
Int. J. Open Problems Comp. Math., Vol. 3, No.4, December 2010
ISSN 1998-6262; Copyright ICSRS Publication, 2010
www.i-csrs.org

2nd Meeting on Optimisation
Modelization and Approximation

November 19-20-21, 2009, Casablanca, Morocco

Edited by M.N. Benbourhim
L. Ghannam
A. Hassouni
A. Ismail



Int. J. Open Problems Comp. Math., Vol. 3, No.4, December 2010
ISSN 1998-6262; Copyright ICSRS Publication, 2010
www.i-csrs.org

The Second international Meeting on Optimization Modelization and Approximation

(MOMA’09), November 19-21, 2009 - Casablanca, Morocco.

Editors
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1 Introduction

This volume constitutes the proceedings of the second international Meeting on
Optimization Modelization and Approximation (MOMA’09). The conference
held at the Hassania School Public works (Ecole Hassania des Travaux Publics)
in Casablanca, Morocco during November 19-20-21, 2009.

The scope of this meeting covers a range of major topics in Numerical
Analysis, Optimization, also in Approximation and Engineering and related
disciplines, ranging from theoretical developments to industrial applications
and modeling of problems. It is intended that MOMA’2009 will provide a fo-
rum for moroccan and their foreigner colleagues, to discuss and exchange ideas,
methods and results in contemporary topics in mathematics and engineering.
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Abstract

The awareness on the supply chain management has never
been more essential, especially in such conjuncture as the eco-
nomic crisis. The companies have started hunting waste, and
optimizing their costs throughout all the process. Different
approaches are available, but the centralized one is more in-
teresting.
The cost of coordination of operations is generally difficult to
quantify. Companies should test different options in terms of
transport costs and gains and classify according on the com-
plexity of coordination required. A manager can then make
the decision appropriate: it must then consider the close rela-
tionship between the storage and transportation. Indeed, it is
to find a satisfactory compromise between allowing stocks to
savings in transport or stocks generating low losses in terms of
transport relative to the quantities shipped. Under this thesis,
we focus the problem of optimization of the combined costs
stock and transport in a multi-product multi-level (multiple
levels of storage). The studies on the subject are often limited
to a level (a producer / supplier / retailer) and a deterministic
demand. For this research, we assume that there are several
items on each level of the chain and the demand for each of
them is probabilistic.
At first step, we are looking for optimize the cost stock in a
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multi-product one-level supply chain under a probabilistic de-
mand. For that, we choose to model the problem under the
Stochastic Model Predictive Control :

xt+1 = Axt +But + dt

with:
xt: the state function at time t
ut: control at time t
dt: the disturbance at time t
The aim is to minimize the cost function under constraints on
a Finite horizon, assuming that the control is quadratic.

1 Introduction

With over 2000 industrial installations, model predictive control (MPC) is cur-
rently the most widely implemented advanced process control technology for
process plants (Qin and Badgwell, 1996). As is frequently the case, the idea of
MPC appears to have been proposed long before MPC came to the forefront
(Propoi, 1963; Rafal and Stevens, 1968; Nour-Eldin, 1971). Not unlike many
technical inventions, MPC was first implemented in industry under various
guises and names (see figure 1) long before a thorough understanding of its
theoretical properties was available. Academic interest in MPC started grow-
ing in the mid eighties, particularly after two workshops organized by Shell
(Prett and Morari, 1987; Prett et al., 1990). The understanding of MPC prop-
erties generated by pivotal academic investigations (Morari and Garcia, 1982;
Rawlings and Muske, 1993) has now built a strong conceptual and practical
framework for both practitioners and theoreticians. [3]

Figure 1: Industrial Technology
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Model Predictive Control (MPC) is recognized as the methodology of choice
for optimizing closed loop performance in the presence of constraints and/or
nonlinearity of multi-variable dynamical systems, and it is unique in providing
computationally tractable optimal control laws by solving constrained receding
horizon control problems online. Which why, MPC is widely used in (some)
industries, typically for systems with slow dynamics (chemical process plant,
supply chain, revenue management)

Figure 2: Industrial applications of model predictive control

The MPC is usually used in supply chain management, under constraints
like buffer limits and shipping capacities limits, based on approximations which
make the future values of disturbance exactly as predicted, thus no recourse
is available in the future. However, most real life applications are not only
subject to constraints but also involve multiplicative and/or additive stochastic
uncertainty. Earlier work tended to ignore information on the distribution of
model uncertainty, and as a result addressed control problems suboptimally
using robust MPC strategies that employ only information on bounds on the
uncertainty. Increasing demands for optimality in the presence of uncertainty
motivate the development and application of MPC that takes explicit account
of both omnipresent constraints and ubiquitous stochastic uncertainty [6] :
which is the main idea of the Stochastic Model Predictive Control.

In this paper, we study the application of the Stochastic Model Predic-
tive Control on a multi-product one-level Supply Chain to determine explicit
control policies. Our assumptions are that the system works in discrete time
under linear quadratic stochastic control.
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2 Optimal policy by Stochastic Model Predic-

tive Control

In general, we consider in a Stochastic Model Predictive Control, the linear
dynamical system, over finite time horizon as:

xt+1 = Axt +But + dt t = 0, . . . , T − 1 (1)

with :
xt ∈ Rn is the state of the system at time t,
ut ∈ Rm is the input at time t (the control)
dt is the process noise (or exogenous input) at time t

In our case Supply chain management with stochastic demand- we con-
sider:

Figure 3: Example of a one-level Supply Chain

n nodes (warehouses/buffers); in the example at figure 3 n = 5
m unidirectional links between nodes, external world; in the example m = 9
xi(t) is amount of commodity at node i, in period t
uj(t) is amount of commodity transported along link j
di(t) is amount of commodity demanded at node i, in period t

We express the incoming and outgoing node incidence matrices on this
form:

B
in(out)
ij =

{
1 ; link j enters (exits) node i
0 ; otherwise

(2)

Thus, the dynamics for this system could be expressed like:

x(t+ 1) = x(t) +Binu(t)−Boutu(t) + d(t) t = 0, . . . , T − 1 (3)
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Let be Xt the state history up to time t, Xt = (x0, ..., xt)
Then the expression of the causal state-feedback control:

ut = Φt(Xt)

= ψt(x0, d0, . . . , dt−1) t = 0, . . . , T − 1

The function Φt : R(t+1)n → Rm is the control policy at time t. It gives
the policy to use at the time t to reach to the next state of the system: xt+1

Under these considerations , let now express the objective function:

J = E
T−1∑
t=0

lt(xt, ut) + lT (xT ) (4)

With:
lt : RnxRm → R , t = 0, . . . , T − 1: is the convex stage cost functions at

time t
lT : Rn → R: convex terminal cost function. It’s normal that this function
depend only on the final state function, because at time T it will be no control.

For the constraints: ut ∈ Ut, t = 0, . . . , T −1, we consider the convex input
constraint sets U0, . . . ,UT−1

Thus the stochastic control problem is to choose control policies
Φ0, . . . , ΦT−1 to minimize J, subject to the constraints

In our case, we explicit the stage cost functions like:

lt(xt, ut) = S(u(t)) +W (x(t)) (5)

S(u(t)) : Shipping/transportation cost (can also include sales revenue or
manufacturing cost); wick depends of u(t) the amount of commodity trans-
ported
W (x(t)) : Warehousing/storage cost ; depending on the x(t) amount of com-
modity at warehouses

Regarding the constraints:
The buffer limits: 0 ≤ xi(t) ≤ xmax (could allow xi(t) < 0, to represent back-
order)
The link capacities:0 ≤ ui(t) ≤ umax
And Aoutu(t) ≤ x(t) (can not ship out what is not on hand)

We consider the problem as linear quadratic stochastic control: And we
assume: Ut = Rm

x0, d0,. . . ,dT−1 are independent, with (to simplify the expressions)

Ex0 = 0, Edt = 0, Ex0x
T
0 = Σ, Edtd

T
t = Dt
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Then, we express the cost functions in their convex quadratic form :

lt(xt, ut) = xTt Qtxt + uTt Rtut, withQt ≥ 0, Rt > 0 (6)

lT (xT ) = xTTQTxT , withQT ≥ 0 (7)

Let Vt(xt) be the optimal value of our objective (quadratic):

Vt(xt) = xTt Ptxt + qt; t = 0, . . . , T (8)

Using Bellman recursion:PT = QT , qT = 0; for t = T − 1, . . . , 0 , we get

Vt(z) = inf
v
zTQtz + vTRtv + E((Az +Bv + dt)

TPt+1(Az +Bv + dt) + qt+1)

(9)
And it works out to [7]

Pt = ATPt+1A− ATPt+1B(BTPt+1B +Rt)
−1BTPt+1A+Qt (10)

and
qt = qt+1 + Tr(DtPt+1) (11)

which define all the variables to express Vt(xt)
And for the optimal policy, we found it as a linear state feedback:

Φ∗t = (xt) = Ktxt (12)

with :
Kt = −(BTPt+1B +Rt)

−1BTPt+1A (13)

Finally, the expression of the optimal cost is :

J∗ = EV0(x0) (14)

= Tr(ΣP0) + q0 (15)

= Tr(ΣP0) + ΣT−1
t=0 Tr(DtPt+1) (16)

3 Conclusion

We proposed the Stochastic Model Predictive Control to optimize the costs of
storage and transportation in a multi-product, one-level supply chain under
uncertainty of the demand. This model is very sufficient in cases of control with
constraints and multi-variable dynamical systems, which could be interesting
on dealing with multi-level supply chain, as the constraints will be more, to
take into account the relation between every product on each level. We saw
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how the aim of the stochastic control problem is to choose the control policies
to minimize the objective function J, subject to the constraints of shippement
and storage limits. We also consider, the convex quadratic form to express the
cost functions.
The non-linearity of the problem will be expressed when the levels of the supply
chain will become multiples, which need more work on it.
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Abstract

Following C.B. Morrey we say that a function
f : Rmn −→ R ∪ {+∞} is quasi-convex if∫

Ω
f (A+Dϕ(x)) dx ≥

∫
Ω
f (A) dx = (meas(Ω))f (A)

for any bounded open subset Ω of Rn, for any A ∈ Rmn and for
any ϕ ∈ W 1,k

0 (Ω,Rm). In this paper, we study some properties
of the convex cone of the quasi-convex functions. Especially
we give definition and properties of reasonable tensorial prod-
ucts of two quasi-convex functions.

Keywords: Quasi-convexity, Young measure, Tensorial products.

1 Quasi-convexity, convexity, multiconvexity

and Legendre-Hadamard (L.-H.) condition.

1.1 Quasi-convexity.

Notations : Let n, p ∈ N∗ .

If µ ∈ Rnp, we set: µ =

 µ1
1 . . . µ1

n
...

...
µp1 . . . µpn


Let Ω be a bounded open subset of Rn. For ϕ = (ϕ1, ..., ϕp) ∈ (D(Ω))p, we
set:
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∀t = (t1, ..., tn) ∈ Ω ⊂ Rn, Dϕ(t) =

 D1ϕ
1(t) . . . Dnϕ

1(t)
...

...
D1ϕ

p(t) . . . Dnϕ
p(t)

 ,

where

∀j ∈ (1, ...., n),∀k ∈ (1, ...., p) , Djϕ
k(t) =

∂ϕk(t1, ...tn)

∂tj
.

Definition 1.1 Let n, p ∈ N∗ and f ∈ C0(Rnp). We will say that f is a
quasi-convex function, if :
for any (regular) bounded open subset Ω of Rn, for any ϕ ∈ (D(Ω))p and for
any µ ∈ Rnp , ∫

Ω

f(µ+Dϕ(t))dt−
∫

Ω

f(µ)dt ≥ 0. (1)

It can be easily proved that (1) is equivalent to

∀ε ∈ R∗+,
∫

Ω

f(µ+ εDϕ(t))dt−
∫

Ω

f(µ)dt ≥ 0. (2)

Now, let us suppose that f ∈ C3(Rnp) and that Ω is a “regular” open set.
Then:
∀ε ∈ R∗+, ∀ϕ ∈ (D(Ω))p, ∀µ ∈ Rnp and ∀t ∈ Ω, we have

f(µ+ εDϕ(t))− f(µ) = ε

[∑
j,l

∂f(µ)

∂µlj
Djϕ

l(t)

]

+
ε2

2!

[ ∑
j,k,l,m

∂2f(µ)

∂µlj ∂µ
m
k

Djϕ
l(t)Dkϕ

m(t)

]
+ ε3%3(ϕ, µ, t)

As ϕl ∈ D(Ω), we get: ∫
Ω

∑
j,l

∂f(µ)

∂µlj
Djϕ

l(t) dt = 0.

Let us denote by ϕ̃l the extension of ϕl from Ω to the whole space Rn obtained

by setting ϕ̃l(t) = 0 if t /∈ Ω. Then ϕ̃l ∈ S(Rn).

For any θ ∈ S(Rn), we denote by θ̂ its Fourier transform. We can prove easily
that: ∫

Ω

[ ∑
j,k,l,m

∂2f(µ)

∂µlj ∂µ
m
k

Djϕ
l(t)Dkϕ

m(t)

]
dt =

∫
Rn

[ ∑
j,k,l,m

∂2f(µ)

∂µlj ∂µ
m
k

(2iπζj)(2iπζk)
̂̃
ϕl(ζ)

̂̃
ϕm(ζ)

]
dζ.
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Let us suppose that f is quasi-convex. Then ∀ϕ ∈ (D(Ω))p , ∀µ ∈ Rnp ,
∀ε ∈ R∗+, ∫

Ω

ε−2(f(µ+ εDϕ(t))− f(µ))dt ≥ 0

So, we deduce that : ∀ϕ ∈ (D(Ω))p,∀µ ∈ Rnp,∀ε ∈ R∗+,∫
Ω

[ ∑
j,k,l,m

∂2f(µ)

∂µlj ∂µ
m
k

Djϕ
l(t)Dkϕ

m(t)

]
dt+ ε

∫
Ω

%3(ϕ, µ, t) dt ≥ 0

Let :

F (ϕ, µ) =

∫
Ω

[ ∑
j,k,l,m

∂2f(µ)

∂µlj ∂µ
m
k

Djϕ
l(t)Dkϕ

m(t)

]
Let us suppose that there exist ϕ ∈ (D(Ω))p and µ ∈ Rnp such that: F (ϕ, µ) < 0.
Then there exists ε ∈ R∗+ such that F (ϕ, µ) + ε

∫
Ω
%3(ϕ, µ,t) dt < 0 which is

impossible.
Therefore, we deduce that ∀ϕ ∈ (D(Ω))p and ∀µ ∈ Rnp , F (ϕ, µ) > 0 and
then :

∀ϕ ∈ (D(Ω))p and ∀µ ∈ Rnp,

∫
Rn

[ ∑
j,k,l,m

∂2f(µ)

∂µlj ∂µ
m
k

(2iπζj)(2iπζk)
̂̃
ϕl(ζ)

̂̃
ϕm(ζ)

]
dζ > 0.

Consequently

∀ψk ∈ S(Rn) , ∀µ ∈ Rnp ,

∫
Rn

[ ∑
j,k,l,m

∂2f(µ)

∂µlj ∂µ
m
k

ζj ζk ψ
l(ς) ψm(ς)

]
dζ > 0

Proposition 1.1 If p = 1 or n = 1, then any quasi-convex function is convex.

Proof If p = 1, then ϕl = ϕ and

∀ϕ ∈ (D(Ω)) and ∀µ ∈ Rn ,

∫
Ω

[∑
j,k

∂2f(µ)

∂µj ∂µk
Djϕ(t) Dkϕ(t)

]
dt ≥ 0,

which is equivalent to

∀ψ ∈ S(Rn) , ∀µ ∈ Rn ,

∫
Rn

[∑
j,k

∂2f(µ)

∂µj ∂µk
ζj ζk |ψ(ς)|2

]
dζ > 0.
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So, we deduce that:

∀ζ = (ζ1, ..., ζn) ∈ Rn ,
∑
j,k

∂2f(µ)

∂µj ∂µk
ζj ζk > 0

As f ∈ C3(Rn), D2f is a positive semi-definite matrix and f is convex on Rn.
If n = 1, then Dj = D and

∀ϕ ∈ (D(Ω))p et ∀µ ∈ Rp,

∫
Ω

[∑
l,m

∂2f(µ)

∂µl ∂µm
Dϕl(t)Dϕm(t)

]
dt > 0.

Which is equivalent to

∀ψ = (ψ1, . . . , ψp) ∈ (S(Rn))p , ∀µ ∈ Rp ,

∫
Rn

[∑
l,m

∂2f(µ)

∂µl ∂µm
ψl(ς)ψm(ς) |ς|2

]
dζ > 0.

Using a convenient ψ, we conclude that f is convex, as done above.

Proposition 1.2 Any quasi-convex function is multiconvex.

Proof (With above hypotheses and notations).
let us suppose that f is quasi-convex and that ∀m, ψm = ψ1.
So, it can be proved easily that

∀ζ = (ζ1, ..., ζn) ∈ Rn ,
∑
j,k

∂2f(µ)

∂µ1
j ∂µ

1
k

ζj ζk > 0.

We deduce that f is convex for its first variable. By iteration we can prove
the above property for others variables.

Proposition 1.3 A quasi-convex function is of Legendre-Hadamard (L-H)
type.

Proof (With above hypotheses and notations), let us suppose that :
∀l ∈ {1, ..., p}, ∀ζ ∈ Rn, ψl(ζ) = ρlϕ(ζ) where ϕ ∈ S(Rn) and ρl ∈ R. Then∫

Rn

[ ∑
j,k,l,m

∂2f(µ)

∂µlj ∂µ
m
k

ζj ζk %
l%m |ϕ(ζ)|2

]
dζ > 0

We deduce (as f ∈ C3(Rnp) ) that

∀ζ = (ζ1, . . . , ζn) ∈ Rn , ∀% = (%1, . . . , %p) ∈ Rp ,
∑
j,k,l,m

∂2f(µ)

∂µlj ∂µ
m
k

ζj ζk %
l%m > 0.

So, f is of L-H type.
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2 Quasi-convexity and Young measure

2.1 Definition

Let U (resp. V ) be an open subset of a Banach space (E,‖·‖) (resp. (F, [·]).
Let ϕ be a mapping from V into U , ϕ ∈ UV and f a mapping from U into a
vectorial space G.
Set ϕ∗ = f ◦ ϕ: V →U →G
As:

∀f1 , f2 , f ∈ GU , ∀λ ∈ R ,

ϕ∗(f1 + f2) = (f1 + f2) ◦ ϕ = (f1 + f2)(ϕ) = (f1)(ϕ) + ( f2)(ϕ) = ϕ∗(f1) +ϕ∗( f2)

and ϕ∗(λf) = (λf) ◦ ϕ = (λf)(ϕ) = λf(ϕ) = λ ϕ∗(f)

ϕ∗ is a linear mapping from GU into GV.

2.2 Duality

We set: E= GU and F=GV; E and F are linear spaces.
Let us denote by: E\ (resp. F\ ) the algebräıc dual of E (resp. F ) and 〈·, ·〉
(resp. (·, ·)) the duality bracket between E and E\ (resp. F and F\). Then :

∀ω\ ∈ F\ ,
(
f ◦ ϕ, ω\

)
=
(
ϕ∗ ◦ f, ω\

)
=
〈
f,t ϕ∗(ω\)

〉
,

where tϕ∗(ω\) ∈ E\ (as ϕ\ is a linear mapping from E into F).

2.3 Examples

Example 2.1 Young measure
Let µ be a positive measure onto V .
The mapping which associates to any ψ ∈ F the scalar

∫
V
ψ(y) dµ(y) is linear.

Hence, we can set:
∫

V
ψ(y) dµ(y) = (ψ, µ) .

