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1 Introduction

Almost Distributive Lattice is an algebra of type (2, 2, 0) satisfying almost
all conditions of a distributive lattice except commutativity of ∧, ∨ and right
distributivity of ∨ over ∧. This structure is a both ring theoretic and lattice
theoretic generalization of a Boolean algebra (Boolean ring). Since ADL is
nether a distributive lattice nor a lattice, it is too difficult to deal with it.
Moreover the associativity of ∨ is still under investigation. In [12], Swamy and
Rao introduced ideals, prime ideals in ADLs analogously from distributive lat-
tices. They have studied ADLs in both algebraical and topological aspects.
In [3] [4] [8] [9] [10], the authors rigorously studied ideals, minimal prime ide-
als, maximal ideals, annihilator ideals, α-ideals in ADLs and explored several
results on them. In [5] [6] [7], the authors extended the concepts like quasi
complementation, relative complementation to the class of ADLs.
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In second section, we present some preliminary and useful results in ADLs.
In third section, we observe and explain some remarks on α- ideals with counter
examples and we obtain an epimorphism between the set of ideals and the set
of α-ideals in L. In fourth section, we discuss principal α-ideal in ADLs and
obtain several properties on them. We observe that the class of principal α-
ideals in ADLs forms a distributive lattice. In last section, we characterize
weak relatively complemented ADLs, when an ADL has dense elements and
every dense element is maximal. We deliberate the class of prime α-ideals in
an ADL. We obtain a good number of equivalent conditions for an ADL to
become weak relatively complemented in terms of prime α-ideals and principal
α-ideals.

2 Preliminaries

Let us first recall the notion of almost distributive lattices and certain necessary
properties which are required in the sequel.

Definition 2.1 [12] By an almost distributive lattice (abbreviated: ADL),
we mean an algebra (L,∧,∨, 0) of type (2, 2, 0), if it satisfies the following;

(i) 0 ∧ a = 0

(ii) a ∨ 0 = a

(iii) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(iv) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(v) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(vi) (a ∨ b) ∧ b = b

for all a, b, c ∈ L.

Throughout this paper L stands for an ADL (L,∧,∨, 0) unless otherwise
mentioned. For any a, b ∈ L, we say that a is less than or equal to b and write
a ≤ b if a ∧ b = a or, equivalently a ∨ b = b. It is easy to observe that ≤ is a
partial ordering on L.

Lemma 2.2 [12] For any a, b, c ∈ L, we have

(i) a ∧ 0 = 0 and 0 ∨ a = a

(ii) a ∧ a = a ∨ a = a

(iii) a ∨ (b ∨ a) = a ∨ b
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(iv) ∧ is associative

(v) a ∧ b ∧ c = b ∧ a ∧ c

(vi) a ∧ b = 0 ⇐⇒ b ∧ a = 0

(vii) a ∧ b ≤ b and a ≤ a ∨ b

(viii) (a ∨ b) ∧ c = (b ∨ a) ∧ c

(ix) a ∨ b = b ∨ a⇐⇒ a ∧ b = b ∧ a.

A non-empty subset I of L is said to be an ideal, if for any a, b ∈ I
and x ∈ L, a ∨ b, a ∧ x ∈ I. The set I(L) of ideals in L forms a bounded
distributive lattice, where I∩J is the infimum and I∨J = {i∨j | i ∈ I, j ∈ J}
is the supremum of I and J in I(L). For any non-empty subset S of L,

(S] = {(
n∨

i=1

si)∧ x | s1, s2, ....., sn ∈ S, x ∈ L and n is a positive integer} is the

smallest ideal containing S. In particular, for any a ∈ L, (a] = {a∧x | x ∈ L}
is the principal ideal generated by a. The set PI(L) of principal ideals in L
forms a sublattice of I(L), where (a] ∧ (b] = (a ∧ b] and (a] ∨ (b] = (a ∨ b]. A
proper ideal P is said to be prime, if for any a, b ∈ L, a∧b ∈ P , implies a ∈ P
or b ∈ P . A minimal prime ideal is a minimal among prime ideals. Similarly,
we can define filters, prime filters and minimal prime filters.

For any non-empty subset A of L, the set A∗ = {x ∈ L | a ∧ x = 0, for all
a ∈ A} is an annihilator ideal of L. In particular, for any a ∈ L, {a}∗ = (a)∗,
where (a) = (a] is the principal ideal generated by a.

