫ 1

0

n−1∑
k=0

(
n− 1
k

)
(−t)k lnm tdt

=
n−1∑
k=0

(−1)k
(
n− 1
k

)∫ 1

0
tk lnm tdt.

(2.1)

We consider the integral Jk,m defined by

Jk,m =

∫ 1

0

tk lnm tdt (2.2)
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Using integration by parts, we obtain

Jk,m =
1

k + 1

∫ 1

0

lnm tdtk+1 = Jk,m−1. (2.3)

So, we easily obtain

Jk,m = (−1)m
m!

(k + 1)m+1
(2.4)

based on the recurrence relation (2.3). Combining (2.1) with (2.4), we complete
the proof of (i).
(ii) It is obvious that ∫ 1

0
1−(1−t)n

t
lnm−1 tdt

= 1
m

∫ 1

0
[1 − (1 − t)n] d lnm t

= − n
m

∫ 1

0
(1 − t)n−1 lnm tdt

by using integration by parts. So, we obtain the following identity

In,m =

∫ 1

0

(1 − t)n−1 lnm tdt = − n

m

∫ 1

0

1 − (1 − t)n

t
lnm−1 tdt. (2.5)

Simple computation and binomial theorem yield∫ 1

0
1−(1−t)n

t
lnm−1 tdt

=
∫ 1

0

1−
n∑

k=0

 n
k

(−t)k

t
lnm−1 tdt

=
n∑

k=0

(
n
k

)
(−1)k

∫ 1

0
tk−1 lnm−1 tdt

=
n∑

k=0

(
n
k

)
(−1)k+m (m−1)!

km
.

Therefore, we easily complete the proof of (ii).
(iii) Using the known formula(See [1])

n∑
k=1

(
n
k

)
(−1)k

km
= −

∑
1m1+2m2+3m3+···

1

m1!m2!m3! · · ·

(
H(1)

n

1

)m1
(
H(2)

n

2

)m2
(
H(3)

n

3

)m3

· · ·

we easily obtain (iii).

Corollary 2.2 Setting m = 1, 2, 3 in (iii) of Theorem 2.1, we respectively
obtain
(a) In,1 =

∫ 1

0
xn−1 ln(1 − x)dx = −Hn

n
;

(b) In,2 =
∫ 1

0
xn−1 ln2(1 − x)dx =

H(2)
n

n
+ (Hn)

2

n
;

(c) In,3 =
∫ 1

0
xn−1 ln3(1 − x)dx = −

(
H(3)

n
+3Hn(Hn)

2+2(Hn)
3

n

)
.

In this way, we get Lemma 2 in [3] and Lemma 4.1 in [4] again.
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3 Open Problem

Let m > 1, n < 0 be two integers.. Compute

In,m =

∫ 1

0

xn−1 lnm(1 − x)dx. (3.1)
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