With the same notations as above, we have:

(f ◦ ϕ, µ) =

∫
V

(f ◦ ϕ)(y) dµ(y) =

∫
U

f(x) dν(x;ϕ) =
〈
f,t ϕ∗(µ)

〉
,

where ν is such that, for any measurable space B, ν(B, µ) = µ (
−1
ϕ (B)).

Example 2.2 Quasi-convex functions
Let n, p, k ∈ N∗, Ω be a bounded open subset of Rn and f a mapping from Rnp

into R.
If u ∈ (W 1,k

0 (Ω))p, then: Du ∈ (Lk(Ω))np with: Du = (Dju)16j6n,16k6p.
If θ ∈ D(Ω) and ω ∈ Ω, we denote by ϕθ the mapping which, at any t ∈ Ω
associates ω +Dθ(t) ∈ Rnp .



18 M. Atteia

(i) Let us suppose that f ∈ C0(Rnp). Then:

∀t ∈ Ω, f(ϕθ(t)) = f(ω +Dθ(t)) =
〈
f, δω+Dθ(t)

〉
,

where 〈·, ·〉 is the duality bracket between C0(Rnp) and its topological dual,
δα is the Dirac measure at the point α ∈ Rnp.
Hence, we can identify tϕ∗ and δω+Dθ(t) and we can write:∫

Ω

f(ω +Dθ(t)) dµ(t) = (f ◦ ϕ, µ) = (ϕ∗ ◦ f, µ)

=
〈
f,t ϕ∗(µ)

〉
=

∫
Rnp

f(x) dν(x;ϕθ)

(ii) Let Hilb (C0 (Rnp)) be the set of all hilbertian subspaces of C0 (Rnp),
(H, 〈·, ·〉) ∈ Hilb (C0 (Rnp)) and H the hilbertian kernel of (H, 〈·, ·〉).
Then :

∀t ∈ Ω, f(ϕ
θ
(t)) = f(ω +Dθ(t)) = 〈f | H(·, ω +Dθ(t))〉 .

So, we can identify tϕ∗ and H(·, ω +Dθ(t)).

3 Quasi-convexity and duality

3.1 Duality.

3.1.1 Definition

Let Ω be an open subset of Rn, n ∈ N∗.
Let us denote by (· | ·) the canonical euclidean scalar product of Rn.
Let θ ∈ C1(Ω) and the function θ∗Ω such that:

θ∗Ω(t∗) = (t | D θ(t))− θ(t) where t∗ = D θ(t), t ∈ Ω.

We shall say that θ∗Ω is dual of θ relatively to Ω.
Below, we shall write θ∗ instead of θ∗Ω .

Remark 3.1 (i) We point out that θ∗ is parametrically defined. More ex-
plicitly, we have:

t∗ = (t∗1, . . . , t
∗
n) , t∗j = Dj θ(t) where Dj θ =

∂θ

∂tj
j = 1, . . . , n

θ∗(t∗) =
n∑
j=1

tj.Dj θ(t)− θ(t), t = (t1, . . . , tn) ∈ Ω.
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(ii) In the definition of θ∗, we could use, in place of the scalar product (· | ·),
any duality bracket between Rn and its algebräıc dual.
Now, let us suppose that: θ ∈ C2(Ω).
We set:

Djk(θ) =
∂2θ

∂tj ∂tk
and D2 = (Djk).

So :
dt∗ = (D2θ(t))dt, or more explicitly : dt∗1

...
dt∗n

 =

 D11θ(t) . . . D1nθ(t)
...

...
Dn1θ(t) . . . Dnnθ(t)

 .
 dt1

...
dtn


and :

(dt∗1 ∧ . . . ∧ dt∗n) = det ((D2θ(t))(dt1 ∧ . . . ∧ dtn)

(dt∗1 . . . dt
∗
n) =

∣∣det ((D2θ(t))
∣∣ (dt1 . . . dtn).

3.1.2 When Dθ is a diffeomorphism

Let us suppose that: θ ∈ C2(Ω) and that the mapping from Ω into Rn which as-
sociates to any t ∈ Ω, Dθ(t) be a C1-diffeomorphism which maps the bounded
open subset Ω of Rn onto the open subset Ω∗ of Rn.
Then: ∀t ∈ Ω, D2θ(t) is a square non singular matrix. But:

∀j ∈ {1, . . . , n} ,
∂

∂tj
=

n∑
k=1

∂

∂t∗k
.
∂t∗k
∂tj

=
n∑
k=1

∂

∂t∗k
.Dkjθ

It can be proved easily that:

∂

∂t
=


∂
∂t1
...
∂

∂tnj

 = t
(
D2θ(t)

)
∂
∂t∗1
...
∂

∂t∗nj

 = t
(
D2θ(t)

) ∂

∂t∗

So,

∂θ∗(t∗)

∂t∗
=

[
t
(
D2θ(t)

)]−1 ∂θ∗(t∗)

∂t

=
[
t
(
D2θ(t)

)]−1

 D1 θ(t) + (
∑n

j=1 tj.Dj1 θ(t))−D1 θ(t)
...

Dn θ(t) + (
∑n

j=1 tj.Djn θ(t))−Dn θ(t)


=

[
t
(
D2θ(t)

)]−1 [ t (D2θ(t)
)]
t
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Then: tj = D∗jθ
∗(t∗) where D∗j = ∂

∂t∗j
, j ∈ {1, . . . , n}. We deduce, with

straightforward notations, that:

∀ j ∈ {1, . . . , n} , dtj =
n∑
k=1

.
[
D∗kjθ

∗(θ∗(t∗)
]
dt∗k hence :

(dt1 ∧ . . . ∧ dtn) =

(
n∑
k=1

. [D∗1k θ
∗(t∗)] dt∗k

)
∧ . . . ∧

(
n∑
k=1

. [D∗nk (θ∗(t∗)] dt∗k

)
= det

[
t
(
D∗2θ∗(t∗)

)]
(dt∗1 ∧ . . . ∧ dt∗n)

= det
[ (

D∗2θ∗(t∗)
)]

(dt∗1 ∧ . . . ∧ dt∗n)

And we deduce that: det [ D∗2θ∗(t∗)] = (det [ D2θ(t)])
−1

3.2 Young measure and duality

With the same hypotheses as above, let f ∈ C0(Rn) and g ∈ C0(Rn).
We set: ϕθ = Dθ and ϕ∗θ ◦ f = f ◦ ϕθ; ϕθ is a mapping from Ω into Ω∗

We know that ϕ∗θ is a linear mapping from RΩ∗ into RΩ and that tϕ∗θ is a linear
mapping from the dual of RΩ into the dual of RΩ∗ . Then:∫

Ω

(f ◦ ϕθ)(t).g(t) dt =

∫
Ω

(ϕ∗θ ◦ f)(t).g(t) dt = (ϕ∗θ(f), g) =
〈
f,t ϕ∗θg

〉
But,∫

Ω

(f(Dθ(t))(t).g(t) dt =

∫
Ω∗
f(t∗) |det| (D∗2θ∗(t∗)).g((Dθ)−1(θ∗)) dt∗

=

∫
Ω∗
f(t∗) |det| (D∗2θ∗(t∗)).

[
(((Dθ)−1)\g)(t∗)

]
dt∗

So,
tϕ∗θ = |det| (D∗2θ∗(t∗)).((Dθ)−1)\ where ((Dθ)−1)\ = (

−1
ϕθ)

\

3.3 An application. The general case

We suppose, as above, that Ω is a bounded open subset of Rn.
Let θ be a C2-mapping from Ω into Rp, which associates to any t ∈ Ω,
(θ1(t), . . . , θp(t)) ∈ Rp.
Then:

Dθ = (Djθ
k)16j6n,16k6p,.

Let us suppose that for any l ∈ {1, . . . , p} , Dθl is a C1-diffeomorphism which
maps Ω onto Ω∗l . Then:

∀t ∈ Ω , ∀l ∈ {1, . . . , p} , (D2
jk θ

l)(t) is a non singular (n× n) matrix
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Let (θl)∗ be the dual function of θl such that

∀t = (t1, . . . , tn) ∈ Ω , t∗l = Dθl(t) , (θl)∗(t∗l ) = (t | Dθl(t))− θl(t)
where t∗l = (t∗l,1, . . . , t

∗
l,n) ∈ Rn, l ∈ {1, . . . , p} .

From the above hypotheses, we deduce that

∀ l ∈ {1, . . . , p} , t = D∗((θl)∗(t∗l ) or more explicitly :

∀ l ∈ {1, . . . , p} , ∀ j ∈ {1, . . . , n} , tj = D∗j ((θ
l)∗(t∗l ) and

∀ l ∈ {1, . . . , p} , (dt∗l,1 ∧ . . . ∧ dt∗l,n) =
[
det (D2θl(t))

]
(dt1 ∧ . . . ∧ dtn)

So:

∀ l ∈ {1, . . . , p} , (dt1 ∧ . . . ∧ dtn) =
[
det (D2θl(t))

]−1
(dt∗l,1 ∧ . . . ∧ dt∗l,n )

=
[
det (D∗

2

(θl)∗(t∗l )
]

(dt∗l,1 ∧ . . . ∧ dt∗l,n )

We remark that:

∀ k, l ∈ {1, . . . , p} , ∀t ∈ Ω , t = (D∗(θk)∗)(t∗k) = (D∗(θl)∗)(t∗l ),

t∗k ∈ Ω∗k, t
∗
l ∈ Ω∗l

Hence: t∗k = (D∗(θk)∗)−1.(D∗(θl)∗)(t∗l ) = ζk(t
∗
l ). Moreover, we have:

∀t ∈ Ω , Dθ(t) =

 t∗11 . . . t∗1n
...

...
t∗p1 . . . t∗pn

 = t∗

Hence, for any l ∈ {1, . . . , p}, there exists a matrix Ml such that:
t∗ = Ml (t∗l ).

Now, let a ∈ Rnp and f : Rnp 7→ R̃ = R∪{+∞} .
We set, when the following integral is defined:

I(f ; θ; Ω) =

∫
Ω

f(a+Dθ(t)) dt =

∫
Ω

f̃(a1 +Dθ1(t), . . . , ap +Dθp(t)) dt1 . . . dtn

Then:

I(f ; θ; Ω) =

∫
Ω∗l

f(a+Ml (t∗l ))
[
det (D∗

2

(θl)∗(t∗l )
]
dt∗l,1 . . . dt

∗
l,n

=

∫
Ω

f̃(a1 + ζ1(t∗l ), . . . , ap + ζp(t
∗
l ))

∣∣∣det (D∗
2

(θl)∗(t∗l )
∣∣∣ dt∗l,1 . . . dt∗l,n
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4 The cone Γkn,p and its dual

4.1 Definition

Let k, n, p ∈ N∗. We shall say that f ∈ C0(Rnp) is a quasi-convex function of
order k, if:

For any bounded subset Ω of Rn , for any µ ∈ Rnp and for any ϕ ∈ (W 1,k
0 )p,∫

Ω

(f(µ+Dϕ(t))− f(µ)) dt > 0

We shall denote by Γkn,p, the set of all quasi-convex functions of order k .

Proposition 4.1 Γkn,p is a convex cone contained in C0(Rnp) .

4.2 The cone Gk
n,p dual of Γkn,p

Let BV (Rnp) be the linear space of real functions on Rnp with (normalized)
bounded variation. BV (Rnp) is the topological dual of C0 (Rnp).
Let 〈·, ·〉 the duality bracket between C0 (Rnp) and BV (Rnp).
Then f ∈ Γkn,p if and only if:

For any bounded subset Ω of Rn, for any µ ∈ Rnp and for any ϕ ∈ (W 1,k
0 )p,∫

Ω

〈
f, δµ+Dϕ(t) − δµ

〉
dt > 0,

where δω is the Dirac measure at ω ; δω ∈ BV (Rnp).
Now, let us suppose that∫

Ω

〈
f, δµ+Dϕ(t) − δµ

〉
dt =

〈
f,

∫
Ω

(δµ+Dϕ(t) − δµ) dt

〉
We set:

Gk
n,p =

{∫
Ω

(δµ+Dϕ(t) − δµ) dt; µ ∈ Rnp, Ω ∈ Ob(Rn), ϕ ∈ (W 1,k
0 )p

}
where Ob(Rn) is the set of all bounded open subset of Rn .

Definition 4.1 Let A ∈ C0 (Rnp). The set:

Ao = {β ∈ BV(Rnp) ; ∀α ∈ A , 〈α, β〉 > 0}

is called the polar of A relatively to the duality between C0(Rnp) and BV(Rnp)
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From this definition, we deduce that

Γkn,p = (Gk
n,p )o .

If B ∈ BV(Rnp), we denote by B� the polar of B relatively to the duality
between C0(Rnp) and BV(Rnp) such that

B� =
{
α ∈ C0(Rnp) ; ∀β ∈ B , 〈α, β〉 > 0

}
.

Then
(Γkn,p)

� = (Gk
n,p )o� = co(Gk

n,p),

where co denotes the weakly (and strongly ) closed convex hull in BV(Rnp).

4.3 A special case

Let (H, (· | ·)) ∈ Hilb(C0(Rnp)) and H its hilbertian kernel. We set

Γ̃kn,p = Γkn,p ∩H

Then: f ∈ Γ̃kn,p if and only if

∀Ω ∈ Ob(Rn) , ∀µ ∈ Rnp , ∀ϕ ∈ (W 1,k
0 )p∫

Ω

(f | H(·, µ+Dϕ(t))−H(·, µ)) dt > 0

We set

G̃k
n,p =

{∫
Ω

(H(·, µ+Dϕ(t))−H(·, µ)) dt

}
; Ω ∈ Ob(Rn),µ ∈ Rnp, ϕ ∈ (W 1,k

0 )p.

With the same above hypotheses and notations, we have

Γ̃kn,p = (G̃k
n,p)

o

et (Γ̃k
n,p)

o
= (G̃k

n,p)
oo

=co(G̃k
n,p),

where co denotes the weakly (and strongly ) closed convex envelop in the
topological dual of (H, (· | ·)) that we shall identify to (H, (· | ·)) .

5 Tensorial products of quasi-convex

functions

5.1 Introduction.

If Ω is a bounded open subset of Rn, n ∈ N∗, we shall denote by C0( Ω) the
linear space of continuous function on Ω.
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Let nk ∈ N∗ and Ωk be an open subset of Rnk , k = 1, 2.
In the theory of topological tensorial products (T.T.P.), it is proved that if ε
is the inductive tensorial norm, the completion of C0(Ω1)⊗ C0(Ω2), embedded
with the norm ε can be identified to the linear space C0(Ω1 × Ω2).
If A is a subset of Rn, n ∈ N∗ we denote, in the following, by E(A), any locally
convex space of functions on A .
Let Ak be a subset of Rnk , k = 1, 2.
We suppose that there exists a reasonable tensorial norm γ on E(A1)⊗E(A2)
such that the completion of E(A1) ⊗ E(A2) embedded with the norm γ and
denoted by E(A1) γ̂ E(A2) can be identified to E(A1 × A2). Then

∀h ∈ E(A1 × A2) , h =
∑
j

(fj ⊗ gj) , fj ∈ E(A1) , gj ∈ E(A2),

where ∑
j

(fj ⊗ gj) is convergent to h in E(A1) γ̂ E(A2),

and
∀s ∈ A1 , ∀t ∈ A2 , h(s, t) =

∑
j

(fj(s).gj(t)).

Now, let k, l, p, q ∈ N∗, U (resp. V ) an open subset of Rp (resp. Rq) , and x
(resp. y) a mapping from U into Rk (resp. V into Rl) .

If h ∈ E(x(U)) γ̂ E(y(V )) = E(x(U)× y(V ))

h ∈
∑
j

(fj ⊗ gj) where fj ∈ E(x(U)) , gj ∈ E(y(V ))

Then

∀j,
∫ ∫

U×V
(fj ⊗ gj)(x(s), y(t)) ds dt =

∫ ∫
U×V

(fj(x(s)).gj(y(t)) ds dt

= (

∫
U

(fj(x(s)) ds).(

∫
V

gj(y(t)) dt)

when the above integrals are defined.
We deduce that∫ ∫

U×V
h (x(s), y(t)) ds dt =

∑
j

(

∫
U

(fj(x(s)) ds).(

∫
V

gj(y(t)) dt)

We set, below ∫ ∫
U×V

h (x(s), y(t)) ds dt = I(h ;x, y ;U, V )
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5.2 Tensorial products

5.2.1 Definition

Let k, l, p, q ∈ N∗, U (resp. V ) an open subset of Rp (resp. Rq) ,

x ∈ C1(U ; Rp) and y ∈ C1(V ; Rl) .

Then : Dx ∈ C0(U ; Rkp) and Dy ∈ C0(V ; Rlq)

Let:
f ∈ C0(Rkp) and g ∈ C0( Rlq)

It can be proved easily that:
∀α ∈ Rkp , ∀β ∈ Rlq,

I(f ⊗ g ; α +Dx , β +Dy ; U, V ) > I(f ⊗ g ; α , β ; U, V )

More generally, let

h ∈
∑
j

(fj ⊗ gj) with fj ∈ C0(Rkp) and gj ∈ C0( Rlq)

such that h ∈ C0(Rkp) ε̂ C0( Rlq) = C0(Rkp × Rlq)

If for any j, fj and gj are quasi-convex and positive, we have:

∀α ∈ Rkp , ∀β ∈ Rlq , I(h ; α+Dx , β+Dy ; U, V ) > I(h ; α , β ; U, V )

Then, we shall say, that h is tensorially convex (positive) function on U × V.
Let Ej be a locally convex space, E\

j its topological dual and 〈·, ·〉j the duality

bracket between Ej and E\
j , j = 1, 2.

Let γ be a reasonable tensorial norm.
Let us denote by E1 γ E2 the linear space E1 ⊗ E2 embedded with the norm
γ and by E1 γ̂ E2 its completion.
Let nj, pj, kj ∈ N∗ , j = 1, 2.

Let us suppose that: Γ
kj
nj ,pj ⊂ Ej , j = 1, 2. Then:

Γk1n1,p1
⊗ Γk2n,p2 ⊂ E1 ⊗ E2 and

(h ∈ Γk1n1,p1
⊗Γk2n,p2)⇔ (h =

∑
j∈J finite

(fj⊗gj) where fj ∈ Γk1n1,p1
and gj ∈ Γk2n,p2)

Let us denote by ( Γk1n1,p1
γ̂ Γk2n,p2) the closure of (Γk1n1,p1

⊗ Γk2n,p2) in E1 γ̂ E2.

It can be proved easily that Γk1n1,p1
γ̂ Γk2n,p2 is a convex cone; then, we say that

Γk1n1,p1
γ̂ Γk2n,p2 is the set of tensorial γ-products of quasi-convex functions

contained in Γk1n1,p1
and Γk2n,p2 .
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Let us denote by γ\ (resp. γ\\) the dual (resp. bidual) tensorial norm of γ.
Generally (γ\)\ 6= γ.
Let 〈·, ·〉⊗ the canonical duality bracket between E\

1 γ
\ E\

2 and E1 γ̂ E2.

We denote by (·)0
1 (resp. (·)0

2 , (·)0
⊗ ) the polarity relatively to the duality

bracket 〈·, ·〉1 (resp. 〈·, ·〉2 et 〈·, ·〉⊗ ).
So we set:

Γk1n1,p1
γ̂\\ Γk2n,p2 =

((
Γk1n1,p1

)0

γ̂\
(
Γk2n,p2

)0
)0

⊗
=
(
Gk1
n1,p1

γ̂\ Gk2
n,p2

)0

⊗

Example 5.1 Let nk ∈ N∗ and Ωk an open subset of Rnk , k = 1, 2.
Let us suppose that: Ek = C0(Ωk), k = 1, 2. We can consider:

(Γk1n1,p1
ε̂ Γk2n,p2) the closure of (Γk1n1,p1

⊗ Γk2n,p2) in C0(Ω1) ε̂ C0(Ω2) = C0(Ω1×Ω2)

and

(Γk1n1,p1
ε̂\\ Γk2n,p2) =

(
Gk1
n1,p1

ε̂\ Gk2
n,p2

)
which is contained in BV(Ω1) ε̂\ BV(Ω2)
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Abstract

In this paper, we want to estimate the pollution term in
the Petrowski system of incomplete data. For this aim we use
the notion of Sentinels introduced by J.L.Lions, which is a
linear functional sensitive to some parameters we are trying
to evaluate, and insensitive to others which do not interest
us. We show that establishing the existence of such sentinels
is reduced to the solution of a null-controllability problem with
constraint on the control.