Lemma 2.3 [10] For any a, b ∈ L, we have

(i) a ≤ b =⇒ (b)∗ ⊆ (a)∗

(ii) (a)∗∗∗ = (a)∗

(iii) (a ∨ b)∗ = (a)∗ ∩ (b)∗

(iv) (a ∧ b)∗∗ = (a)∗∗ ∩ (b)∗∗

(v) (a)∗ ⊆ (b)∗ ⇐⇒ (b)∗∗ ⊆ (a)∗∗

(vi) a ∈ (a)∗∗.

An element d in L is said to be dense, if (d)∗ = {0}. Let us denote D the
set of dense elements in L. Then D is a filter (provided D 6= ∅). Moreover, if
d ∈ D, then d ∨ x, x ∨ d ∈ D for all x ∈ L. An element m ∈ L is said to be
maximal, if m ∧ x = x for all x ∈ L. It is easy observe that every maximal
element is dense. If M is the set of maximal elements in L, then M is also a
filter (provided M 6= ∅).
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Definition 2.4 [9] For any ideal I of L, let us denote I+ = {x ∈ L | (x)∗ ⊇
(a)∗, for some a ∈ I}. In particular, for any a ∈ L, (a]+ = {x ∈ L | (x)∗ ⊇
(a)∗}, where (a] is the principal ideal generated by a.

Lemma 2.5 [9] For any ideals I, J of L, we have

(i) For any ideal I of L, I ⊆ I+

(ii) I++ = I+

(iii) I+ ∩ J+ = (I ∩ J)+

(iv) I ⊆ J implies I+ ⊆ J+.

3 α-ideals in ADLs

In this section, we present some counter examples for α-ideals in ADLs and
obtain that there can be an epimorphism from set of ideals in L onto α-ideals
in L.

Definition 3.1 [9] An ideal I of L is said to be an α-ideal, if I+ = I. It
observed that, for any ideal I of L, I+ is the smallest α-ideal containing I.

Theorem 3.2 [9] For any ideal I of L, the following are equivalent;

(i) I is an α-ideal

(ii) For x ∈ L, x ∈ I implies (x]+ ⊆ I

(iii) For x, y ∈ L, (x)∗ = (y)∗ and x ∈ I implies y ∈ I

(iv) For x, y ∈ L, (x]+ = (y]+ and x ∈ I implies y ∈ I

(v) I =
⋃
x∈I

(x]+.

Remark 3.1 We have

(i) L+ = D+ = M+ = L

(ii) (0]+ = {0}

(iii) For any d ∈ D, (d]+ = L.

Lemma 3.3 For any ideals I, J of L, we have (I+ ∨ J+)+ = (I ∨ J)+.
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Proof : We have I ∨ J ⊆ I+ ∨ J+. Therefore (I ∨ J)+ ⊆ (I+ ∨ J+)+. Since
I+ ∨ J+ ⊆ (I ∨ J)+, (I+ ∨ J+)+ ⊆ ((I ∨ J)+)+ = (I ∨ J)++ = (I ∨ J)+. Thus
(I+ ∨ J+)+ = (I ∨ J)+.

Example 3.4 [5] Let L = {0, b1, b2, b3, b4, b5, b6, b7, d,m} with the opera-
tions ∧ and ∨ defined as follows;

∧ 0 b1 b2 b3 b4 b5 b6 b7 d m
0 0 0 0 0 0 0 0 0 0 0
b1 0 b1 0 b1 b1 0 b1 0 b1 b1
b2 0 0 b2 b2 b2 0 0 b2 b2 b2
b3 0 b1 b2 b3 b3 0 b1 b2 b3 b3
b4 0 b1 b2 b3 b4 0 b1 b2 b3 b4
b5 0 0 0 0 0 b5 b5 b5 b5 b5
b6 0 b1 0 b1 b1 b5 b6 b5 b6 b6
b7 0 0 b2 b2 b2 b5 b5 b7 b7 b7
d 0 b1 b2 b3 b3 b5 b6 b7 d d
m 0 b1 b2 b3 b4 b5 b6 b7 d m

∨ 0 b1 b2 b3 b4 b5 b6 b7 d m
0 0 b1 b2 b3 b4 b5 b6 b7 d m
b1 b1 b1 b3 b3 b4 b6 b6 d d m
b2 b2 b3 b2 b3 b4 b7 d b7 d m
b3 b3 b3 b3 b3 b4 d d d d m
b4 b4 b4 b4 b4 b4 m m m m m
b5 b5 b6 b7 d m b5 b6 b7 d m
b6 b6 b6 d d m b6 b6 d d m
b7 b7 d b7 d m b7 d b7 d m
d d d d d m d d d d m
m m m m m m m m m m m

Then (L,∧,∨, 0) is an ADL.