Keywords: Null-Controllability, Control optimal, Petrowsky system, Dis-
tributed Sentinel.

1 Introduction

Let Ω be a bounded open in RN with sufficiently smooth boundary Γ, ω is a
nonempty subdomain of Ω. For a fixed time T > 0, we define by Q = Ω×]0, T [ ,∑

= Γ× ]0, T [ ,
∑

0 = Γ0 × ]0, T [ and
∑

1 = Γ1 × ]0, T [ where Γ0 and Γ1 are a
non empty open subset of Γ with Γ0 ∩ Γ1 = φ.
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We consider here the Petrowsky system where initial conditions and some
boundary conditions are not well determined in general ( boundary conditions
are known only on one part of the boundary). This problem can be formulated
as follows:

∂2y

∂t2
+42y + f(y) = 0 in Q, (1)

where f : R→ R is a nonlinear C1 function.
We add to (1) the initial conditions{

y(0) = y0 + τ0ŷ0 in Ω,
y′(0) = y1 + τ1ŷ1 in Ω,

(2)

and the boundary conditions

y =


g0 + λĝ0 on Σ0,
g1 + τ2ĝ1 on Σ1,
0 on Σ/ (Σ0 ∪ Σ1) ,

(3)

where y0, y1, g0 and g1 are given, but the terms τ0ŷ0, τ1ŷ1, τ2ĝ1 and λĝ0 are
unknown functions. The parameters λ and τ = (τ0, τ1, τ2) are reals numbers
chosen sufficiently small.

The term (τ0ŷ0, τ1ŷ1, τ2ĝ1) design the missing data and λĝ0 the pollution
term. We also use the notation y0 for the solution of the problem (1) − (3)
when λ = 0 and τ = 0 :

∂2y0

∂t2
+42y0 + f(y0) = 0 in Q,

y0(0) = y0 in Ω,
y0′(0) = y1 in Ω,

y0 =


g0 on Σ0,
g1 on Σ1,
0 on Σ/ (Σ0 ∪ Σ1)

(4)

The aim of this work is to obtain information on the pollution term λĝ0

not affected by missing term.
There are two possible approches to this problem, one is more classical and

uses the least square method (see G.Chavent [02]), but the problem in this
method that the pollution and the missing terms play the same role, so we can
not separate them.

The other is the sentinel method introduced by J.L.Lions [06] which is used
to study systems of incomplete data.

The notion permits to distinguish and to analyse two types of incomplete
data, the pollution term and the missing terms.

So we show that this functional can be associated to our system and allows
to characterize the pollution term.
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2 Problem Formulations

The Lions sentinel is a linear functional sensitive to certain parameters we are
trying to evaluate, and insensitive to others which do not interest us, it lies on
three considerations:

- A state equation represented here by (1) and where the solution

y(λ, τ) = y(x, t;λ, τ) = y(x, t;λ, τ0, τ1, τ2),

depends on two parameters λ and τ.
- An observation

y(λ, τ) = yobs, on O × ]0, T [ , (5)

of the state solution y(λ, τ) on a non empty open subset O ⊂ Ω called obser-
vatory, during the interval ]0, T [ .

- A function S associated to the function

h ∈ L2(O × ]0, T [), (6)

and to a control function

u ∈ L2(ω × ]0, T [) (7)

is defined by

S(λ, τ) =

∫
O×]0,T [

hy(x, t, λ, τ)dxdt+

∫
ω×]0,T [

uy(x, t, λ, τ)dxdt, (8)

we can write

S(λ, τ) =

∫
Ω×]0,T [

(hχ
O

+ uχω)y(λ, τ)dxdt, (9)

where χ
O

and χω are the characteristic functions for the open sets O and ω
respectively such that O∩ ω 6= φ [11]. We given now some definitions

Definition 2.1 S is said insensitive respect to the data τ if the following
condition is satisfied:

∂S

∂τ
(λ, τ)

∣∣∣∣
λ=0,τ=0

= 0; (10)

i.e.
∂S

∂τ0

(0, 0) = 0,
∂S

∂τ1

(0, 0) = 0,
∂S

∂τ2

(0, 0) = 0;
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Definition 2.2 S is said a sentinel defined by h if S satisfies to definition
1 and the control u ∈ L2(ω × ]0, T [) satisfies:

‖u‖L2(O) = min
w∈U
‖w‖ ; (11)

where U =

{
w ∈ L2(ω × ]0, T [), such that

∂S

∂τ
(λ, τ)

∣∣∣∣
λ=0,τ=0

= 0

}
.

Remark 2.3 Condition (10) express insensitivity of S with respect to small
variations of τ and assume the existence of the derivative.

3 The equivalent controllability problem

Here it will be show that the existence of such control function satisfying (10)
and (11), is equivalent to the null controllability property for a system with
constrained control.

We write the derivatives of y at (0, 0) with respect to τ as:

yτi =
∂

∂τi
y((λ, τ)λ=0,τ=0 with τ = (τ0, τ1, τ2) and i = 0, 1, 2 (12)

where yτ0 is the solution of
∂2yτ0
∂t2

+42yτ0 + f ′(y0)yτ0 = 0 in Q,

yτ0(0) = ŷ0 in Ω,
y′τ0(0) = 0 in Ω,
yτ0 = 0 on

∑
,

(13)

yτ1 is the solution of
∂2yτ1
∂t2

+42yτ1 + f ′(y0)yτ1 = 0 in Q,

yτ1(0) = 0 in Ω,
y′τ1(0) = ŷ1 in Ω,
yτ1 = 0 on

∑
,

(14)

and yτ2 is the solution of

∂2yτ2
∂t2

+42yτ2 + f ′(y0)yτ2 = 0 in Q,

yτ2(0) = 0 in Ω,
y′τ2(0) = 0 in Ω,

yτ2 =

{
ĝ1 on

∑
1

0 on
∑
/
∑

1

(15)

where f ′(y0) is the derivative of the function f at the solution y0.
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Remark 3.1 It is important to observe that if f has smooth regularity,
insensitivity condition (10) becomes:∫

Ω×]0,T [

(hχO + uχω)yτdxdt = 0. (16)

In order to transform the equation (16), we introduce now the classical
adjoint state.

Theorem 3.2 Let q be the solution to the following backward problem:
∂2q

∂t2
+42q + f ′(y0)q = (hχO + uχω) in Q,

q(T ) = q′(T ) = 0 in Ω,
q = 0 in

∑
,

(17)

Then the existence of a distributed sentinel insensitive to the missing data is
equivalent to the null-controllability problem with:

q′(0) = q(0) = 0 in Ω,
∂q

∂ν
= 0 on

∑
, (18)

where ν is the unit exterior normal to Γ;
∂q

∂ν
is the derivative of q with respect

to the normal ν.

Proof Multiplying both members of the differential equation in (17) by yτ
and integrating by parts over Q, we obtain:

−
∫
Ω

(q(0)y′τ (0) + q′(0)yτ (0)) dx+

∫
Σ

(
∂q

∂ν
yτ − q

∂yτ
∂ν

)
dΣ

=

∫
Ω×]0,T [

(hχO + uχω)yτdxdt.

for more detail,
for τ = τ0, we obtain∫

Ω

q′(u)(0)ŷ0dx = 0, ∀ŷ0 =⇒ q′(0) = 0

for τ = τ1, we obtain∫
Ω

q(u)(0)ŷ1dx = 0, ∀ŷ1 =⇒ q(0) = 0



32 A. Berhail and A. Ayadi

for τ = τ2, we obtain∫
Σ1

∂q

∂ν
ĝ1dΣ1 = 0, ∀ĝ1 =⇒ ∂q

∂ν
= 0 on Σ1

Thus, condition (10) holds if and only if we have (18) which is a null control-
lability problem.

4 Characterization of optimal control

The existence of the sentinel insensitive to the missing terms is equivalent to
the null controllability which is equivalent to the existence of a unique pair
(w, q) such that we have (17) and (18), so, we are interested in the problem of
optimal control:

min
(w,q)∈M

‖w‖L2(ω) , (19)

with

M = {(w, q) such that we have (17) and (18)}.

Let us introduce p by
∂2p

∂t2
+42p+ f ′(y0)p = hχ

O
in Q,

p(T ) = p′(T ) = 0 in Ω,
p = 0 on

∑
,

(20)

and let us define z = z(u) the solution of
∂2z

∂t2
+42z + f ′(y0)z = uχω in Q,

z(T ) = z′(T ) = 0 in Ω,
z = 0 on

∑
,

(21)

Then

q = p+ z = p+ z(u).

We want to find u such that
z(0;u) = −p(0),
z′(0;u) = −p′(0),
∂z

∂ν
= −∂p

∂ν
on
∑

1 .

(22)
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We define ρ as the solution of
∂2ρ

∂t2
+42ρ+ f ′(y0)ρ = 0 in Q,

ρ(0) = ρ0 , ρ′(0) = ρ1 in Ω
ρ = 0 on

∑
,

(23)

where {ρ0, ρ1} is not determined. Let z is the solution of the system
∂2z

∂t2
+42z + f ′(y0)z = ρχω in Q,

z(T ) = z′(T ) = 0 in Ω, ,
z = 0 on

∑
.

(24)

We introduce a linear operator Λ and Ψ by

Λ{ρ0, ρ1} = {−z′(0), z(0)} , (25)

Ψh = {−p′(0), p(0)} ,
we obtain

Λ{ρ0, ρ1} = −Ψh. (26)

Multiplying (24) by {ρ0, ρ1} and integrating by parts, we obtain〈
Λ{ρ0, ρ1}, {ρ0, ρ1}

〉
=

∫
Ω×]0,T [

ρ2dxdt. (27)

Let as now set

∥∥{ρ0, ρ1}
∥∥
F

=

 ∫
Ω×]0,T [

ρ2dxdt


1/2

. (28)

We define in this way a norm on the space of the functions {ρ0, ρ1}, where
the Hilbert space F is the completion of smooth functions for the norm (28).
Then if F ′ denotes the dual of F, we have

Λ : F −→ F ′ is an isomorphism,

and 〈
Ψh, {ρ0, ρ1}

〉
=

∫
Ω×]0,T [

h.ρdxdt. (29)

Then the equation (26) has an unique solution given by

{ρ0, ρ1} = −Λ−1Ψh, (30)
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we get

u = ρχω =Ψ∗Λ−1Ψh, (31)

then the sentinel is given by

S (λ, τ) =

∫
Ω×]0,T [

(h−Ψ∗Λ−1Ψh)y(x, t, λ, τ)dxdt

4.1 Estimation of the pollution term

To show how the sentinel defined above permits to estimate the pollution
term, we consider yobs be the measured state of the system on the observatory
O during the interval [0, T ], then the measured sentinel associate to yobs is
given by :

Sobs (λ, τ) =

∫
Ω×]0,T [

(hχ
O

+ uχω)yobs(x, t, λ, τ)dxdt. (32)

Theorem 4.1 The pollution term is identified as follows:∫
Σ0

∂q

∂ν
(h)ĝ0dΣ0 = Sobs (λ, τ)− S (0, 0) . (33)

Proof We have

Sobs (λ, τ) = S (0, 0) + λ
∂S

∂λ
(λ, τi)

∣∣∣∣
λ=0,τi=0

+O (λ, τi) ; (34)

with
∂S

∂λ
(λ, τ) =

∫
Ω×[0,T ]

(hχO + wχω)yλdxdt (35)

where yλ is the solution of

∂2yλ
∂t2

+42yλ + f ′(y0)yλ = 0 in Q,

yλ(0) = 0 in Ω,
y′λ(0) = 0 in Ω,

yλ =

{
ĝ0 on

∑
0

0 on
∑
/
∑

0

(36)

and

λ
∂S

∂λ
(λ, τ)

∣∣∣∣
λ=0,τ=0

= Sobs (λ, τ)− S (0, 0) . (37)
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Let q be the solution of (17), multiplying (15) par q, it follows that

∂S

∂λ
(0, 0) =

∫
Σ0

∂q

∂ν
(h)ĝ0dΣ0 (38)

hence ∫
Σ0

∂q

∂ν
(h)ĝ0dΣ0 = Sobs (λ, τ)− S (0, 0) .
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Abstract

Nanofluids are considered to offer important advantages
over conventional heat transfer fluids. A model is developed
to analyze the behaviour of nanofluids taking into account the
solid fraction χ. The Navier-Stokes equations are solved nu-
merically with ADI method. Copper-water nanofluid is used
with Pr = 6.2 and solid volume fraction χ is varied as 0.0%, 5%, 10%, 15%
and 20%.

Keywords: numerical study, Nanofluids, solid volume fraction, convective
heat transfer.

1 Introduction

Buoyancy induced flow and heat transfer is an important phenomenon in en-
gineering systems due to its wide applications in electronic cooling, heat ex-
changers, double pane windows etc. Enhancement of heat transfer in these
systems is an essential topic from an energy saving perspective. The low ther-
mal conductivity of convectional heat transfer fluids such as water and oils
is a primary limitation in enhancing the performance and the compactness of
such systems. Nanotechnology has been widely used in industry since materi-
als with sizes of nanometers possess unique physical and chemical properties.
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Cp specific heat at constant pressure µ dynamic viscosity
−→g gravitational acceleration vector ν kinematic viscosity

Gr Grashof number,
gβf∆TH3

ν2f
ω vorticity

H cavity height ρ density
k thermal conductivity ψ stream function
L cavity width χ solid volume fraction
Nu average Nusselt number Subscripts
Pr Prandtl number,

νf
αf

c cold

t time eff effective
T temperature f fluid
u,v velocity components h hot
x,y cartesian coordinates nf nanofluid
Greek symbols s solid
α thermal diffusivity Superscripts
β thermal expansion coefficient ∗ dimensional term

Table 1: Nomenclature

Nano-scale particle added fluids are called as nanofluid. Yang and al.[1] con-
clude experimentally that the type of nanoparticles, particle loading, base fluid
chemistry, and process temperature are all important factors to be considered
while developing nanofluids for high heat transfer coefficients. Experimental
work by Wen and al.[2] investigate into convective heat transfer of nanofluids
at the entrance region under laminar flow conditions. Some numerical studies
on nanofluids include thermal conductivity[3]. Studies on natural convection
using nanofluids are very limited and they are related with differentially heated
enclosures. Khanafer and al.[4] tested different models for nanofluid density,
viscosity and thermal expansion coefficients.
In the present work, we simulate the flow features of nanofluids for a range of
solid volume fraction χ.

2 Problem Formulations

The problem considered is a two-dimensional heat transfer in a square cavity
(fig.1). The vertical walls are differentially heated, the left is maintained at
hot condition (Th) when the right one is cold (Tc). The horizontal walls are
assumed to be insulated, non conducting and impermeable to mass transfer.
The nanofluid in the enclosure is Newtonian, incompressible and laminar. The
nanoparticles are assumed to have a uniform shape and size.

Moreover, it is assumed that both the fluid phase and nanoparticles are
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in thermal equilibrium state and they flow at the same velocity. The ther-
mophysical properties (Table1) of the nanofluid are assumed to be constant
except for the density variation in the buoyancy force, which is based on the
Boussinesq approximation.

 
 

TH TC 

y 

x 

H 

L 

g 

Figure 1: Schematic for the physical model.

Property Fluid phase(water) Solid phase(copper)
Cp(J/kgK) 4179 383
ρ(kg/m3) 997.1 8954
k(W/mK) 2.1× 10−4 1.67× 10−5

Table 2: Thermophysical properties of different phases

Under the assumption of constant thermal properties, the Navier-Stokes
equation for an unsteady, incompressible, two-dimensional flow are:

� Continuity equation:
∂u∗

∂x∗
+
∂v∗

∂y∗
= 0, (1)

� x-momentum equation:

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= − 1

ρnf,0

∂p∗

∂x∗
+
µeff
ρnf,0

(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2
) (2)

� y-momentum equation:

∂v∗

∂t∗
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= − 1

ρnf,0

∂p∗

∂y∗
+
µeff
ρnf,0

(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2
) +

1

ρnf,0
[χρs,0βs + (1− χ)ρf,0βf ]g(T − Tc) (3)
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� Energy equation:

∂T ∗

∂t∗
+ u∗

∂T ∗

∂x∗
+ v∗

∂T ∗

∂y∗
= αnf (

∂2T ∗

∂x∗2
+
∂2T ∗

∂y∗2
) (4)

where

αnf =
keff

(ρCp)nf,0

The effective viscosity of fluid containing a dilute suspension of small rigid
spherical particles is given by Brinkman[5] as

µeff =
µf

(1− χ)2.5
(5)

The effective density of the nanofluid at reference temperature is

ρnf,0 = (1− χ)ρf,0 + χρs,0 (6)

and the heat capacitance of nanofluid is

(ρCp)nf,0 = (1− χ)(ρCp)f,0 + χ(ρCp)s,0 (7)

The effective thermal conductivity of fluid can be determined by Maxwell-
Garnett’s (MG model) self-consistent approximation model. For the two-
component entity of spherical-particle suspension,the MG model gives

keff
kf

=
(ks + 2kf )− 2χ(kf − ks)
(ks + 2kf ) + χ(kf − ks)

(8)

The above equations can be converted to non-dimensional form, using the
following dimensionless parameters:
x = x∗

H
, y = y∗

H
, u = u∗

V0
, v = v∗

V0
, p = p∗

(ρV 2
0 )
, T = T ∗−Tc

∆T

where ∆T = Th − Tc , Gr = gβH3∆T
νf2

, P r =
νf
αf

The governing equations can be writing in dimensionless form as follows:

� Continuity equation:
∂u

∂x
+
∂v

∂y
= 0 (9)

� x-momentum equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ (

∂2u

∂x2
+
∂2u

∂y2
) (10)
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� y-momentum equation:

∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
= −∂p

∂y
+(
∂2v

∂x2
+
∂2v

∂y2
)+

[χρsβs + (1− χ)ρfβf ] ρnf,0 ν
2
f

βf µ2
eff

Gr T

(11)

� Energy equation:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

Prnf
(
∂2T

∂x2
+
∂2T

∂y2
) (12)

where Prnf =
µeff

αnf ρnf,0

Boundary conditions are:

� for x = 0 and 0 ≤ y ≤ 1, u = v = 0 and T = 1,

� for x = 1 and 0 ≤ y ≤ 1, u = v = 0 and T = 0,

� for y = 0 or y = 1 and 0 ≤ x ≤ 1, u = v = ∂T
∂y

= 0.

The governing equations for the present study taking into the account the
above mentioned assumptions are written in dimensionless form as:

� Kinematics equation
∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω (13)

� Vorticity equation

∂ω

∂t
+u

∂ω

∂x
+v

∂ω

∂y
= (

∂2ω

∂x2
+
∂2ω

∂y2
)+

[χρsβs + (1− χ)ρfβf ] ρnf,0 ν
2
f

βf µ2
eff

Gr
∂T

∂x
(14)

� Energy equation

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

Prnf
(
∂2T

∂x2
+
∂2T

∂y2
) (15)

The Nusselt number of the nanofluids is expected to depend on a number
of factors such as thermal conductivity and heat capacitance of both the pure
fluid and the ultrafine particles, the volume fraction of the suspended particles,
the flow structure and the viscosity of the nanofluid. The local variation of
the Nusselt number of the nanofluid can be expressed as

Nu = −keff
kf

∂T

∂x
(16)
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Ra/Nu present Khanafer Tiwari De Vahl Davis b−a
b
× 100

work(a) and al.[4] and al.[7] [8](b)
103 1.042 1.118 1.087 1.118 6.79
104 2.024 2.245 2.197 2.243 9.76
105 4.520 4.522 4.450 4.519 0.02
106 8.978 8.826 8.803 8.799 2.03%

Table 3: Comparison of laminar solution with previous works

3 Numerical method

The governing equations are solved numerically by ADI method (Alternating
Direct Implicit).

The developed numerical code is validated (Table2) for natural convection
heat transfer by comparing the results a laminar heat transfer in a square
cavity with air for Rayleigh numbers between 103 and 106.

The natural convection problem in a differentially heated square enclosure
using nanofluids has been solved and compared the results with those of Santra
and Sen [6] and Tiwari and Das [7] (fig.2). A very good agreement has been
obtained.
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Figure 2: Validation of the present code with the results of Santra and Sen [6]
and Tiwari and Das [7].

The grid independence test is performed using successively sized grids,
31 × 31, 41 × 41, 61 × 61 and 81 × 81 for Gr = 105, P r = 6.2 and χ = 5%.
Uniform grid has been used for all the computations. The distribution of
the u-velocity in the vertical mid-plane and temperature and v-velocity in the
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horizontal mid-plane are shown in fig.3. It is observed that the curves overlap
with each other for 61× 61 and 81× 81. So a grid number of 61× 61 is chosen
for further computation.

�

�

�

Figure 3: Temperature and velocity profiles at mid-sections of the cavity for
various mesh sizes (Gr = 105, P r = 6.2 and χ = 5%).

4 Discussion

The numerical code developed in the present investigation is used to carry
out a number of simulations for a wide range of controlling parameters such
as Grashof number and the volume fraction of particles. A comparison of the
temperature and the velocity profiles is conducted inside a thermal cavity with
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isothermal vertical walls at various Grashof numbers and volume fractions as
shown in fig.4. This figure shows that the nanofluid behaves like a fluid and
it illustrates the effect of Grashof number and the volume fraction on the
temperature and the velocity profiles at the mid-sections of the cavity for
water with a Prandtl number of 6.2.

The numerical results of the present study indicate that the heat trans-
fer feature of a nanofluid increases remarkably with the volume fraction of
nanoparticles. As the volume fraction increases, irregular and random move-
ments of particles increases energy exchange rates in the fluid and consequently
enhances the thermal dispersion in the flow of nanofluid.

�

�

�

Figure 4: Comparison of the temperature and velocity profiles between
nanofluid and pure fluid for various Grashof numbers (Pr = 6.2, χ = 10%
and 20%).

The effect of the volume fraction on the streamlines and isotherms of
nanofluid for various Grashof numbers is shown in figs.5 and 6. They show
that the intensity of the streamlines increase with an increase in the volume
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fraction as a result of high-energy transport through the flow associated with
the irregular motion of the ultrafine particles.

The isotherms show that the vertical stratification of isotherms breaks down
with an increase in the volume fraction for higher Grashof numbers. This is
due to a number of effects such as gravity, Brownian motion.

Figure 5: Streamlines contours and isotherms at various volume fractions
(Gr = 104 and Pr = 6.2).

Figure 6: Streamlines contours and isotherms at various volume fractions
(Gr = 105 and Pr = 6.2).
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5 Conclusion

Heat transfer enhancement in a two-dimensional enclosure is studied numer-
ically for a range of Grashof numbers and volume fractions. The present re-
sults illustrate that the suspended nanoparticles substantially increase the heat
transfer rate with an increase in the nanoparticles volume fraction and at any
given Grashof number.
This study shows that the results obtained by ADI numerical method have
a good agreement with those obtained experimentally and numerically (finite
volume method).
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Abstract

The present paper deals with the problem of the optimal
harvesting of a renewable resource that can be continuously ex-
ploited by three actors using different fishing engines (trawler,
coastal and artisanal vessels). The main purpose of the model
is to analyze the interaction between optimal equilibrium stock
and the distribution of fishing quotas in the steady state among
the different agents exploiting the fishery.

Keywords: Bioeconomics, optimal management, quota system, octopus.

1 Introduction

We will analyze the problem of optimal management of fisheries resources
under the quota system. We consider that the fishery is operated by three
agents using different fishing engines (trawler, coastal and artisanal vessels).
The main purpose of the model is to analyze the interaction between optimal
equilibrium stock and the distribution of fishing quotas in the steady state
among the different agents exploiting the fishery.
The issue will be treated under two hypotheses: first time, the resource price
is constant and a second time, the price depends on the amount captured.



Optimal harvesting policies for a fish population 49

2 Model Formulation and determination of op-

timal solutions

The natural growth function of resource can be described by the following
equation:

F (x) = rx[1− x

k
]. (1)

Where F (x) denotes the logistic equation, x represents the biomass at time t,
K is called the carrying capacity of environment. The positive constant r is
referred to as the intrinsic growth rate.
When fishery is exploited, the equation (1) is altered to:

dx

dt
= F (x)− h(t). (2)

with

h(t) =
∑3

i=1 hi(t).

Where i = 1, 2 and 3 represent respectively the trawler costal and artisanal
fleet’s that are exploiting the resource, h(t) is the total harvest rate, is the
harvest rate of fleet i at time t, expressed as :

hi(t) = G(Ei, x) = qiE
s
i x

v. (3)

Where Ei is the fishing effort of fleet i at time t.
G(Ei, x) is the harvest function that links inputs (Ei and x) to the catch rate,
hi(t), for the fleet i. s takes the values a, b and d depend on the fleet i and
represent respectively the elasticities of harvest compared with fishing effort
Ei, and as for v takes the values g, m and n dependent on the fleet i and rep-
resent respectively the elasticities of harvest compared with biomass size. qi
is the catchability coefficient which, for simplicity, is supposed to be constant
for each fleet.
The total effort cost is expressed as:

Ci(Ei) = ciEi (4)

Where ci is the fleet i’s unit cost of fishing effort.
From equation (3), we can write the cost function as follows:

Ci(hi, x) = ciEi = Ci(x)h
1
s
i = Ci(x)α

1
s
i h

1
s (5)

with

Ci(x) = ci(qix
g)−

1
S
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Where Ci(x) denote the unit cost of harvesting for each fleet related to the fleet
i when the stock level is x. Let α1 = h1

h
, α2 = h2

h
, and α3 = h3

h
, respectively,

shares of catching fleets trawler, coastal and artisanal, respectively . The
equation (5) can be written as follows:

C1(h1, x) = C1(x)h
1
b
1 = C1(x)(α1h)

1
b = C1(x)β1h

1
b

C2(h2, x) = C2(x)h
1
d
2 = C2(x)(α2h)

1
d = C2(x)β2h

1
d

C3(h3, x) = C3(x)h
1
n
3 = C3(x)(α3h)

1
n = C3(x)β3h

1
n

With β1 = α
1
b
1 , β2 = α

1
d
2 , and β3 = α

1
n
3

The discounted net cash flow from the fishery represents the objective function
for all fleets, which can be expressed as:

V P =
∫∞

0
e−δt[(pα1h− C1(x)β1h

1
b ) + (pα2h− C2(x)β2h

1
d ) + (pα3h− C3(x)β3h

1
n )]dt

=
∫∞

0
e−δt[ph− C1(x)β1h

1
b − C2(x)β2h

1
d − C3(x)β3h

1
n ]dt

(6)
subject to:

dx
dt

= F (x)− h(t)
0 ≤ h(t) ≤ hmax

x(0) = x0

The total income for each fleet can be expressed as:

Ri(h) = pαih(t) (7)

Where p is the price of the harvest resource at time t (is a fixed constant),
δ is the discount rate, hmax is maximum harvest rate and x(0) is the initial
population, assumed to be known.
Le Hamiltonian of our problem is:

H(x(t), h(t), λ(t)) = e−δt[ph− C1(x)β1h
1
b − C2(x)β2h

1
d − C3(x)β3h

1
n ]

+ λ(t)[F (x)− h] + ρ(t)h− φ(t)[h− hmax]
(8)

where λ(t), ρ(t) and φ(t) represent the adjoints or costate variables.
The first order conditions of the problem are:

∂H(.)

∂h(t)
= e−δt[p−β1

b
C1(x)h

1
b
−1−β2

d
C2(x)h

1
d
−1−β3

n
C3(x)h

1
n
−1]−λ(t)+ρ(t)−φ(t) = 0

(9)

−∂H(.)

∂x(t)
= e−δt[C ′1(x)β1h

1
b + C ′2(x)β2h

1
d + C ′3(x)β3h

1
n ]− λ(t)F ′(x) (10)

∂H(.)

∂λ(t)
= F (x)− h(t) (11)

From equation (9), if:
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e−δt[p− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]− λ(t) < 0 with ρ > 0

and φ = 0, then the harvest rate is zero;

e−δt[p− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]− λ(t) > 0 with ρ = 0

and φ > 0, then the harvest rate is maximal, h(t) = hmax;

e−δt[p− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]− λ(t) = 0 with

ρ = φ = 0, then the harvest rate is positive, and should between 0 and hmax .

The general solution is the combination bang-bang and singular controls.
In developments that follow, we take the case of interior solution. After trans-
formation (see Appendix 1 ):

δ = F ′(x∗)− C ′1(x∗)β1F (x∗)
1
b + C ′2(x∗)β2F (x∗)

1
d + C ′3(x∗)β3F (x∗)

1
n

p− β1
b
C1(x∗)F (x∗)

1
b
−1 − β2

d
C2(x∗)F (x∗)

1
d
−1 − β3

n
C3(x∗)F (x∗)

1
n
−1

(12)
Representing the equation that determines implicitly the resource stock.
This is the modified golden rule by the marginal effect of population, the
discount rate and the relative variation of marginal profit.
If the elasticities of output with respect to fishing effort and resource are the
unit for the three fleets (therefore β1 = α1, β2 = α2, and β3 = α3), then the
equation (12) can be rewritten :

δ = F ′(x∗)− [C ′1(x∗)α1 + C ′2(x∗)α2 + C ′3(x∗)α3]F (x∗)

p− α1C1(x∗)− α2C2(x∗)− α3C3(x∗)
(13)

After transformation and consideration of explicit functional forms, we obtain:

δ = r − 2x∗r

K
+

[ c1α1

q1x∗2
+ c2α2

q2x∗2
+ c3α3

q3x∗2
]rx∗(1− x∗

K
)

p− [ c1α1

q1x∗
+ c2α2

q2x∗
+ c3α3

q3x∗
]

(14)

Resulting that (See appendix 2):

2

K
x∗2 + x∗[

δ

r
− 1− θ

Kp
]− δθ

rp
= 0 (15)

With

θ = c1α1q2q3+c2α2q1q3+c3α3q2q1
q1q2q3

Solving the equation (15) admits a unique positive solution. As a result, the
stock equilibrium is given by:

x∗ =
K

4
[1− δ

r
+

θ

Kp
+

√
(1− δ

r
+

θ

Kp
)2 + 8

δθ

Krp
] (16)
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Equation (16) shows that the share of optimal harvest affects the optimal
biomass, x∗, through θ. This means that now the effects of quota sharing on
the optimal stock will depend on their unit harvesting cost.
For the resource stock, given the initial period, the optimal policy capture can
be described by:

h∗(t) = hmax whenever x > x∗

= F (x∗) whenever x = x∗

= 0 whenever x > x∗
(17)

If the country has monopoly power in the market, we can write the planner’s
problem as given by:

V P =
∫∞

0
e−δt[(p(h)α1h− C1(x)β1h

1
b ) + (p(h)α2h− C2(x)β2h

1
d )

+ (p(h)α3h− C3(x)β3h
1
n )]dt

=
∫∞

0
e−δt[p(h)h− C1(x)β1h

1
b − C2(x)β2h

1
d − C3(x)β3h

1
n ]dt

(18)

subject to:

dx
dt

= F (x)− h(t)
0 ≤ h(t) ≤ hmax

x(0) = x0

Where p(h) is the inverse demand function.
The present value Hamiltonian of this problem is given by:

H(x(t), h(t), λ(t)) = e−δt[p(h)h− C1(x)β1h
1
b − C2(x)β2h

1
d − C3(x)β3h

1
n ]dt

+ λ(t)[F (x)− h] + ρ(t)h− φ(t)[h− hmax]
(19)

The optimality conditions are given by:

∂H(.)
∂h(t)

= e−δt[p(h) + p′(h)h− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]

− λ(t) + ρ(t)− φ(t) = 0
(20)

−∂H(.)

∂x(t)
= e−δt[C ′1(x)β1h

1
b + C ′2(x)β2h

1
d + C ′3(x)β3h

1
n ]− λ(t)F ′(x) (21)

∂H(.)

∂λ(t)
= F (x)− h(t) (22)

In the case of a singular control, of the equation (20):

λ(t) = e−δt[p(h)+p′(h)h− β1

b
C1(x)h

1
b
−1− β2

d
C2(x)h

1
d
−1− β3

n
C3(x)h

1
n
−1] (23)
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After transformation (See Appendix 3), we obtain the following solution:

δ = F ′(x∗)− C ′1(x∗)β1h
1
b + C ′2(x∗)β2h

1
d + C ′3(x∗)β3h

1
n

p(h) + p′(h)h− β1
b
C1(x∗)h

1
b
−1 − β2

d
C2(x∗)h

1
d
−1 − β3

n
C3(x∗)h

1
n
−1

(24)
If the elasticities of output with respect to fishing effort and resource are the
unit for the three fleets, then equation (24) can be written as follows:

δ = F ′(x∗)− [C ′1(x∗)α1 + C ′2(x∗)α2 + C ′3(x∗)α3]F (x∗)

p(h) + p′(h)h− α1C1(x∗)− α2C2(x∗)− α3C3(x∗)
(25)

With β1 = α1, β2 = α2, and β3 = α3. And can write that:

δ = r − 2x∗r

K
−

[ c1α1

q1x∗2
+ c2α2

q2x∗2
+ c3α3

q3x∗2
]rx∗(1− x∗

K
)

p(h) + p′(h)h− [ c1α1

q1x∗
+ c2α2

q2x∗
+ c3α3

q3x∗
]

(26)

After transformation(See appendix 4):

x∗4(
4rµ

K2
)+x∗3(

2δµ− 6rµ

K
)+x∗2(

2ψ − 2Kδµ+ 2rKµ

K
)+x∗(

Kψδ − rKψ − rθ
rK

)−δθ
r

= 0

(27)
With θ = c1α1q2q3+c2α2q1q3+c3α3q2q1

q1q2q3
and p(h) = ψ − µh(t)

Where ψ and µ are parameters of the inverse demand function. The equation
(27) admits a numerical solution x∗.

3 Results

Before analyzing situations optimal exploitation of the resource octopus, we
must submit technical data, biological and economic fisheries of cephalopods.
According to the Fisheries Research Institute, the intrinsic growth rate r of oc-
topus is estimated at 20% and the carrying capacity of environment of 1249373
tons.
The stock assessment of octopus on the model of logistic growth and utilization
of the production function of Schaefer to determine the catchability coefficients
q1 = 0.000184, q2 = 0.0000817, and q3 = 0.000236 respectively fleets offshore,
inshore and artisanal.
On the basis of annual catches by the three fleets between 1998 and 2000,
the shares allocated annual quotas were established by public authorities as
follows:

- The offshore fleet: α1 = 51%;

- The coastal fleet: α2 = 11%;
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- The artisanal fleet: α3 = 38%;

Based on the previously estimated parameters, solving the equation (16) deter-
mines the optimal biomass x∗ = 383960 tons and therefore the optimal catch
53192 tons with an average landed price of 6 dollars per kilogram.
Starting with equal shares for each operator (α1 = α2 = α3), the equilibrium
biomass is 381420 tons and the optimal harvest is 52995 tons. When the catch
quota for the offshore fleet increases compared to that of the artisanal fleet
(from α1 = 33% to α1 = 61%), we find that the optimal biomass and capture
the feel of balance by 1.1% and 0.6% . If we abandon the assumption of con-
stant prices and we keep the same settings used in solving equation (16), the
optimal stock is given by equation (27). The admissible solution is 1244300
tons.
The possibility of increasing the share of offshore fishery in relation to artisanal
fishery will be beneficial to the recovery of the resource. This measure may be
supported by reducing the artisanal fleet through conversion to other fisheries
and / or cessation of activity against compensation.

4 Conclusion

In this paper we have examined the optimal management of a fishery under
assumptions that the price is constant or depends on the amount captured, the
natural growth function for the fishing resource depends on the own biomass
and the sea’s environmental conditions (considered to be stable and constant)
and the differences in the harvesting cost are due to differences in the unit cost
of the fishing effort.
We have demonstrated that the share of harvest affects the optimal biomass
as long as the cost harvesting differs between agents.

References

[1] Arnason, R., The Icelandic Fisheries: Evolution and Management of a
Fishing Industry, Oxford: Fishing News Books, (1995).

[2] Clark, C.W., Mathematical Bioeconomics : the optimal management of
renewable, 2nd ed. New York: John Wiley and Sons, (1990).

[3] Clark, C.W., Clarke F.H., and Munro, G.R., ”The optimal exploitation of
renewable resource stocks: problems of irreversible investment”, Econo-
metrica, Vol.47, No.1, (1979), pp.25-49.



Optimal harvesting policies for a fish population 55

[4] Clark, C.W., and Munro, G.R., ”The economics of fishing and modern
capital theory: A simplified approach”, Journal of Environmental Eco-
nomics and Managemen, No.2, (1975), pp.92-106.

[5] Hannesson, R., and Steinshamn S.I., ”How to set catch quotas: constant
effort or constant catch?”, Journal of Environmental Economics and Man-
agement, Vol.20, No.1, (1991), pp.71-91.

[6] Kulmala, S., and All. , ”Individual Transferable Quotas in the Baltic Sea
Herring Fishery: A Socio-Bioeconomic Analysis”, Fisheries Research ,
Vol.84, No.3, (2007), pp. 368-377.

[7] Munro G.R. and Scott A.D.,”The Economics of Management”, In. Hand
Book of Natural Resources and Energy Economics, Vol.2, (1985), pp.XX-
XX.

[8] Tapan Kumar Kar, ”Management of a Fishery Based on Continuous Fish-
ing effort”, Nonlinear Analysis Real World Applications , Vol.47, No.X,
(2004), pp.629-644.