From the above example, we have the following remarks.

Remark 3.2 Every ideal need not be an α-ideal.
For, see Example 3.4., (b3] is an ideal but not an α-ideal
(because (b3] = {0, b1, b2, b3} 6= {0, b1, b2, b3, b4} = (b3]

+).

Remark 3.3 Every α-ideal need not be prime.
For, see Example 3.4., (b1] = {0, b1} is an α-ideal but not prime
(because b4 ∧ b6 = b1 ∈ (b1] but b4, b6 /∈ (b1]).
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Remark 3.4 Every prime ideal need not be an α-ideal.
For, see Example 3.4., (d] is a prime ideal but not an α-ideal
(because L = (d]+ 6= (d]).

Remark 3.5 Every maximal ideal need not be an α-ideal.
For, see Example 3.4., (d] is a maximal ideal but not an α-ideal
(because L = (d]+ 6= (d]).

From [12], It is a well known fact that the set I(L) of ideals in L forms
a distributive lattice. In this context, from [9], the set NI(L) of α-ideals in
L forms a distributive lattice with the operations I+ ∩ J+ = (I ∩ J)+ and
I t J = (I ∨ J)+ for any I, J ∈ NI(L). which is not a sublattice of I(L).

Theorem 3.5 There is an epimorphism from I(L) onto NI(L).

Proof : Let I, J ∈ NI(L). Define a map f : I(L) −→ NI(L) by f(I) = I+.
Then f(I ∩ J) = (I ∩ J)+ = I+ ∩ J+ = f(I)∩ f(J) and f(I ∨ J) = (I ∨ J)+ =
(I+ ∨ J+)+ = I+ t J+ = f(I) t f(J). Therefore f is a homomorphism. Since
NI(L) ⊆ I(L), f is an onto homomorphism.

Remark 3.6 In the above theorem, the homomorphism f need not be one-
one.
For, see Example 3.4., I = {0, b1, b2, b3} and J = {0, b1, b2, b3, b4} are two
ideals in I(L). Then f(I) = I+ = {0, b1, b2, b3, b4} = J+ = f(J) but I 6= J .
Therefore f is not an one-one homomorphism.

4 Principal α-ideals in ADLs

In this section, we define principal α-ideal in ADLs and obtain some algebraic
and order properties on them. Mainly we prove that the set of principal α-
ideals in L forms a distributive lattice.

Definition 4.1 An ideal I of L is said to be a principal α-ideal, if I = (x]+,
for some x ∈ L. It can be observe that every principal α-ideal is an α-ideal.

Lemma 4.2 For any a, b ∈ L, we have

(i) a ≤ b =⇒ (a]+ ⊆ (b]+

(ii) a ∈ (b]+ =⇒ (a]+ ⊆ (b]+

(iii) (a]+ = {0} ⇐⇒ a = 0

(iv) (a]+ = L⇐⇒ a ∈ D
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(v) If a is maximal, then (a]+ = L

(vi) (a]+ ∩ (b]+ = (a ∧ b]+.

Proof : (i) Suppose that a ≤ b. Then (a] ⊆ (b]. Therefore (a]+ ⊆ (b]+.
(ii) It is clear from (i).
(iii) Suppose that a ∈ L such that (a]+ = {0}. Then a ∈ (a]+ = {0}.
Therefore a = 0. The converse is clear from Remark 3.1.
(iv) Suppose that (a]+ = L. Choose a dense element d ∈ L = (a]+. Then
{0} = (d)∗ ⊇ (a)∗. Therefore (a)∗ = {0} and hence a is dense. The converse
is obvious from Remark 3.1.
(v) Since every maximal element is dense and from (iv) we have (a]+ = L.
(vi) (a]+ ∩ (b]+ = ((a] ∩ (b])+ = (a ∧ b]+.