Appendix 1
Equation (9) is then reduced to:

λ(t) = e−δt[p− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1] (A1)

Differentiating equation (A1), with respect to time, we get:

λ̇ = −δe−δt[p− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]

+ e−δt[−β1
b
C ′1(x)h

1
b
−1ẋ− β1(1−b)

b2
C2(x)h

1
b
−2ḣ]

+ e−δt[−β2
d
C ′2(x)h

1
d
−1ẋ− β2(1−d)

d2
C2(x)h

1
d
−2ḣ

− β3
n
C ′3(x)h

1
n
−1ẋ− β3(1−n)

n2 C3(x)h
1
n
−2ḣ] (A2)

Substituting equation (A1) in (10), we get:

λ̇ = e−δt[C ′1(x)β1h
1
b + C ′2(x)β2h

1
d + C ′3(x)β3h

1
n ]

− e−δt[p− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]F ′(x) (A3)

By equating (A2) and (A3):

(F ′(x)− δ)[p− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]

− [C ′1(x)β1h
1
b + C ′2(x)β2h

1
d + C ′3(x)β3h

1
n ]

+ [−β1
b
C ′1(x)h

1
b
−1ẋ− β1(1−b)

b2
C2(x)h

1
b
−2ḣ]

+ [−β2
d
C ′2(x)h

1
d
−1ẋ− β2(1−d)

d2
C2(x)h

1
d
−2ḣ− β3

n
C ′3(x)h

1
n
−1ẋ− β3(1−n)

n2 C3(x)h
1
n
−2ḣ] (A4)

Starting from the steady state, ẋ = ḣ = 0, the equation (A4) can be written:
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(F ′(x∗)− δ)[p− β1
b
C1(x∗)F (x∗)

1
b
−1 − β2

d
C2(x∗)F (x∗)

1
d
−1 − β3

n
C3(x∗)F (x∗)

1
n
−1]

− [C ′1(x∗)β1F (x∗)
1
b + C ′2(x∗)β2F (x∗)

1
d + C ′3(x∗)β3F (x∗)

1
n ] = 0 (A5)

Appendix 2
The equation (14) implies that:

[δ − r + 2rx∗

K
] =

r[
c1α1q2q3+c2α2q1q3+c3α3q2q1

q1q2q3x
∗ ](1−x

∗
K

)

p−[
c1α1q2q3+c2α2q1q3+c3α3q2q1

q1q2q3x
∗ ]

(A6)

Assume that θ = c1α1q2q3+c2α2q1q3+c3α3q2q1
q1q2q3

, the equation (A6) can be rewritten
as follows:

[ δ
r
− 1 + 2x∗

K
] =

[ θ
x∗ ](1−x

∗
K

)

p−[ θ
x∗ ]

p[x
∗δ
r
− x∗ + 2x∗2

K
− δθ

rp
− θx∗

Kp
] = 0 (A7)

Since the price is positive and non-zero, p > 0, then (A7):

x∗δ
r
− x∗ + 2x∗2

K
− δθ

rp
− θx∗

Kp
= 0

With

θ = c1α1q2q3+c2α2q1q3+c3α3q2q1
q1q2q3

(A8)

Appendix 3
Differentiating equation (23), with respect to time, we get:

λ̇ = −δe−δt[p(h) + p′(h)h− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]

+ e−δt[p′(h)ḣ+ p′(h)ḣ+ p′′(h)hḣ− β1
b
C ′1(x)h

1
b
−1ẋ− β1(1−b)

b2
C1(x)h

1
b
−2ḣ]

+ e−δt[−β2
d
C ′2(x)h

1
d
−1ẋ− β2(1−d)

d2
C2(x)h

1
d
−2ḣ− β3

n
C ′3(x)h

1
n
−1ẋ

− β3(1−n)
n2 C3(x)h

1
n
−2ḣ] (A9)

The substitution of λ(t), equation (23), in equation (21) allows to write:

λ̇ = e−δt[C ′1(x)β1h
1
b + C ′2(x)β2h

1
d + C ′3(x)β3h

1
n ]

− e−δt[p(h) + p′(h)h− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β1

n
C3(x)h

1
n
−1]F ′(x) (A10)

By equating the two equations (A9) and (A10), we obtain:
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(F ′(x)− δ)[p(h) + p′(h)h− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]

−[C ′1(x)β1h
1
b + C ′2(x)β2h

1
d + C ′3(x)β3h

1
n ]

+[2p′(h)ḣ+ p′′(h)hḣ− β1
b
C ′1(x)h

1
b
−1ẋ− β1(1−b)

b2
C1(x)h

1
b
−2ḣ]

+[−β2
d
C ′2(x)h

1
d
−1ẋ− β2(1−d)

d2
C2(x)h

1
d
−2ḣ

−β3
n
C ′3(x)h

1
n
−1ẋ− β3(1−n)

n2 C3(x)h
1
n
−2ḣ] (A11)

At steady state, ẋ = ḣ = 0, the equation (A11) becomes:

(F ′(x)− δ)[p(h) + p′(h)h− β1
b
C1(x)h

1
b
−1 − β2

d
C2(x)h

1
d
−1 − β3

n
C3(x)h

1
n
−1]

−[C ′1(x)β1h
1
b + C ′2(x)β2h

1
d + C ′3(x)β3h

1
n ] (A12)

Appendix 4
Assume that θ = c1α1q2q3+c2α2q1q3+c3α3q2q1

q1q2q3
and p(h) = ψ − µh(t) is the inverse

demand function, the equation (4.36) is rewritten as follows:

[1− δ
r
− 2x

K
] =

[ θ
x

][1−x
k

]

ψ−2hµ−[ θ
x

]

[1− δ
r
− 2x

K
] =

θ(1− x
K

)

x(ψ−2hµ)−θ (A13)

Substituting h(t) by F (x), we obtain:

[xψ − 2rx2µ+ 2rx3µ
K
− θ]( δ

r
− 1 + 2x

K
) = θ(1− x

K
) (A14)

4rx4µ
K2 − 6rx3µ

K
+ 2x3δµ

K
+ 2x2ψ

K
− 2x2δµ+ 2rx2µ+ xψδ

r
− xψ − rθ

k
− δθ

r
= 0 (A15)
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Abstract

In this note we show the existence of bounded solutions of
the nonlinear parabolic system

(u1)t −∆p1u1 = a1(x) |∇u1|p1 + f1(x, u2)

(u2)t −∆p2u2 = a2(x) |∇u2|p2 + f2(x, u1)

where ∆sz = div(|∇z|s−2∇z), s > 1 is the s-Laplacian operator
and ai, fi are given functions, i = 1, 2.

Keywords: Nonlinear parabolic systems; nonlinear gradients terms; p-
Laplacian; existence and bounded solutions.

1 Introduction

Let Ω be an open and bounded subset in RN with smooth boundary Γ and
let T be a positive real number. In the cylinder QT = Ω×]0, T [, with lateral
boundary ST = Γ×]0, T [, we consider the nonlinear system (S)

∂u1

∂t
−∆p1u1 = a1(x) |∇u1|p1 + f1(x, u2) (x, t) ∈ QT , (1)

∂u2

∂t
−∆p2u2 = a2(x) |∇u2|p2 + f2(x, u1) (x, t) ∈ QT , (2)

u1(x, t) = u2(x, t) = 0 (x, t) ∈ ST , (3)

(u1(x, 0), u2(x, 0)) = (u10(x), u20(x)) x ∈ Ω, (4)
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where ∆piz = div(|∇z|pi−2∇z), pi > 1, i = 1, 2. Precise conditions on ai, fi
and ui0 will be given later.

The prototype systems (S) is only weakly coupled in the reaction terme
f ′i s and turns up in many mathematical settings as non-Newtonian fluids,
nonlinear filtration, population evolution, reaction diffusion problems, porus
media and so forth. Therefore, it is important to obtain information about the
existence of solutions for this problem.

When ai ≡ 0, much attention has been given to the existence and the
regularity of solutions of systems (S), by using different approaches (see, for
exemple, [12, 15] and references therein.

The case of a single equation of the type (S) is studied in [10, 11] . The
purpose of this paper is the natural extension to system (S) of the result by
[5], which concerns the single equation ∂u

∂t
−∆pu = d |∇u|p + f(x, t).

Notation

We represent the Sobolev space of order m in Ω by

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω)∀|α| ≤ m},

with the norm

‖u‖m,p =
( ∑
|α|≤m

|Dαu|pLp(Ω)

)1/p

, u ∈ Wm,p(Ω), 1 ≤ p <∞.

Let D(Ω) be the space of test functions in Ω and by Wm,p
0 (Ω) we represent

the closure of D(Ω) in Wm,p(Ω). The dual space of Wm,p
0 (Ω) is denoted by

W−m,p′(Ω) with p′ is such that 1
p

+ 1
p′

= 1. We use the symbols (·, ·) and | · |, to

indicate the inner product and the norm in L2(Ω). We use 〈·, ·〉W−1,p(Ω),W 1,p
0 (Ω)

to indicate the duality between W−1,p′(Ω) and W 1,p
0 (Ω) and ‖ · ‖0 to indicate

the norm W 1,p
0 (Ω). The pi - Laplacian operator Ai is such that for i = 1, 2

Ai : W 1,pi
0 (Ω) → W−1,p′i(Ω)
u 7→ −∆piu

and it satisfies the following properties:

� Ai is monotonic, that is, 〈Aiu−Aiv, u− v〉 ≥ 0,∀u, v ∈ W 1,p
0 (Ω);

� Ai is hemicontinuous, that is, for each u, v, w ∈ W 1,p
0 (Ω) the function

λ 7→ 〈Ai(u+ λv), w〉 is continuous in R;

� 〈Aiu(t), u(t)〉W−1,p′ (Ω)×W 1,p
0 (Ω) = ‖u‖p0;

� 〈Aiu(t), u′(t)〉W−1,p′ (Ω)×W 1,p
0 (Ω) = 1

p
d
dt
‖u‖p0;

� ‖Aiu(t)‖W−1,p′ (Ω) ≤ C‖u‖p−1
0 , where C is a constant.
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2 Assumptions and main results

First we specify our notion of weak solution.

Definition 2.1 A pair (u1, u2) is said to be a weak solution of (S) if for
i = 1, 2

ui ∈ C(0, T ;L2(Ω));

∂ui
∂t
∈ Lp′i(0, T ;W−1,p′i(Ω)) + L1(QT );∫

Ω

ui(x, τ)wi(x, τ)dx−
∫

Ω

ui(x, 0)wi(x, 0)dx−
∫ τ

0

〈vi1, ui〉dt−
∫ τ

0

∫
Ω

vi2uidxdt+∫ τ

0

∫
Ω

|∇ui|pi−2∇ui∇widxdt =

∫ τ

0

∫
Ω

ai(x) |∇ui|pi widxdt+

∫ τ

0

∫
Ω

fi(x, u)widxdt.

∀τ ∈ [0, T ] , ∀wi ∈ L∞(Ω× (0, τ)) ∩ Lpi(0, τ ;W 1,pi
0 (Ω))

and
∂wi
∂t

= vi1 + vi2 ∈ Lp
′
(0, τ ;W−1,p′(Ω)) + L1(Ω× (0, τ)).

We consider the following assumptions on the data:

(H1)pi ∈ [2, N [ , (i = 1, 2).

(H2) ui0 ∈ L+∞(Ω), (i = 1, 2).

(H3) ai ∈ L∞(Ω), (i = 1, 2).

(H4) fi ∈ C1Ω× (R), (i = 1, 2).

The next lemma plays a central role in the proof of the existence theorem.
Its proof can be found in [10].

Lemma 2.2 For every β, f ∈ L∞(Ω), 0 ≤ β(s) ≤ M,∀s ∈ R and α ∈
[2, N ] , the problem

ut −∆αu = β(u) |∇u|α + f, u = 0 on ∂Ω,

possesses a solution u such that u ∈ L∞(QT )∩L∞(0, T ;L2(Ω))∩Lα(0, T ;W 1,α
0 (Ω)).

3 Existence of weak bounded solutions

Our main result is the following:

Theorem 3.1 Let (H1) to (H4) be satisfied. Then there exists at least one
weak bounded solution (u1, u2) of problem (S) such that for i = 1, 2 , we have
ui ∈ Lpi(0, T ;W 1,pi

0 (Ω)) ∩ C(0, T ;Lqi(Ω)) ∩ L∞(QT ), for all qi ∈ [1,+∞).
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Denote fi(x, u1, u2) =

{
f1(x, u2) if i = 1
f2(x, u1) if i = 2

We will prove Theorem 1 by means of nonlinear parabolic regularization.
Starting from a suitable initial iteration (u0

1, u
0
2) = (u10, u20) , we construct

a sequence {(un1 , un2 )}∞n=1 from the iteration process

∂uni
∂t

+Aiuni = ai(x) min {|∇uni |
pi , n}+ fi(x, u

n−1
1 , un−1

2 ) (x, t) ∈ QT , (5)

uni (x, t) = 0 (x, t) ∈ ST , (6)

uni (x, 0) = ui0(x) x ∈ Ω (7)

where i = 1, 2. It is clear that for each n = 1, 2, ..., the above systems
consists of two uncoupled initial boundary-value problems. By classical results,
the existence of weak solution uni ∈ C(0, T ;L2(Ω))∩Lpi(0, T ;W 1,pi

0 (Ω)) follows
from [17]. By Lemma 1 we assert that

uni ∈ L∞(QT ), i = 1, 2. (8)

To find a limit function (u1(x, t), u2(x, t)) of (un1 (x, t), un2 (x, t)) we will di-
vide our proof in the following four lemmas.

Lemma 3.2 There exist a constant c independent of n such that for τ ∈
[0, T ]

sup
0≤τ≤T

∫
Ω

|uni (x, τ)|2 dx+

∫ T

0

∫
Ω

|∇uni |
pi dxdt ≤ c. (9)

Proof Since uni ∈ L∞(QT ) ∩ Lpi(0, T ;W 1,pi
0 (Ω)), sinh(λuni ) ∈ L∞(QT ) ∩

Lpi(0, T ;W 1,pi
0 (Ω)) (λ = max (‖a1‖∞ , ‖a2‖∞)) is a testing function for (5) .

For each τ ∈ [0, T ] , we derive

∫
Ω

∫ uni (x,τ)

0

sinh(λs)dsdx+λ

∫ τ

0

∫
Ω

cosh(λuni ) |∇uni |
pi dxdt+λ

∫ τ

0

∫
Ω

|sinh(λuni )| |∇uni |
pi dxdt

∫ τ

0

∫
Ω

|sinh(λuni )|
∣∣fi(x, un−1

1 , un−1
2 )

∣∣ dxdt+

∫
Ω

∫ ui0(x)

0

sinh(λs)dsdx. (10)

It is not difficult to cheek that

∫ w

0

sinh(λs)ds =
1

λ
[cosh(λw)− 1] ≥ λ

2
(w)2 , (11)

cosh(s) ≥ |sinh(s)| , cosh(s) ≥ 1. (12)
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By (8), (H2), (H4), (11), (12), we obtain∫
Ω

|uni |
2 (x, τ)dx+

∫ T

0

∫
Ω

|∇uni |
pi dxdt ≤ ci(T ). (13)

Taking the supremum for τ ∈ [0, T ] , we have, for ∀n ∈ N

sup
0≤τ≤T

∫
Ω

|uni |
2 (x, τ)dx+

∫ T

0

∫
Ω

|∇uni |
pi dxdt ≤ ci(T ). (14)

This proves (9).
By lemma 2, there exit a subsequence {uni } , i = 1, 2 (denoted again by

{uni }) and a function ui(x, t) ∈ Lpi(0, T ;W 1,pi
0 (Ω)) ∩ L∞(QT ) such that as

n→ +∞,

uni ⇀ ui weakly in Lpi(0, T ;W 1,pi
0 (Ω)); (15)

uni ⇀ ui weakly * in L∞(QT ), (16)

and ui satisfies (8) and (9) by the weak lower semicontinuity.

Lemma 3.3

uni ⇀ ui strongly in Lpi(QT ); (17)

uni ⇀ ui a.e. in QT . (18)

Proof We have
∂uni
∂t

= −Aiuni +
[
ai(x) min {|∇uni |

pi , n}+ fi(x, u
n−1
1 , un−1

2 )
]
.

By (8) and (14) we derive

‖Aiuni ‖
Lp
′
i (0,T ;W

−1,p′
i

0 (Ω))
≤ c ; (19)∥∥ai(x) min {|∇uni |

pi , n}+ fi(x, u
n−1
1 , un−1

2 )
∥∥
L1(QT )

≤ c. (20)

By virtue of lemma 4.2 in [5] we obtain

uni ⇀ ui strongly in Lpi(QT ). (21)

Taking a subsequence of {uni } , i = 1, 2 (denoted again by {uni }) further, we
have

uni ⇀ ui a.e. in QT . (22)

By Vitali’s theorem, we have, for any r ∈ (1,+∞) ,

fi(., u
n
1 , u

n
2 ) ⇀ fi(., u1, u2) strongly in Lr(QT ). (23)
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Lemma 3.4 ∇uni ⇀ ∇ui a.e. in QT .

Proof Fix µ, ε > 0. Due to (22), Egoroff’s theorem implies that there exists
a measurable set Aε ⊂ QT such that LN+1(QT\Aε) ≤ ε and uni ⇀ ui uniformly
on Aε, which follows that

|uni ⇀ umi | < µ on Aε (24)

if n,m > M. Let ξ be a cutoff function such that ξ ≡ 1 on Aε, sptξ ⊂ QT .
By subtracting (5)n and (5)m we have

∂uni
∂t
− ∂umi

∂t
+ (Aiuni −Aiumi ) =

ai(x) (min {|∇uni |
pi , n} −min {|∇umi |

pi ,m})

+fi(x, u
n−1
1 , un−1

2 )− fi(x, um−1
1 , um−1

2 ). (25)

Choosing a testing function ξTε(u
n
i − umi ) = ξmax {−ε,min {(uni − umi ) , ε}}

for (25) and noting that Tε is an odd function satisfying |Tε| ≤ ε, we conclude
that ∫

QT

(
|∇uni |pi−2∇uni − |∇umi |pi−2∇umi

)
.(∇uni −∇umi )ξT ′ε(u

n
i − umi ) dz

≤
∫
QT

(uni − umi )Tε(u
n
i − umi )ξtdz

+

∫
QT

(
|∇uni |pi−2∇uni − |∇umi |pi−2∇umi

)
.∇ (ξTε(u

n
i − umi )) dz

+

∫
QT

ai(x) (min {|uni |
pi , n} −min {|umi |

pi ,m}) ξTε(uni − umi ) dz

+

∫
QT

(
fi(x, u

n−1
1 , un−1

2 )− fi(x, um−1
1 , um−1

2 )
)
ξTε(u

n
i − umi ) dz

≤ ci(µ)ε.

By virtue of (8) and (9). It follows that from (23) that

lim
n,m→+∞

sup

∫
Aε

(
|∇uni |pi−2∇uni − |∇umi |pi−2∇umi

)
.(∇uni −∇umi )dz ≤ Ci(µ)ε.

By the arbitrariness of ε it results that

lim
n,m→+∞

sup

∫
Aε

(
|∇uni |pi−2∇uni − |∇umi |pi−2∇umi

)
.(∇uni −∇umi )dz = 0. (26)
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Since pi > 1, we obtain

∫
Aε

|∇uni −∇umi |
pi dz ≤ c

∫
Aε

(
|∇uni |pi−2∇uni − |∇umi |pi−2∇umi

)
.(∇uni−∇umi )dz.

Therefore it follows from (26) that

lim
n,m→+∞

sup

∫
Aε

|∇uni −∇umi |
pi dz = 0. (27)

We deduce that
∇uni ⇀ ∇ui a.e. in Aε.

This is true for each ε > 0 and so

∇uni ⇀ ∇ui a.e. in QT . (28)

By (9) and Vitali’s theorem, we have, for any ri ∈ (1, pi) , i = 1, 2

∇uni ⇀ ∇ui strongly in Lri(QT ), i = 1, 2. (29)

Lemma 3.5 ∇uni ⇀ ∇ui strongly in Lpi(QT ), i = 1, 2.

Taking a testing function sinh(λ(uni −umi )) ∈ L∞(QT )∩Lpi(0, T ;W 1,pi
0 (Ω))

for (25) (λ = max (‖a1‖∞ , ‖a2‖∞) + 1), we deduce that

λ

∫
QT

cosh(λ(uni − umi ))
(
|∇uni |pi−2∇uni − |∇umi |pi−2∇umi

)
.(∇uni −∇umi )dz

≤ A

∫
QT

sinh(λ(uni − umi )) (|∇uni |
pi + |∇umi |

pi) dz+

∫
QT

|sinh(λ(uni − umi ))|
∣∣(fi(x, un−1

1 , un−1
2 )− fi(x, um−1

1 , um−1
2 )

)∣∣ dz, (30)

where A = max (‖a1‖∞ , ‖a2‖∞) .
Since sinh(λs) is an odd function. The above inequality becomes∫

QT
λ cosh(λ(uni − umi ))dz

−
∫
QT
Asinh(λ(uni − umi ))∇uni |pi−2∇uni − |∇umi |pi−2∇umi .(∇uni −∇umi )dz

≤ A
∫
QT
|sinh(λ(uni − umi ))|

(
|∇uni |

pi−2∇uni .∇umi + |∇umi |
pi−2∇umi .∇uni

)
dz

+
∫
QT
|sinh(λ(uni − umi ))|

∣∣(fi(x, un−1
1 , un−1

2 )− fi(x, um−1
1 , um−1

2 )
)∣∣ dz. (31)

Recalling (28) and let m→ +∞, by Fatou’s lemma we deduce that
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∫
QT

(
|∇uni |pi−2∇uni − |∇ui|pi−2∇ui

)
.(∇uni −∇ui)dz

≤ A

∫
QT

|sinh(λ(uni − ui))|
(
|∇uni |

pi−2∇uni .∇ui + |∇umi |
pi−2∇ui.∇uni

)
dz

+

∫
QT

|sinh(λ(uni − ui))|
∣∣(fi(x, un−1

1 , un−1
2 )− fi(x, u1, u2)

)∣∣ dz = J1 + J2 (32)

And we use (8) and (9) to estimate J1 and J2 as below. For J1, by Hölder
inequality we have

J1 ≤ A

(∫
QT

|sinh(λ(uni − ui))|
pi |∇ui|pi dz

) 1
pi

(∫
QT

|∇uni |
pi)dz

) pi−1

pi

+A

(∫
QT

|sinh(λ(uni − ui))|
pi−1

pi |∇ui|pi dz
) pi−1

pi

(∫
QT

|∇uni |
pi)dz

) 1
pi

≤ C

(∫
QT

|sinh(λ(uni − ui))|
pi |∇ui|pi dz

) 1
pi

+

+C

(∫
QT

|sinh(λ(uni − ui))|
p′i |∇ui|pi dz

) 1
p′
i
. (33)

Since |sinh(λ(uni − ui))| is uniformly bounded for ∀n ∈ N, in view of (18)
and (23) we assert that J1 + J2 tends to zero when n → ∞ by Lebesgue
dominated convergence theorem. Then

lim
n→+∞

∫
QT

(
|∇uni |pi−2∇uni − |∇ui|pi−2∇ui

)
.(∇uni −∇ui) dz = 0. (34)

With the similar process to (27), it follows that

lim
n→+∞

∫
QT

(|∇uni |pi − |∇ui|pi) dz = 0, (35)

which implies that

Aiuni → Aiui strongly in in Lp
′
i(0, T ;W

−1,p′i
0 (Ω));

fi(., u
n
1 , u

n
2 )→ fi(., u

n
1 , u

n
2 ) strongly in in Lp

′
i(0, T ;W

−1,p′i
0 (Ω));

ai(x) min {|∇uni |
pi , n} → ai(x) |∇ui|pi strongly in in L1(QT ).

Thus

∂uni
∂t
→ ∂ui

∂t
strongly in in Lp

′
i(0, T ;W

−1,p′i
0 (Ω)) + L1(QT ).
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Therefore

∂ui
∂t

∈ Lp
′
i(0, T0;W

−1,p′i
0 (Ω)) + L1(QT );

∂ui
∂t

+Aiui = ai(x) |∇ui|pi + fi(x, u1, u2).

As Lp
′
i(0, T ;W

−1,p′i
0 (Ω))+L1(QT ) ⊂ L1(0, T ;H−s(Ω)) for large enough, then

uni converges strongly to ui in C(0, T ;H−s(Ω)) and

uni (x, 0)→ ui(x, 0) strongly in H−s(Ω)

implies ui(x, 0) = ui0(x).
The proof of Theorem 1 is completed.
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Abstract

A stabilized finite element method for the two-dimensional
stationary incompressible Navier-Stokes equations is investi-
gated in this work. A macroelement condition is introduced
for constructing the local stabilized formulation of the station-
ary Navier-Stokes equations. By satisfying this condition, the
stability of the Q1−P0 quadrilateral element and the P1−P0 tri-
angular element is established. Moreover, the well-posedness
and the optimal error estimate of the stabilized finite ele-
ment method for the stationary Navier-Stokes equations are
obtained. In order to evaluate the performance of the method,
the numerical results are compared with some previously pub-
lished works or with others coming from commercial code like
Adina system.

Keywords: Incompressible Navier-Stokes Equations, Stabilized finite ele-
ment, A posteriori error estimates, Adina system.

1 Introduction

A posteriori error analysis in problems related to fluid dynamics is a subject
that has received a lot of attention during the last decades. In the conforming
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case there are several ways to define error estimators by using the residual
equation. In particular, for the Stokes problem, M. Ainsworth, J. Oden [2],
C. Carstensen, S.A. Funken [6], D. Kay, D. Silvester [16] and R. Verfurth [22]
introduced several error estimators and provided that they are equivalent to
the energy norm of the errors. Other works for the stationary Navier-Stokes
problem have been introduced in [4, 8, 13, 15, 19, 23, 24].
We were interested in the resolution of the incompressible Navier-Stokes equa-
tions in two dimensions on the fields where the numerical problem is well posed
with boundary conditions and other aspects of the problem. A discretization
by quadrangular finite elements is used. Two iterative methods are used to
solve the not-symmetrical discrete system of the Navier-Stokes equations. The
method BiConjugate Gradients Stabilized Method (BICGSTAB) and minimal
residual generalized method (GMRES) are given in [8, 12]. The technique of
preconditioning of the linear systems of big sizes is used to reduce the time of
convergence of the iterative methods. This technique of preconditioning has al-
lowed us to accelerate the convergence of the iterative methods independently
of the Reynolds number and the number of meshes. Moreover, the methods of
Picard or Newton are used to solve the non-linear algebraic systems resulting
from the discretization.
Section 2 presents the model problem used in this paper. The Stabilized finite-
element approximation described is in section 3. Section 4 shows the methods
of a posteriori error bounds of the computed solution. Numerical experiments
carried out within the framework of this publication and their comparisons
with other results are shown in section 5.

2 Incompressible Navier-Stokes equations

Let Ω be a bounded domain in R2 assumed to have a Lipschitz continuous
boundary ∂Ω and to satisfy a further condition stated in (B1) below. We
consider the steady-state Navier-Stokes equations for the flow of a Newtonian
incompressible viscous fluid with constant viscosity:{

−ν∆u+ (u.∇)u+∇p = f, ∇.u = 0 x ∈ Ω;
u|∂Ω = 0,

(1)

where ν > 0 is a given constant called the kinematic viscosity.
u is the fluid velocity, p is the pressure field, ∇ is the gradient and ∇. is the
divergence operator.
This system is the basis for computational modeling of the flow of an incom-
pressible Newtonian fluid such as air or water. The presence of the nonlinear
convection term u.∇u means that boundary value problems associated with
the Navier-Stokes equations can have more than one solution.
We define the spaces:
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X = H1
0 (Ω)2, V = L2(Ω)2,

W = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
q dx = 0},

The spaces L2(Ω)m , m= 1, 2, 4 are endowed with the L2-scalar product and
L2 − norm denoted by (., .) and |.|. The spaces H1

0 (Ω) and X are equipped

with the scalar product and norm ((u, v)) = (∇u,∇v), ‖u‖ = (∇u,∇u)
1
2 .

As mentioned above, we need a further assumption on Ω:
(B1) Assume that Ω is regular so that the unique solution (v, q) ∈ (X,M) of
the steady Stokes problem

−∆v +∇q = l, ∇.v = 0 in Ω, v|∂Ω = 0, (2)

for a prescribed l ∈ V exists and satisfies

‖v‖2 + ‖q‖1 ≤ C0|l|, (3)

where C0 > 0 is a constant depending on Ω and ‖.‖i denotes the usual norm
of the Sobolev space H i(Ω) or H i(Ω)2 for i = 1, 2.
We introduce the following Laplace operator
Au = −∆u, ∀u ∈ D(A) = H2(Ω)2 ∩X,
and the bilinear operator

B(u, v) = (u.∇)v +
1

2
(∇.u)v, ∀u, v ∈ X, (4)

Moreover, we define the continuous bilinear forms a(., .) and d(., .) on X ×X
and X ×W , respectively, by: a(u, v) = ν((u, v)), ∀u, v ∈ X,
and d(v, q) = −(v,∇q) = (q,∇.v),∀v ∈ X, q ∈ W,
and a generalized bilinear form on (X,M)× (X,M) by
B((u, p); (v, q)) = a(u, v)− d(v, p) + d(u, q),
and a trilinear form on X ×X ×X by
b(u, v, w) = 〈B(u, v), w〉X′×X = ((u.∇)v, w) + 1

2
((∇.u)v, w)

= 1
2
((u.∇)v, w)− 1

2
((u.∇)w, v), ∀u, v, w ∈ X.

We remark that the validity of assumption (B1) is known (see [13]) if ∂Ω is of
C2, or if Ω is a two-dimensional convex polygon. From assumption (B1), it is
easily shown [13] that

|v| ≤ γ0‖v‖, ‖v‖ ≤ γ0 | PAv |, ‖v‖2 ≤ γ1 | PAv |, (5)

where P is the L2-orthonormal projection of V onto the space
{v ∈ L2(Ω)2 : ∇.v = 0 in Ω and v.n|∂Ω = 0}, and γ0, γ1, . . . are positive
constants depending only on Ω.
It is easy to verify that B and b satisfy the following properties (see [10]):

ν‖u‖2 = B((u, p); (u, p)),
|B((u, p); (v, q))| ≤ γ2(‖u‖+ |p|)(‖v‖+ |q|),
α0(‖u‖+ |p|) ≤ sup(v,q)∈(X,W )

B((u,p);(v,q))
‖v‖+|q|

(6)
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hold for all (u, p), (v, q) ∈ (X,W ) and constants γ2 > 0 and α0 > 0,

b(u, v, w) = −b(u,w, v), (7)

|b(u, v, w)| = 1

2
c0|u|

1
2‖u‖

1
2 (‖v‖|w|

1
2‖w‖

1
2 + |v|

1
2‖v‖

1
2‖w‖), (8)

for all u, v, w ∈ V and

|b(u, v, w)|+ |b(v, u, w)|+ |b(w, u, v)| ≤ c1‖u‖|Av||w|, (9)

for all u ∈ X, v ∈ D(A), w ∈ Y, where c0, c1 , . . . , are positive constants
depending on the domain Ω.
Under the above notations, the variational formulation of the problem (1)
reads as follows: find (u, p) ∈ (X,M) such that for all (v, q) ∈ (X,M):

B((u, p); (v, q)) + b(u, u, v) = (f, v). (10)

The following existence and uniqueness results are classical (see [10, Chapter
IV]).

Theorem 2.1 Assume that ν and f ∈ V satisfy the following uniqueness
condition:

1− c0γ
2
0

ν2
|f | > 0. (11)

Then the problem (10) admits a unique solution (u, p) ∈ (D(A)∩X,H1(Ω)∩W )
such that

‖u‖ ≤ γ0

ν
|f |, |Au|+ ‖p‖1 ≤ c0|f |, (12)

where γ0 and c0 are defined in (5) and (8), respectively.

3 Stabilized finite element approximation

In this section we apply the stabilized finite element method developed for
the Stokes equations to consider the numerical solution of the two-dimensional
stationary incompressible Navier-Stokes equations (1). Let h > 0 be a real
positive parameter. The finite element subspace (Xh,Mh) of (X,M) is char-
acterized by τh = τh(Ω), a partitioning of Ω into triangles or quadrilaterals,
assumed to be regular in the usual sense (see [10, 16]), i.e., for some σ and ω
with σ > 1 and 0 < ω < 1,
hK ≤ σρK ∀K ∈ τh,
| cos(θiK)| ≤ ω, i=1, 2, 3, 4, ∀K ∈ τh,
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where hK is the diameter of element K, ρK is the diameter of the inscribed
circle of element K, and θiK are the angles of K in the case of a quadrilateral
partitioning. The mesh parameter h is given by h = max{hK} and the set of
all interelement boundaries will be denoted by Γh.
The finite element subspaces of interest in this paper are defined by setting

R1(K) =

{
P1(K) if K is triangular,
Q1(K) if K is quadrilateral,

(13)

giving the continuous piecewise bilinear velocity subspace

Xh = {v ∈ X : vi|K ∈ R1(K), i = 1, 2, ∀K ∈ τh}, (14)

and the piecewise constant pressure subspace

Mh = {q ∈M : q|K ∈ P0(K), ∀K ∈ τh}. (15)

Note that neither of these methods are stable in the standard Babuska-Brezzi
sense; P1−P0 triangle locks on regular grids (since there are more discrete in-
compressibility constraints than velocity degrees of freedom), and the Q1−P0

quadrilateral is the most infamous example of an unstable mixed method.
With the above choices of the velocity-pressure finite element spaces (Xh,Mh) ⊂
(X,M), a globally stabilized discrete formulation of the Navier-Stokes problem
(10) can be defined as follows.

Definition 3.1 Globally stabilized formulation: find (uh, ph) ∈ (Xh,Mh)
such that for all (v, q) ∈ (Xh,Mh) :

Bh((uh, ph); (v, q)) + b(uh, uh, v) = (f, v), (16)

where
Bh((u, p); (v, q)) = B((u, p); (v, q)) + βCh(p, q), ∀(u, p), (v, q) ∈ (X,W )
Ch(p, q) =

∑
e∈Γh

he
∫
e
[p]e[q]eds, ∀p, q ∈ W,

and [.]e is the jump operator across e ∈ Γh, and β > 0 is the global stabilization
parameter [14].

In order to define a locally stabilized formulation of the Navier-Stokes problem,
we introduce a macroelement partitioning Λh as follows: Given any subdivision
τh, a macroelement partitioning Λh may be defined such that each macroele-
ment K is a connected set of adjoining elements from τh. Every element K
must lie in exactly one macroelement, which implies that macroelements do
not overlap. For each K, the set of interelement edges, which are strictly in
the interior of K, will be denoted by ΓK , and the length of an edge e ∈ ΓK is
denoted by he. With these additional definitions a locally stabilized formula-
tion of the Navier-Stokes problem (10) can be stated as follows.
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Definition 3.2 Locally stabilized formulation: find (uh, ph) ∈ (Xh,Mh),
such that for all (v, q) ∈ (Xh,Mh)

Bh((uh, ph); (v, q)) + b(uh, uh, v) = (f, v), (17)

where
Ch(p, q) =

∑
K∈

∧
h

∑
e∈ΓK

he
∫
e
[p]e[q]eds, ∀p, q ∈ W,

[.]e is the jump operator across e ∈ ΓK and β > 0 is the local stabilization
parameter.

The following stability results of these mixed methods for the macroelement
partitioning defined above were formally established by Kay and Silvester [16].

Theorem 3.3 Given a stabilization parameter β ≥ β0 > 0, suppose that
every macroelement K ∈ τh belongs to one of the equivalence classes εK̂ , and
that the following macroelement connectivity condition is valid: for any two
neighboring macroelements K1 and K2 with

∫
K1∩K2

ds 6= 0 there exists v ∈ Xh

such that
supp v ⊂ K1 ∪K2 and

∫
K1∩K2

v.nds 6= 0
Then,

‖Bh((u, p); (v, q))‖ = γ3(‖u‖+ |p|)(‖v‖+ |q|), ∀(u, p), (v, q) ∈ (X,M), (18)

α(‖uh‖+ |ph|) = sup(v,q)∈(Xh,Mh)
Bh((uh, ph); (v, q))

‖v‖+ |q|
, ∀(uh, ph) ∈ (Xh,Mh),

(19)
|Ch(p− Jhp, qh)| ≤ c4h‖p‖1|qh|, Ch(p, qh) = 0, ∀p ∈ H1(Ω) ∩M, qh ∈Mh,

(20)
where α > 0, γ3 > 0 are two constants independent of h and β, and β0 is any
fixed positive constant and n is the outnormal vector.
In the suite we shall assume that β ≥ β0.

Theorem 3.4 Under the assumptions of Theorem 2.1 and Theorem 3.3,
the problem (17) admits a unique solution (uh, ph) ∈ (Xh,Mh) satisfying

‖uh‖ ≤
γ0

ν
|f |, |ph| ≤ α−1(c0ν

−2γ3
0 |f |2 + γ0|f |). (21)

4 Error estimates

In order to derive error estimates of the stabilized finite element solution
(uh, ph), we also need the Galerkin projection (Rh, Qh) : (X,M) −→ (Xh,Mh)
defined by

Bh((Rh(v, q)− v,Qh(v, q)− q); (vh, qh)) = 0, ∀(vh, qh) ∈ (Xh,Mh), (22)
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for each (v, q) ∈ (X,M). Note that, due to Theorem 3.3, (Rh, Qh) is well
defined. By using an exact similar argument to the one used by Layton,
Tobiska [17], we may obtain the following approximation properties.

Lemma 4.1 Under the assumptions of Theorem 3.3, the projection (Rh, Qh)
satisfies

|v −Rh(v, q)|+ h‖v −Rh(v, q)‖+ h|q −Qh(v, q)| ≤ c5h(|Av|+ |q|), (23)

for all (v, q) ∈ (X,M) and

|v −Rh(v, q)|+ h‖v −Rh(v, q)‖+ h|q −Qh(v, q)| ≤ c5h
2(|Av|+ ‖q‖1), (24)

for all (v, q) ∈ (D(A), H1(Ω) ∩M).

Theorem 4.2 Assume that the assumptions of Theorem 2.1 and Theorem
3.3 hold. Then the stabilized finite element solution (uh, ph) satisfies the error
estimates:

|u− uh|+ h(‖u− uh‖+ |p− ph|) ≤ ch2, (25)

where c > 0 is a general constant depending on the data (Ω, ν, β0, f).

Proof Since Ch(p, qh) = 0, ∀p ∈ H1(Ω) ∩M, qh ∈Mh,
we derive from (10) and (17) that for all (v, q) ∈ (Xh,Mh)

Bh((eh, ηh); (v, q)) + b(u−Rh(u, p) + eh, u, v) + b(uh, u−Rh(u, p) + eh, v) = 0,
(26)

where eh = Rh(u, p) − uh and ηh = Qh(u, p) − ph. Taking (v, q) = (eh, ηh) in
(26) and using (7), we arrive at

ν‖eh‖2+β0Ch(ηh, ηh)+b(eh, u, eh) ≤ |b(u−Rh(u, p), u, eh)|+|b(uh, u−Rh(u, p), eh)|.
(27)

We find from (8), (12), (21) and (24) that

ν‖eh‖2−|b(eh, u, eh)| ≥ ν‖eh‖2−c0γ0‖u‖‖eh‖2 ≥ ν(1−c0γ
2
0 |f |ν−2)‖eh‖2, (28)

|b(uh, u−Rh(u, p), eh)|+ |b(u−Rh(u, p), u, eh)|

≤ c0γ0(‖u‖+ ‖uh‖)‖eh‖‖u−Rh(u, p)‖ ≤ ch‖eh‖. (29)

Combining (27) with (28-29) yields

‖eh‖ ≤ ch. (30)

Moreover, by using (8-9), (12), (24) and (30), we have
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|b(uh, u−Rh(u, p), eh)|+ |b(u−Rh(u, p), u, eh)|
≤ |b(u, u−Rh(u, p), eh)|+ |b(u−Rh(u, p), u, eh)|
+|b(u−Rh(u, p), u−Rh(u, p), eh)|+ |b(eh, u−Rh(u, p), eh)|
≤ c1|Au| |u−Rh(u, p)| ‖eh‖
c0γ0(‖u−Rh(u, p) + ‖eh‖)‖u−Rh(u, p)‖ ‖eh‖ ≤ ch2 ‖eh‖.

(31)

Combining (27-28) with (31) gives

‖eh‖ ≤ ch2, (32)

Moreover, one finds from (24), (32) and (12) that

|u− uh| ≤ |eh|+ |u−Rh(u, p)| ≤ γ0‖eh‖+ c5h
2(|Au|+ ‖p‖1) ≤ ch2 (33)

‖u− uh‖ ≤ ‖eh‖+ ‖u−Rh(u, p)‖ ≤ ch2 + c5h(|Au|+ ‖p‖1) ≤ ch (34)

Using again (19), (26), (12) and (21), we obtain

|ηh| ≤ α−1c(‖u‖+ ‖uh‖)‖u− uh‖ ≤ c‖u− uh‖. (35)

It follows from (24), (34-35) and (12) that

|p− ph| ≤ |p−Qh(u, p)|+ |ηh| ≤ ch(|Au|+ ‖p‖1) + c‖u− uh‖ ≤ ch (36)

Combining (34-35) with (36) yields (25).