Lemma 4.3 For any a, b ∈ L, we have

(i) a ∧ b = 0⇐⇒ (a]+ ∩ (b]+ = {0}

(ii) a ∨ b ∈ D ⇐⇒ (a]+ t (b]+ = L

(iii) (a)∗ ∩ (a]+ = {0}

(iv) (a)∗ = (b)∗ ⇐⇒ (a]+ = (b]+

(v) (a]+ = (b]+ =⇒ (a ∧ c]+ = (b ∧ c]+, for all c ∈ L

(vi) (a]+ = (b]+ =⇒ (a ∨ c]+ = (b ∨ c]+, for all c ∈ L.

Proof : (i) and (ii) are clear from Lemma 4.2.
(iii) Let x ∈ (a)∗ ∩ (a]+. Then x ∈ (a)∗ ⊆ (x)∗. Therefore x = 0. Hence
(a)∗ ∩ (a]+ = {0}.
(iv) Suppose that (a)∗ = (b)∗. Then a ∈ (b]+ and b ∈ (a]+. Therefore
(a]+ ⊆ (b]+ and (b]+ ⊆ (a]+ and hence (a]+ = (b]+. On the other hand,
suppose (a]+ = (b]+, then (a)∗ ⊇ (b)∗ and (b)∗ ⊇ (a)∗. Therefore (a)∗ = (b)∗.
(v) Suppose that (a]+ = (b]+. For t ∈ L,

t ∈ (a ∧ c)∗ ⇐⇒ t ∧ a ∧ c = 0
⇐⇒ t ∧ c ∈ (a)∗ = (b)∗ (from (iv))
⇐⇒ t ∧ b ∧ c = 0
⇐⇒ t ∈ (b ∧ c)∗.

Therefore (a ∧ c]+ = (b ∧ c]+. Similarly, we can prove (vi).
Let us denote the set of principal α-ideals in L as N+I(L). Now, we have

Theorem 4.4 (N+I(L),∩,t) is a sublattice of NI(L) with the least ele-
ment (0]+. Moreover L has a dense element if and only if N+I(L) has the
greatest element.
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Proof : It is easy to very that (N+I(L),∩,t) is a sublattice of the distribu-
tive lattice (NI(L),∩,t) in which (0]+ is the least element. Suppose L has a
dense element, say d, then (d]+ = L. Therefore (d]+ is the greatest element.
Conversely, suppose (a]+ is the greatest element in N+I(L) for some a ∈ L.
Let x ∈ (a)∗. Then a ∧ x = 0. Therefore (x ∧ a]+ = (x]+ ∩ (a]+ = (x]+ = {0}.
So that x = 0. Hence a is a dense element in L.

Define a relation ϕ on L by ϕ = {(x, y) ∈ L×L | (x]+ = (y]+}. By Lemma
4.3., the relation ϕ is a congruence relation on L. Now, we have the following;

Theorem 4.5 The quotient L/ϕ forms a distributive lattice with the oper-
ations x/ϕ ∧ y/ϕ = (x ∧ y)/ϕ and x/ϕ ∨ y/ϕ = (x ∨ y)/ϕ. Moreover the least
element is 0/ϕ = {0} and the greatest element is d/ϕ = D.

5 Characterizations of weak relatively com-

plemented ADLs

In this section, we study the class of prime α-ideals in an ADL. We obtain
necessary and sufficient conditions for an ADL to become weak relatively
complemented ADL and the class of principal α-ideals to become a relatively
complemented.

Lemma 5.1 For any non-empty subset S of L, (S]+ ∩ S∗ = {0}.

Proof : Let x ∈ (S]+ ∩ S∗. Then x ∧ s = 0 for all s ∈ S and there exists

(
n∨

i=1

si)∧ t =
n∨

i=1

(si∧ t) = y ∈ (S] such that (x)∗ ⊇ (y)∗ where t ∈ L and si ∈ S

for i = 1, 2, ....., ..n. Therefore x ∧ y = x ∧ {
n∨

i=1

(si ∧ t)} =
n∨

i=1

(x ∧ si ∧ t) = 0.

Hence x = 0. Thus (S]+ ∩ S∗ = {0}.
In [8], for any prime ideal P of L, they introduced an ideal O(P ) = {x ∈

L | x ∧ y = 0 for some y /∈ P}. Moreover they proved that P is minimal if
and only if O(P ) = P. In [12], the authors proved that an ADL is relatively
complemented if and only if every prime ideal is maximal if and only if every
prime ideal is minimal.
In [5], Ramesh and Rao introduced weak relatively complemented ADLs. That
is, by a weak relatively complemented ADL we mean an ADL in which for any
a, b ∈ L, there exists an element x ∈ L such that a∧x = 0 and (a∨x)∗ = a∨b)∗.
In this context, we have the following.