5 Numerical simulations

In this section some numerical results of calculations with finite element Method
and ADINA system will be presented. Using our solver, we run two traditional
test problems (Channel domain [8] and Backward-facing step problem [17, 20])
with a number of different model parameters.
If points in Ω are denoted by ξ = x

L
, then denotes points of a normalized

domain. In addition, let the velocity u be defined so that u = Uu∗ where U
is a reference value-for example, the maximum magnitude of velocity on the
inflow. If the pressure is scaled so that p(Lξ) = U2p∗(ξ) on the normalized
domain. The flow Reynolds number is defined by R = UL/υ.
Notice that taking the limit R 7→∝ gives the reduced hyperbolic problem{

u∗.∇u∗ +∇p∗ = f∗,
∇.u∗ = 0.

(37)

The relative velocity error is eh = ‖u−uh‖
‖u‖ and pressure error is ηh = |p−ph|

|p| .
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Example 5.1 Square domain Ω = (−1, 1)2, parabolic inflow boundary con-
dition, natural outflow boundary condition, analytic solution. The Poiseuille
channel flow solution

ux = 1− y2; uy = 0; p = −2νx; (38)

is also an analytic solution of the Navier-Stokes equations, since the convection
term (u.∇)u is identically zero. It also satisfies the natural outflow condition{

ν ∂ux
∂x
− p = 0

∂uy
∂x

= 0.
(39)

The pressure gradient is proportional to the viscosity parameter. This makes
sense physically; if a fluid is not very viscous then only a small pressure dif-
ference is needed to maintain the flow. Notice also that in the extreme limit
ν −→ 0, the parabolic velocity solution specified in (38) satisfies the Euler
equations (37) together with a constant pressure solution.

Fig. 1. Streamline plot associated with a 32× 32 square grid, Q1−P0 approx-
imation, ν = 1

100
and β = 1

4
.
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Fig. 2. Velocity vectors solution, associated with a 32×32 square grid, Q1−P0

approximation, ν = 1
100

and β = 1
4
.

Fig. 3. Pressure plot for the flow with a 32× 32 square grid and β = 1
4
.

Fig. 4. The left plot shows the relative velocity error curve with respect to β,
and the right plot shows the relative pressure error curve with respect to β.

h ‖u−uh‖
‖u‖

|u−uh|
|u|

|p−ph|
|p|

1/16 0.1349 0.0528 0.0890
1/32 0.0674 0.0442 0.0442
1/64 0.0365 0.0286 0.0170

Table 1. Numerical results of the stabilized finite element method.

Example 5.2 L-shaped domain Ω, parabolic inflow boundary condition,
natural outflow boundary condition.
This example represents flow in a rectangular duct with a sudden expansion;
a Poiseuille flow profile is imposed on the inflow boundary (x=-1; 0 ≤ y ≤ 1),
and a no-flow (zero velocity) condition is imposed on the walls.
The Neumann condition (39) is applied at the outflow boundary (x=5; −1 <
y < 1) and automatically sets the mean outflow pressure to zero.
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Fig. 5. Equally spaced streamline plot associated with a 32 × 96 square grid,
Q1 − P0 approximation, ν = 1/50 and β = 1

4
.

Fig. 6. Equally spaced streamline obtained by H.C. Elman and al [8], associated
with a 32× 96 square grid, Q1 − P0 approximation, ν = 1/50 and β = 1

4
.

Fig. 7. The solution computed with ADINA system. The plots show the
streamlines associated with a 32× 96 square grid, ν = 1/50.
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Fig. 8. Velocity vectors solution by MFE with a 32× 96 square grid, ν = 1/50
and β = 1

4
.

Fig. 9. The solution computed with ADINA System. The plots show the ve-
locity vectors solution with a 32× 96 square grid, ν = 1/50.

Fig. 10. Pressure plot for the flow with a 32× 32 square grid and β = 1
4
.



Stabilized finite element method 81

The increased velocity caused by convection makes it harder for the fluid
to flow around the corner, and a slow-moving component of the fluid becomes
entrained behind the step. There are two sets of streamlines at equally spaced
levels plotted in figure 1; one set is associated with positive stream function
values and shows the path of particles introduced at the inflow. These pass over
the step and exit at the outflow. The second set of streamlines is associated
with negative values of the stream function. These streamlines show the path
of particles in the recirculation region near the step; they are much closer in
value, reflecting the fact that recirculating flow is relatively slow-moving.
If L is taken to be the height of the outflow region, then the flow pattern shown
in figure 1 corresponds to a Reynolds number of 200. If the viscosity parameter
were an order of magnitude smaller, then the steady flow would be unstable.
The singularity at the origin is an important feature of the flow even in the
convection-dominated case.

6 Conclusion

In this work, we were interested in the numerical solution of the partial dif-
ferential equations by simulating the flow of an incompressible fluid. We have
provided a theoretical analysis of the stabilized finite element method for the
two-dimensional stationary Navier-Stokes equations. Also, we proposed meth-
ods of the estimation of error for the calculated solution.
Our results for Backward-facing step problem agree with H.C. Elman and al
[8], and with ADINA system.
Numerical results are presented to see the performance of the method, and
seem to be interesting by comparing them with other recent results.
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Abstract

The determination of the dynamic response is fundamental
for analysis of a bridge structure. The bridge is modeled as
an orthotropic rectangular plate with a pair of parallel edges
simply supported under moving load. An orthotropic plate is
defined as an element of structure having various properties
in the two orthogonal directions. The study of the free vi-
bration is based on the resolution of the differential equation
depending on the mechanical properties of the plates. For the
determination of natural frequencies, we develop a computer
code using a bisection method with interpolation which preci-
sion reached 10- 12. We propose in this analysis the evolution
of the response versus the rigidity structure ratio. This later
is subjected to moving loads by using the modal superposition
method and the integral convolution. The effect of the eccen-
tricity of the loads, simulating real trajectories, is analyzed
according to various speeds and intensities of loading.

Keywords: Orthotropic plate, Method of bisection, Optimization, moving
load.



Modeling of the orthotropic bridge’s impact response 85

1 Introduction

The much diversified application of the orthotropic plates subjected to fixed or
mobile loads ”specific forces or masses” in various fields such as: ”aeronautics,
acoustics, mechanics, electronics, and the civil engineering,” present a real in-
terest of the researchers implied in this field. An orthotropic plate is defined
as an element of structure having various properties in the two orthogonal
directions. Most bridge decks or railway are orthotropic because of shape or-
thotropy. So, there is a particular need for access to highly accurate eigenvalues
for plates and beams. For example, Wu and Dai [1] used the transfer matrix
method to determine the natural frequencies and mode shapes of multi-span of
a beams. They determine the dynamic performances of the considered beam
subjected to moving loads. Moussu and Nivoiti [2] has determined an elastic
constants of orthotropic plates by modal analysis. Later, D.J Gorman [3] use
a computed method to determine eigenvalues for a completely free orthotropic
plates by using a superposition method. He also [4], used the superposition
method to obtain accurate analytical type solutions for the free in-plane vi-
bration of rectangular plates with uniform, symmetrically distributed elastic
edge supports acting normally to the boundaries. In addition, an excellent
reference source concerning vibration of such plates may be found in the work
of Leissa [5,6]. We can find exact characteristic equations for rectangular thin
plates having two opposite sides simply supported. However, the analysis of
thick plates has been presented by Lim and all [7]. According to all what has
been stated before, the authors has determined initially the free frequencies
in order to predict the dynamic behavior of the studied structures. Indeed,
the dynamic response of bridge structures under moving loads at high speed
is a problem of great concern in the design of high-speed railway bridges. In
the literature, a large number of investigations have been carried out, with the
bridge modeled as a beam and the vehicles as moving loads or moving masses.
In this paper, this dynamic behavior is analyzed using the orthotropic plate
theory and modal superposition. So, we present, firstly, an accurate method
to calculate the free vibrations. This simple and fast method does not require
a great place memory.On the other hand, it presents an excellent precision
which reaches 10-12 . The strategy presented is based on the bisection method
with interpolation to determine the eigenfrequencies. However, to determine
the corresponding modes, the algorithm which we developed uses the Gauss
method with a partial optimization of the ”pivots” combined with an inverse
power procedure. The dynamic response of an orthotropic bridge deck under
moving load is studied. For this, we use the theory of the orthotropic plates
and a modal superposition principle. We, also, analysis the effect of the loads
characteristics on the bridge deck or on the railway.
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2 Formulation of the problem : Case of free

vibration

A Schematic of a two dimensional plate is shown in ”Fig.1”. It’s a rectangular
plate with its left and right edges simply supported and the other two opposite
edges free. If, it’s also solicited by an external load F, the governing equations
of motion of this orthotropic plate can be written, according to Huffington and
Hoppman [8] as follows:

Dx(
∂4w

∂x4
) + 2Dxy(

∂4w

∂x2∂y2
) +Dy(

∂4w

∂y4
) + C(

∂w

∂t
) + ρh(

∂2w

∂t2
) = F (x, y, t) (1)

Where:

Dx =
Exh

3

12(1− υxyυyx)
, Dy =

Eyh
3

12(1− υxyυyx)
, Dxy = (Dxyυxy+2Dk), Dk =

Gxyh
3

12
(2)

Dx,Dy : flexural rigidities of the plate in the x, y direction
Dxy: torsional rigidities.
Dk: twisting rigidity of the plate.
Gxy : Shear modulus.
ρ: mass density of plate material.
h: thickness of the plate.
W (x, y, t): displacement of plate in the z direction.

Figure 1: Considered plate

Let us note that the side effects (shearing and rotational inertia) are ne-
glected. The resolution of the differential equation governing the movement
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is obtained by using the modal superposition method and the integral of con-
volution, by the separation of the temporal and space variables. Thus one
expresses the dynamic response in the form of series. The free displacement
at the point (x, y) of the plate and at the moment t is expressed in the form
of series given by [9] :

W (x, y, t) =
∞∑
m=1

∞∑
n=1

Um,n(x, y)qm,n(t) (3)

Where : Um,n(x, y) = Ym,n(y) sin(θm.x) , qm,n(t) = sin(ωm,nt) and θm = mπ
a

Um,n(x, y) is the mode shape, ωm,n is the natural frequency which corre-
spond to the mth mode in the x direction and the nth mode in the y one.

Substituting equation (03) in equation (01), we obtain:

DyY
4
mn(y)− 2Dxy(

mπ

a
)2Y 2

m,n(y) + [Dx(
mπ

a
)4 − ρhω2

mn]Ymn(y) = 0 (4)

According to the properties of the plate, we can obtain:

Ymn(y) = Ceαy (5)

Then, the roots α, [Grace et Kennedy 1985 ][10] are as follows :

α =−+ (A1
−
+

√
A2

1 − A2 + λ2
0)1/2 (6)

with :

A1 =
Dxy

Dy

(
mπ

a
)2, A2 =

Dx

Dy

(
mπ

a
)4, λ2

0 =
ρhω2

Dy

(7)

Substituting the expressions A1 , A2 etλ0 in the equation (06), we can express
the roots of the considered equation. This later correspond to the resolution of
the differential equation in term of the inflexion rigidity in the two directions of
the orthotropic plate as well as the torsional rigidity. The analysis of the equa-
tion (06) will enable us to release three categories of orthotropic plates defined
by the shape of the roots of the considered equation (the boundary conditions
are also considered). This classification of the plates will be primarily based
on the mechanical behavior of the structure, depend on the torsion rigidities
and the inflection .

1. Ymn(y) = X1mn sin(r2mny) +X2mn cos(r2mny) +X3mn sinh(r1mny)

+X4mn cosh(r1mny) (8)

if Dx < D1 where D1 = ρhω2
mnθ

−4
m

2. Ymn(y) = X1mn sin(r1mny) +X2mn cos(r1mny) +X3mn sinh(r3mny)

+X4mn cosh(r3mny) (9)
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if
D2
xy

Dy
+D1 > Dx > D1

3. Ymn(y) = cosh(r4mny)(X1mn cos(r5mny)) +X2mn sin(r5mny)

+ sinh(r4mny)(X3mn cos(r5mny)) +X4mn sin(r5mny) (10)

if Dx >
D2
xy

Dy
+D1

The free boundary conditions (eq. 11) at y = 0 and y = b allow to lead
to a system of equation. Its resolution permits to determine the coefficients
X1mn, X2mn, X3mn and X4mn.

∂2w
∂2y

+ νxy
∂2w
∂2y

= 0,−Dxy
∂3w
∂2x∂y
−Dy

∂3w
∂3y

= 0,

2Dk
∂3w

∂2
x∂y

= 0,−Dxy
∂3w

∂2
x∂y
−Dy

∂3w

∂3
y

− 2Dk
∂3w

∂2
x∂y

= 0, (11)

The parameters rimn depend on the plate considered and the modes of
vibration [10].

r1mn = mπ
a

√
Dxy+
√
D2
xy+Dyρhω2

mn( a
mπ

)4−DxDy
Dy

,

r2mn = mπ
a

√
Dxy+
√
D2
y+Dyρhω2

mn( a
mπ

)4−DxDy
Dy

,

r3mn = mπ
a

√
Dxy+
√
D2
xy+Dyρhω2

mn( a
mπ

)4−DxDy
Dy

,

r4mn = mπ
a

√
1
2
(Dxy
Dx

+
√

Dx
Dy
− ρhω2

mn

Dy
( a
mπ

4))

r5mn =
mπ

a

√√√√1

2
(
Dxy

Dx

+

√
Dx

Dy

− ρhω2
mn

Dy

(
a

mπ

4

)) (12)

The application of the boundary conditions (eq. 11) according to the vari-
ous cases considered (eq.8-9-10) permits to lead to the system:

[M ].[X] = 0 (13)

M is a matrix which coefficients mij depend on boundary conditions and
X is a vector with: [X] = [X1mn, X2mn, X34mn, X4mn]T .

To obtain noncommonplace solutions, it is necessary that the determinant
of the system will be null. Writing this determinant permits to lead to the
frequencies equation. Knowing that the parameters rimn are not independent
variables but are function of the pulsation ω (eq. 12), the resolution of the
frequencies equation is not easy and then requires an adequate data-processing
treatment.

We seek to determine the pulsations ω checking this equation. For that,
we develop a code which calculates the eigenvalues of the frequencies equation.
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It is based on a bisection method with interpolation which precision reaches
10−12[12].

This method permits to record the eigenvalues of the frequencies corre-
sponding to the different mode of vibration ”Fig.2”. For each index m, we
find an infinity of solutions m = 1, . . . ,∞. Each solution is then located by a
double index ωrs.

The resolution of the system of equations is done by the inverse power
method. This one is very similar to that of Gauss (triangularisation of M),
but with a partial optimization of the pivots. Indeed, as for the method of
Gauss, some problems of overshoot capacity and numerical errors appeared
when the pivots of the matrix M that we triangularis are null or only very
small. This method consists then, to replace a null pivot by a very small value
( equal to the precision: in our case 10−15), to avoid the capacity overshooting.
At the end, we normalize the solution obtained.

On the other hand, the use of the inverse power procedure permit to have
the fundamental modes which correspond to the lowest frequencies. This
method [13] has much more importance than the traditional one because it
permit to have the smallest eigenvalues which correspond to the lowest modes
of vibration. Those are decisive for the structure stability.

Figure 2: Evaluation of libres frequencies

3 Formulation of the problem : Case of forced

vibration

When the orthotropic plate is under moving load, we can expressing the force
F (x, y, t) as a time step function and the equation (01) can be written as:
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Dx
∂4w

∂x4
+2Dxy

∂4w

∂x2∂x2
+Dy

∂4w

∂y4
+C

∂w

∂t
+ρh

∂2w

∂t2
=

L∑
l=1

pl(t)δ(x−x̂l(t))δ(y−ŷl(t))

(14)
where pl(t) is the moving load at a position x̂l(t) , ŷl(t) . We consider a

convoy of loads spacing by a constant a1.
The substitution of the equation (3) in the equation (9) permit to write:

q′′mn(t)+2αmnωmnq′mn(t)+ω2
mnqmn(t) =

2

ρha
∫ L

0
Y 2
mn(y)dy

L∑
l=1

pl(t)Umn(x̂l, ŷl)

(15)
with: αmn(t) = C

2ρhωmn

The solution of the equation (10) is obtained in the time domain by the
following convolution integral:

qmn(t) =
1

Mmn

∫ t

0

Hmn(t− τ)fmn(τ)dτ (16)

where:
Mmn = ρha

2

∫ b
0
Y 2
mn(y)dy

Hmn = 1
ωbmn

sin(ωmn(t)), t ≥ 0

fmn(t) =
∑L

l=1 pl(t)
ρha

2
Y 2
mn(y)dyUmn(x̂l, ŷl)

We started by evaluating Mmn by using the trapeze method, the result was
very satisfactory compared to the Simpson one. The evaluation of qmn(t) was
easier by separating the variables t and τ . Then, in the case of only one load,
equation (11) can be written as follows :

q(t) = 1
Mmnωmn

sin(ωmnt)
∫ t

0
fmn(τ) cos(ωmnτ)dτ

− 1

Mmnωmn

1

Mmnωmn
cos(ωmnt)

∫ t

0

fmn(τ) sin(ωmnτ)dτ (17)

The calculation of q(t), which represents the Duhamel integral, requires
the evaluation numerically of both the two integrals present in the equation
(12). We also, choose the trapeze method. After evaluation of q(t), total
displacement can be evaluated according to (eq. 03).

4 Results and discussions

4.1 Simply supported beam slab type bridge deck

The bridge considered simply supported on the two side and the other two
opposite edges free.



Modeling of the orthotropic bridge’s impact response 91

Is show ”Fig.3” .The physical parameters are : length a = 25.7m , width
b = 11.0m , Young modulus E = 2.1e9N/m2, parameters of beam I: cross
section of beam A = 0.7465m2 ,I = 0.213m4 ,e1 = 0.18m,total height of the
beam h1 = 1.50m , between axle m = 1.80m,Poisson ratio µ = 0.33,L = 0.75m
, Ec = 0.22m, Ej = 0.03m.

Figure 3: Bridge simply supported on the two sides and the other two opposite
edges free

Figure 4: Section of homogenized beam

In according with the theory of Guyon-Massonet [14], we can simulate the
bridge deck as an orthotropic plate whose mechanical characteristics are as
follows:

The rigidities in the x and y directions of the orthotropic bridge deck can
be calculated as:

Dx = Eh3

12(1−µ2)
+ EI

m

Dy = Eh3

12(1−µ2)

Dxy = µDy + Gh3

12
+

Ge31h1α1

m
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with : α1 = 0.152 coefficient on the equivalent torsional moment of inertia
of the I section. G: shear modulus Parameter of torsion:

α1 = γP−γD
2
√
ρP ρD

= 0.152

γP :The flexural rigidity (longitudinal and transversal) corresponding to per
unit length.

γD:Torsional rigidity of beams and diaphragms per unit length.
Parameter of diaphragms

θ = b
L

4

√
ρP
ρD

= 0.8146

4.2 Analyze of effect eccentricity of moving load on the
dynamic response

Under the influence two various speed ” 10 m/s and 20 m/s”, we can note a
reduction in the dynamic amplitude response when the eccentricity of mov-
ing load increases for the points analyzed, the non charged side and the plate
center. For the charged side, one observes an increase in the dynamic re-
sponse.This is due to the rigidity Dxy of the bridge which is more significant
than rigidity Dy ”Fig.5”.