Theorem 5.2 The following are equivalent;

(i) L is weak relatively complemented



Characterizations of weak relatively complemented ADLs 19

(ii) Every prime α-ideal of L is maximal

(iii) Every prime α-ideal of L is minimal

(iv) O(P ) = P for any prime α-ideal P of L

Proof : (i) =⇒ (ii) Let P be a prime α-ideal of L. Suppose that Q is a
prime α-ideal of L such that P ⊆ Q. Choose a ∈ Q \ P and b ∈ L. By our
assumption there exists x ∈ L such that a ∧ x = 0 and (a ∨ x)∗ = (a ∨ b)∗.
Then x ∈ P ⊆ Q. Therefore (a ∨ x)∗ = (a ∨ b)∗ and a ∨ x ∈ Q. Since Q is an
α-ideal, a ∨ b ∈ Q. So that b ∈ Q and hence Q = L. Thus P is maximal.
(ii) =⇒ (iii) Let P be a prime α-ideal of L. Suppose that Q is a prime α-ideal
of L such that Q ⊆ P . By our assumption P = Q. Therefore P is minimal.
(iii) =⇒ (iv) Assume that every prime α-ideal is minimal. Let P be a prime
α-ideal of L. Then P is minimal prime ideal. Hence O(P ) = P for any prime
α-ideal P of L.
(iv) =⇒ (i) Assume that O(P ) = P for any prime α-ideal P of L.
For a, b ∈ L.
Case I. If a = b, take x = 0, then a ∧ x = 0 and (a ∨ x)∗ = (a ∨ b)∗.
Case II. If a = 0(b = 0), take x = b(x = a), then a∧x = 0 and (a∨x)∗ = (a∨b)∗.
Case III. If a 6= 0, b 6= 0 and a ∧ b = 0, take x = b, then a ∧ x = 0 and
(a ∨ x)∗ = (a ∨ b)∗.
Case IV. If a 6= 0, b 6= 0 and a ∧ b 6= 0, suppose that b /∈ (a] ∨ (a)∗, then
there exists a prime ideal P of L such that b /∈ P and (a]∨ (a)∗ ⊆ P . For this
(a]∨ (a)∗ ⊆ P , there exists a minimal prime ideal (prime α- ideal) Q such that
(a]∨ (a)∗ ⊆ Q ⊆ P . By our assumption a ∈ Q = O(Q). Therefore there exists
x /∈ Q such that a ∧ x = 0. Now, a ∧ x ∧ b = 0. So that x ∧ b ∈ (a)∗ ⊆ Q.
Which is a contradiction. Hence b ∈ (a] ∨ (a)∗. Thus b = (a ∧ s) ∨ t for some
s ∈ L, t ∈ (a)∗. Now, for y ∈ L,

y ∈ (a ∨ t)∗ ⇒ y ∧ a = 0 and y ∧ t = 0
⇒ y ∧ a ∧ s = 0 and y ∧ t = 0
⇒ y ∧ {(a ∧ s) ∨ t} = 0
⇒ y ∧ b = 0 (since b = (a ∧ s) ∨ t)
⇒ y ∧ (a ∨ b) = 0
⇒ y ∈ (a ∨ b)∗.

y ∈ (a ∨ b)∗ ⇒ y ∧ a = 0 and y ∧ b = 0
⇒ y ∧ a = 0 and y ∧ {(a ∧ s) ∨ t} = 0
⇒ y ∧ a = 0, y ∧ a ∧ s = 0 and y ∧ t = 0
⇒ y ∧ (a ∨ t) = 0
⇒ y ∈ (a ∨ t)∗.

Therefore L is weak relatively complemented.
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By Lemma 4.3(iv), for any elements a, b ∈ L, (a)∗ = (b)∗ ⇐⇒ (a]+ = (b]+.
In this regard, we have the following;

Lemma 5.3 L is a weak relatively complemented ADL if and only if for
any a, b ∈ L, there exists x ∈ L such that a ∧ x = 0 and (a ∨ x]+ = (a ∨ b]+.

Theorem 5.4 L is a weak relatively complemented ADL if and only if
N+I(L) is a relatively complemented ADL.

Proof : Suppose that L is a weak relatively complemented ADL. Let I, J ∈
N+I(L). Then there exist a, b ∈ L such that I = (a]+ and J = (b]+. For
this a, b ∈ L, there exists x ∈ L such that a ∧ x = 0 and (a ∨ x)∗ = (a ∨ b)∗.
By Lemma 4.3., (a ∨ x]+ = (a ∨ b]+. Therefore I ∩ (x]+ = (a]+ ∩ (x]+ =
(a ∧ x]+ = (0]+. Also I t (x]+ = (I ∨ (x]+)+ = ((a]+ ∨ (x]+)+ = (a ∨ x]+

and I t J = (I ∨ J)+ = ((a]+ ∨ (b]+)+ = (a ∨ b]+. Hence I ∩ K = (0]+ and
(ItK) = (ItJ), where K = (x]+. Thus N+I(L) is a relatively complemented
ADL. On the other hand, let a, b ∈ L, then there exists (x]+ ∈ N+I(L) such
that (a]+ ∩ (x]+ = {0} and (a]+ ∨ (x]+ = (a]+ ∨ (b]+. Therefore a ∧ x = 0 and
(a ∨ x]+ = (a ∨ b]+ and hence (a ∨ x)∗ = (a ∨ b)∗. Thus L is weak relatively
complemented.

Theorem 5.5 Every α-ideal of a weak relatively complemented ADL is
weak relatively complemented.

Proof : Let L be a weak relatively complemented ADL and I is an α-
ideal of L. Let a, b ∈ I. Then there exists x ∈ L such that a ∧ x = 0 and
(a ∨ x)∗ = (a ∨ b)∗. By Lemma 4.3., (a ∨ x]+ = (a ∨ b]+. Therefore a ∨ x ∈ I
(since a ∨ b ∈ I and I is an α-ideal). Hence x ∈ I. Thus I is weak relatively
complemented.

Corollary 5.6 Every principal α-ideal of a weak relatively complemented
ADL is weak relatively complemented.

Theorem 5.7 In an ADL L, the following are equivalent;

(i) L is weak relatively complemented ADL

(ii) For any non-zero element a in L, the interval [0, a] is weak relatively
complemented ADL.

Proof : Suppose that L is a weak relatively complemented ADL. Let a ∈ L
and a 6= 0. Let x, y ∈ [0, a]. Then there exists t ∈ L such that x ∧ t = 0 and
(x∨ t)∗ = (x∨ y)∗. Therefore x∧ t∧ a = 0 and ((x∨ t)∧ a]+ = ((x∨ y)∧ a]+.
So that ((x∧a)∨(t∧a)]+ = ((x∧a)∨(y∧a)]+. We get that x∧(t∧a) = 0 and
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(x ∨ (t ∧ a)]+ = (x ∨ y]+, where t ∧ a ∈ [0, a]. Hence [0, a] is a weak relatively
complemented ADL. Conversely suppose that for any non-zero element a in L,
the interval [0, a] is weak relatively complemented ADL. Let x, y ∈ L. Then
x, y ∈ [0, x ∨ y]. Therefore there exists t ∈ [0, x ∨ y] such that x ∧ t = 0 and
(x ∨ t)∗ = (x ∨ y)∗. Hence L is a weak relatively complemented ADL.

Theorem 5.8 PI(L) is a weak relatively complemented if and only if N+I(L)
is a relatively complemented.

Proof : Suppose that PI(L) is a weak relatively complemented ADL. Let
I, J ∈ N+I(L). Then there exists a, b ∈ L such that I = (a]+ and J = (b]+.
For this a, b ∈ L, there exists (x] ∈ PI(L) such that (a] ∧ (x] = (0] and
((a] ∨ (x])∗ = ((a] ∨ (b])∗ for some x ∈ L. Therefore (a ∧ x]+ = (0]+ and
(a ∨ x]+ = (a ∨ b]+. So that (a]+ ∩ (x]+ = (0]+ and (a]+ t (x]+ = (a]+ t (b]+.
Hence I ∩K = (0] and (I tK) = (I t J), where K = (x]+. Thus N+I(L) is
a relatively complemented ADL. On the other hand, let (a], (b] ∈ PI(L) for
some a, b ∈ L, then there exists (x]+ ∈ N+I(L) such that (a]+ ∩ (x]+ = (0]+

and (a]+ ∨ (x]+ = (a]+ ∨ (b]+. Therefore a∧ x = 0 and (a∨ x]+ = (a∨ b]+. So
that (a∨x)∗ = (a∨ b)∗ (by Lemma 4.3). Hence (a]∩ (x] = 0 and ((a]∨ (x])∗ =
((a] ∨ (b])∗. Thus PI(L) is a weak relatively complemented.

From [5], An ideal I of L is said to be a dense complemented, if there exists
an ideal J such that I ∧ J = {0} and I ∨ J is an ideal generated by a dense
element in L. Now, we have the following.

Theorem 5.9 The following are equivalent;

(i) L is weak relatively complemented

(ii) (N+I(L),∩,t, {0}, L) is a Boolean algebra

(iii) (L/ϕ,∧,∨, 0/ϕ, d/ϕ) is a Boolean algebra

(iv) Every principal ideal is dense complemented.

Proof : (i) =⇒ (ii): Assume (i). Let x ∈ L and d is a dense in L. Then
there exists y ∈ L such that x∧y = 0 and (x∨y)∗ = (x∨d)∗ = {0}. Therefore
(x ∧ y]+ = (x]+ ∩ (y]+ = {0} and (x ∨ y]+ = (x]+ t (y]+ = L. Thus N+I(L)
is a Boolean algebra.
(ii) =⇒ (iii): Assume (ii). Let x ∈ L. Then there exists (y]+ ∈ N+I(L) such
that (x]+ ∩ (y]+ = (x ∧ y]+ = {0} and (x]+ t (y]+ = (x ∨ y]+ = L. Therefore
x∧ y = 0 and x∨ y is dense. So that x/ϕ∧ y/ϕ = (x∧ y)/ϕ = {0} = 0/ϕ and
x/ϕ ∨ y/ϕ = (x ∨ y)/ϕ = D = d/ϕ. Thus L/ϕ is a Boolean algebra.
(iii) =⇒ (iv): Assume (iii). Let x ∈ L. Then there exists y ∈ L such that
x/ϕ ∧ y/ϕ = (x ∧ y)/ϕ = {0} and x/ϕ ∨ y/ϕ = (x ∨ y)/ϕ = D. Therefore
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x∧y = 0 and x∨y is dense. So that (x∧y] = (x]∧(y] = {0} and (x∨y] = (x]∨(y]
is an ideal generated by a dense element x ∨ y. Thus every principal ideal is
dense complemented.
(iv) =⇒ (i): Assume (iv). Let a, b ∈ L. Then there exist c, d ∈ L such that
(a] ∧ (c] = {0} = (b] ∧ (d] and (a] ∨ (c], (b] ∨ (d] are principal ideals generated
by dense elements. Thus a ∧ c = 0 = b ∧ d and a ∨ c and b ∨ d are dense
elements. Take x = c ∧ b. Then a ∧ x = a ∧ c ∧ b = 0 (since a ∧ c = 0) and
(a∨x)∧ (a∨b) = a∨ (x∧b) = a∨ (c∧b∧b) = a∨x. So that (a∨b)∗ ⊆ (a∨x)∗.
Now, for t ∈ L,

t ∈ (a ∨ x)∗ ⇒ t ∧ (a ∨ x) = 0
⇒ t ∧ a = 0 and t ∧ c ∧ b = 0
⇒ t ∧ b ∧ (a ∨ c) = 0
⇒ t ∧ b = 0 (since a ∨ c is dense)
⇒ t ∧ (a ∨ b) = 0
⇒ t ∈ (a ∨ b)∗.

Therefore (a ∨ x)∗ ⊆ (a ∨ b)∗ and hence (a ∨ x)∗ = (a ∨ b)∗. Thus L is weak
relatively complemented.

Lemma 5.10 If every dense element is maximal in L, then the following
are equivalent;

(i) L is relatively complemented

(ii) (N+I(L),∩,t, {0}, L) is a Boolean algebra

(iii) (L/ϕ,∧,∨, 0/ϕ, d/ϕ) is a Boolean algebra

(iv) Every principal ideal is complemented.

6 Open Problem

1. If one can study the weak relative complementation on ideals (sub ADLs)
in a weak relatively complemented ADLs, then it may leads to get fruitful
results in the ideal theory of almost distributive lattices.
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