Figure 5: Evolution of the dynamic amplitude response function of the eccen-
tricity of moving load

In the y direction. The eccentric moving load have less effect on the cen-
tral is displacements.Concerning the influence speed, one similar observes an
increase in the response for two speeds considered.

4.3 Analyze under the effect of the moving load convoy

We consider the effect of the moving load convoy on the dynamic response.
This convoy is composed of two moving loads. The intensity of each force is
150000 N, they are spaced of 4m, and the speeds considered are 10m /s and
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20m /s. The dynamic response due to an equivalent moving load in intensity.
We note that the convoy of load with spacing is not the most unfavorable case
”reduction in the dynamic response” for the two cases speed considered. Thus
we can conclude that the spacing of the moving loads influences the dynamic
response ”Fig.5”.

Figure 6: Dynamic response under the effect of the moving load convoy func-
tion a speed of load

5 Conclusion

A method is proposed to analyze the dynamic behavior of the orthotropic
bridge.

Smaller torsion rigidity would lead to a greater torsion response at the side
of the plate.

An equivalent beam model of the plate simulating the bridge, could give
an evaluation of the amplification factor dynamic along the central line of the
plate, but it would underestimate the responses dynamic at the side of the
structure.

The principal beams are usually rigidified between them by diaphragms
in the bridges, which the structure is composed by beam and plate. The
existence of the diaphragms creates point of inflection between the beams,
which increases the torsional rigidity of the bridge, which reduces alternatively
the dynamic response and the amplitude of the torsional modes.
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Abstract

The BFGS method is the most effective of the quasi-Newton
algorithm for solving unconstrained optimization problem. In
this work we develop a new nonmonotone line search of quasi-
Newton algorithm for minimizing function having Lipschitz
continuous partial derivatives. The nonmonotone line search
can guarantee the global convergence of the original quasi-
Newton BFGS algorithm. Numerical experiments on sixteenth
wellknown test functions with various dimensions generally
encouraging results show that the new algorithm line search is
available and efficient in practical computation by comparing
with other same algorithm in many situations.

Keywords : Unconstrained optimization, BFGS update, Descent condition,
Nonmonotone line searches.

1 Introduction

Consider the unconstrained optimization problem

min
x∈R

f(x), x ∈ Rn (1)
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where f : Rn → R1 is a continuously differentiable function in Rn and Rn is
the n-dimensional Euclidean space. We consider the case where the methods
are implemented without regular restarts. The iterative formula is given by

xk+1 = xk + λkdk, (2)

where λk is a steplength obtained by a line search, and dk is the search direction
defined by

dk =

{
−Hkgk for k = 1

−Hkgk + βkdk−1 for k ≥ 2

}
, (3)

where λk denotes ∇f(xk), and βk is a scalar.
Quasi-Newton methods for solving (1) often need to update the iterate

matrix Hk see [5]. Traditionally, {Hk} satisfies the following quasi-Newton
equation:

Hk+1Vk = Yk, (4)

where
Vk = xk+1 − xk, Yk = gk+1 − gk. (5)

The famous update Hk is the BFGS formula

Hk+1 = Hk −
HkVkV

T
k Hk

V T
k HkVk

+ VkV
T
k /V

T
k Yk. (6)

It has shown that the BFGS method is the most effective quasi-Newton meth-
ods see [5],[6] from the computation point of view. The convergence properties
of the BFGS method for convex minimization have been studied by many re-
searchers for example [4], [6], [8], [12]. It is now Known that the BFGS method
may fail for non convex functions [4]. Hence great efforts have been made to
find new line search that not only possesses global convergence but also is
superior the BFGS from the numerical performance.

Nonmonotone line search methods have been presented during recent decades
[1], [8], [12], [13] the nonmonotone procedure is mainly to choose a large step
size for line search methods and a void the iterates trapped in a narrow curved
valley of objective functions. Many researchers used the non monotone tech-
nique methods [3], [4], [7], [9], [10], [11]. In this paper, we first propose a
new nonmonotone type line search then apply it for BFGS method. In the
next section, we present this concreter algorithm and establish some global
convergent properties also we report some numerical result.

2 The New Nonmonotone Line Search With

BFGS Algorithm (New)

Monotone method for solving (1) require that f(xk) ≤ f(xk+1) hold at each it-
eration. But this does not necessarily hold at some iterations for nonmonotone
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methods. In this paper, we consider the following nonmonotone line search and
then apply it for BFGS quasi-Newton method [10], [11], [12], [13].

2.1 New Nonmonotone Line Search

Given constant δ1, σ ∈ (0, 1), δ2 > 0. Compute step αk is the largest one in
{sk, skβ, skβ2, · · · } such that

f(xk + βMdk) ≤ max
0≤j≤M

f(xk−j) + δmβ g
T
k dk − δ2‖βMZk‖2 (7)

where

Zk = yk + C‖dTk gk‖rvk + max

{
0,
−yTk vk
‖vk}

}
vk (8)

were C, r > 0 are given constants.

2.2 Outlines of the New Non-Monotone Line Search for
BFGS Algorithm (NEW)

Step 1 : Let x0 ∈ Rn be initial point, H0 = I, compute g0; if g0 = and x0

is a stationary point of (1) stop; else let δ1, ρ ∈ (0, 1), δ2 > 0 and nonnegative
integer M and ε is a small positive value, let k = 0,M = min(K,M), C =
.1, r = 3.
Step 2 : If ‖gk‖ < ε then stop! Else go to step3.
Step 3 : Compute direction search dk by (3) using QN formula for βk.
Step 4 : xk+1 = xk + αkdk the step size αk is chosen by New nonmonotone
line search rule (7), (8). Proposed update Hk to get Hk+1 by formula (6).
Step 5 : Compute gk+1; if ‖gk+1‖ = 0 and xk+1 is a stationary point of (1)
stop; else let k = k + 1, go to step 6.
Step 6 : If the available storage is exceeded, then employ a restart option
either with k = n or gTk+1gk+1 > gTk+1gk.
Step 7 : Set k = k + 1 and go to step 2.

2.3 Some Theoretical Properties of the (New) Algo-
rithm

The New line search rule was implemented by considering the following as-
sumptions.
(H1) The objective function f(x) has a lower bounder on Rn.
(H2) The gradient g(x) of f(x) is Lipschitz continuous in an open convex set
B that contains the level set L0 = {x ∈ Rn, f(x) ≤ f(x0)} with x0 given i.e,
there is a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀‘ x, y ∈ B. (9)
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Some time require that f(x) is twice continuously differentiable. In what
follows, we first describe the non-monotone line search.
(H3) The Matrices Bk are uniformly positive definite, i.e. there exists 0 ≤
m ≤M such that for any k > 0

m‖d‖2 ≤ dTBkd ≤M‖d‖2. (10)

Lemma 2.1 Assume that (H3) holds and let Hk = B−1
k . Then

1

M
‖d‖2 ≤ dTHkd ≤

1

m
‖d‖2, ∀ k. (11)

For the proof see [9].
Property 2.3.1 : The quasi Newton formula has an attractive property that
for each, k it always holds that

zTk vk ≥ C‖gTk dk‖‖vk‖2 > 0. (12)

This property is independent of the convexity of f as well as the line search
used. Thus the search direction defined by (3) is always a descent direction of
the objective function, namely gTk dk < 0. The following result shows that the
nonmonotone line search (7) is well defined.

Theorem 2.2 The nonmonotone line search with BFGS algorithm is well
defined.

Proof Infect, we only need to prove that step length λk can be obtained
in finite steps. If it is not true, then for all sufficiently large positive integer
m, we have

f(xk + βMdk) ≥ max
0≤j≤M

f(xk−j) + δ1β
MgTk dk − δ2‖βMZk‖2

≥ f(xk) + δ1β
MgTk dk − δ2‖βMZk‖2 (13)

where ρ1 ∈ (0, 1), σ2 > 0,M = min(k,m) where M nonnegative integer, k =
0, 1, 2, · · ·

Zk = yk + C‖dTk gk‖rvk + max

{
0,
−yTk vk
‖vk‖

}
vk. (14)

Let m→∞ in (13) then

gTk dk ≥ σ1g
T
k dk (15)

which implies that gTk dk ≥ 0. Since σ1 ∈ (0, 1). This yields a contradiction so
algorithm (2.2) is well defined.
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Theorem 2.3 Let Assumption (H1), (H2) hold, if steplength αk > 0 is
computed by the nonmonotone line search (7) then we have

lim
k→∞

αkdk = 0. lim
k→∞

αkg
T
k dk = 0. (16)

Proof Let k − j be an integer satisfying k −M ≤ k − j ≤ k,

f(xk − 1) = max
0≤j≤m

f(xk−1). (17)

It follows from (7) that the sequence {f(xk−j)} is decreasing in fact, note that
gTk dk < 0, we have from (7) that

f(xk+1−j) = max
0≤j≤M

f(xk+1−j)

= max

(
max

0≤j≤M
f(xk−j), f(xk+1

)
≤ max

(
max

0≤j≤M−1
f(xk−j), f(xk−M), f(xk+1)

)
= max

(
max

0≤j≤M
f(xk−j), f(xk+1)

)
= f(xk−j). (18)

We have from the last inequality (7) and (17) that

f(xk−j) = f(xk−j−1) + αk−j−1dk−j−1

≤ max
0≤j≤M

f(xk−j−1) + δ1αk−j−1g
T
k−j−1dk−j−1 − δ2‖αk−j−1zk‖2

= f(xk−j−1) + δ1αk−−1g
T
k−j−1dk−j−1 − δ2‖αk−j−1zk‖2. (19)

Since {f(xk−j)} is decreasing and bounded from assumption (H1), let k →∞
in the above inequality, we have

lim
k→∞

αk−j−1dk−j−1 = 0. (20)

Let p = k+M+2. Now by induction, we prove that for any j ≥ 1 the following
two formula hold

lim
k→∞

αk−2jdk−2j = 0 (21)

lim
k→∞

f(xk−2j) = lim
k→∞

f(xk−j). (22)

For j = 1 since {p} ⊂ {k− j}, it follow from (20) that (21) hold, which shows
that ‖xp−j −xp−j−1‖ → 0 as f(x) is uniformly continuous in the level set, (22)
holds for j = 1.
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Now suppose that (21) and (22) holds for given j. It follows from (7) that

f(xp−2j) ≤ f(xp−2j−1) + δ1αp−2j−1g
T
p−2j−1dp−2j−1 − δ‖αp−2j−1Zp−2j−1‖2 (23)

where

‖αkZk‖ =

∥∥∥∥αkyk + αkCg
T
k dk + αk max

{
0,−y

T
k vk
‖vk‖

}∥∥∥∥
< ‖αkyk‖+ ‖αkCgTk dk‖+

∥∥∥∥αk max

{
0,−y

T
k vk
‖vk‖

}∥∥∥∥
< ‖αkCgTk dk‖
≤ ‖αkgTk dk‖. (24)

Let k → ∞ we get from (22) lim
k→∞
‖xp−2j − xp−2j−1‖ → 0. Since is uniformly

continuous in the level set.

lim
k→∞

f(xp−2j−1) = lim
k→∞

f(xp−2j) = lim
k→∞

f(xp−j). (25)

Thus (21), (22) hold for any j ≥ 1. Now for any k, it hold that

xk+1 = xk−j −
p−j−k−1∑
j=1

αp−2jZp−2j. (26)

Since p − k − 1 = k + M + 2 − k − l − 1 < k + M + 2 − k − 1 = M + 1, we
have from (21) and (26) that

lim
k→∞
‖xk+1 − xp−j‖ = 0. (27)

We get the uniform continuity of f(x) that

lim
k→∞

f(x) = lim
k→∞

f(xp−j). (28)

It follows from (7), (24) that

f(xk+1) ≤ f(xp−j) + δ1αkg
T
k dk − δ2‖αkZk‖2. (29)

Let k →∞ we have

lim
k→∞

αkdk = 0, lim
k→∞

αkg
T
k dk = 0.
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3 Numerical Results

In this section we present the computational performance of a newly-programmed
FORTRAN implementation of the new algorithm on as set of 16 unconstrained
optimization test problem (Appendix 1). The test problem in the CUTE [1]
library, along with other inexact line search optimization problem in extended
or generalized form. Each problem is tested 4 time for a gradually increasing
number of variable; n = 5, 10, 100, 1000 at the same time we present com-
parisons with standard BFGS with Armijo line search algorithms, including
the performance profiles of new nonmonotone line search. The same stopping
criterion employed was ‖gk‖ < 1 × 10−6 for all two algorithms report some
numerical results obtained by newly-programmed FORTRAN procedure with
double precision.

In comparison of algorithms the function evaluation is normally assumed
to be the most costly factor in each iteration and the number of iterations. We
solve each of these test function by the

1. BFGS with Inexact Line Search (BFGSAR) Algorithm:

2. The New Nonmonotone line Search for BFGS (NEW) Algorithm.

All the numerical results are summarized in table (1) and (3). They present
the number of iterations (NOI) versus the number of function evaluations
(NOF) while table (2) give the percentage performance of the new algorithm
based on both (NOI) and (NOF) against the original algorithm.

The important thing is that the new algorithm solves each particular prob-
lem measured by (NOI) and (NOF) respectively. Moreover, the new proposed
algorithm always performs more stably and efficiently.

Namely there are about (42-53)% improvements of NOI for all dimensions
Also there are (35 -41)% improvements of NOF for all test functions.



102 Ivan Subhi Latif

N of TEST BFGS NOF (NOI) NEW NOF (NOI)
OF TEST FUNCTION 5 10 100 1000 5 10 100 1000

1 Gen-Cubic 207 207 209 209 42 43 46 49
125 125 126 126 31 32 34 36

2 Liarwhd 24 51 98 1116 27 37 33 70
15 41 49 388 20 29 24 64

3 Shanno 32 49 39 25 24 35 2‘ 25
20 34 19 17 18 28 14 17

4 Ex-Beale 32 28 29 29 19 19 19 26
20 20 21 21 15 15 15 20

5 Gen-Wood 295 268 285 299 244 231 190 236
260 240 254 268 222 213 167 208

6 dqrie 28 28 24 18 24 26 20 17
18 18 16 11 18 20 15 12

7 Gen-Helical 85 85 87 87 56 57 53 74
59 59 60 60 44 44 39 54

8 Gen-Beale 61 61 62 62 15 15 15 24
34 34 35 35 12 12 12 19

9 Gen-Recip 19 20 20 22 14 14 14 14
14 15 15 16 11 11 11 11

10 Gen-Edger 21 21 22 22 11 11 11 12
12 12 13 13 8 8 8 9

11 Gen- 155 122 173 168 52 97 74 81
Non-Digonal 92 69 103 95 32 75 58 65

12 APQ 15 17 84 372 11 19 73 354
9 13 74 354 8 15 68 345

13 TPQ 19 21 81 370 16 19 75 343
13 15 72 352 12 15 70 334

14 Gen-Shallow 119 103 113 120 15 15 15 15
114 100 108 115 11 11 11 11

15 Gen-Powell 128 132 157 177 60 60 121 69
112 116 141 161 52 52 111 60

16 Arwwhed 31 31 32 32 10 13 21 35
15 15 16 16 6 8 13 24

General Total of 1271 1244 1515 3128 640 711 801 1444
functions 16 932 911 1122 2048 520 588 670 1289

Table (1) : Comparison between the standard BFGS with Inexact
Line Search (BFGS) Algorithm and New proposed algorithms
using different value of 5 < N < 1000 for group of test function.
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N Costs NEW
5 NOF 49.64

NOI 41.21
10 NOF 42.84

NOI 35.46
100 NOF 47.13

NOI 40.29
1000 NOF 53.84

NOI 37.06

Table 2 : Percentage performance of the standard BFGS with
Inexact Line Search (BFGS) Algorithm and New algorithm for

100% in both NOI and NOF.

4 Conclusions

In this Paper, a new form of nonmonotone line search has been proposed for
guaranteeing the global convergence of Quasi-Newton method for minimizing
un constrained optimization problem. Numerical experiments show that the
new nonmonotone line search is more efficient and available for BFGS method.
Appendix 1

All the test functions used in Table 1 for this paper are from general liter-
ature [2]:
1. Generalized Cubic function:

f(x) =

n/2∑
i=1

[100(x2i − x3
2i−1)2 + (1− x2i−1)2], x0 = [−1.2, 1, · · · ,−1.2, 1.].

2. Liarwhd Function (cute):

f(x) =
n∑
i=1

4(−x1 + x2
i )

2 +
n∑
i=1

(xi − 1)2, x0 = [4., 4., · · · , 4.].

3. Nondia (Shanno-78) Function (Cute):

f(x) = (xi − 1)2 +
n∑
i=2

100(x1 − x2
i−1)2, x0 = [−1.,−1., · · · ,−1.].

4. Extended Beale Function:

f(x) =

n/2∑
i=1

[1.5− x2i−1 + (1− x2i)]
2 + [2.25− x2i−1(1− x2

2i)]
2

+[2.625− x2i−1(1− x3
2i)]

2,

x0 = [1., 0.8, · · · , 1., 0.8].
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5. Generalized wood function:

f(x) =

n/2∑
i=1

100(x4i−2 − x2
4i−2)2 + (1− x4i−3)2 + 90(x4i − x2

4i−1)2 + (1− x4i−1)2

+10.1(x4i−2 − 1)2 + (x4i − 1)2 + 19.8(x4i−2 − 1)(x4i−2 − 1)(x4i−2 − 1)

x0 = [−3.,−1.,−3.,−1., · · · ,−3.,−1.,−3.,−1.].

6. Dqudrtic Function (CUTE):

f(x) =
n−2∑
i=1

(x2
i + cx2

i+1 + dx2
i+2), x0 = [3., 3., · · · , 3., 3.], c = 100, d = 100.

7. General Helical Function:

f(x) =

n/3∑
i=1

(1−−x3i − 10∗Hi)
2 + 100(Ri − 1)2 + x2

3i,

Ri =
√

(x2
3i−2 + x2

3i−1), H1 =
tan−1 x3i−1

x3i−2

2.P I
where

x0 = [−1., 0., 0., · · · ,−1., 0.], 0.

8. Generalized Beale Function:

f(x) =

n/2∑
i=1

[1.5− x2i + (1− x2i)]
2 + [2.25− x2i−1(1− x2

2i)]
2

+[2.625− x2i−1(1− x2
2i]

2,

x = [−1.,−1., · · · ,−1.,−1.].

9. Generalized Recip Function:

f(x) =

n/3∑
i=1

[
(x3i−1 − 5)2 + x2

9i−1 +
x2

3i

(x3i−1 − x3i − 2)2

]
, x0 = [2., 5., 1., · · · , 2., 5., 1.].

10. Generalized Edger Function:

f(x) =

n/2∑
i=1

(x2i−1 − 2)4 + (x2i−1 − 2)2x2
2i + (x2i + 1)2, x0 = [1., 0., · · · , 1., 0.].

11. Generalized Non diagonal function:

f(x) =
n∑
i=2

[100(x1 − x2
i )

2 + (1− xi)2, x0 = [−1., · · · ,−1.].
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12. Almost Perturbed Quadratic Function:

f(x) =
n∑
i=1

ix2
i +

1

100
(x1 + xn)2, x0 = [0.5, 0.5, · · · , 0.5, 0.5].

13. Tridiagonal Perturbed Quadratic Function:

f(x) = x2
i +

n−1∑
i=2

ix2
i + (xi−1 + xi + xi+1)2, ‘ x0 = [0.5, 0.5, · · · , 0.5, 0.5].

14. Generalized Shallow Function:

f(x) =

n/2∑
i=1

(x2
2i−1 − x2i)

2 + (1− x2i−1)2, x0 = [−2.,−2., · · · ,−2.,−2.].

15. Generalized Powell function:

f(x) =

n/3∑
i=1

{
3−

[
1

1 + (xi − 2xi)2

]
− sin

(πx2ix3i

2

)
− exp

[
−
(
xi + x3i

x2i

− 2

)2
]}

,

x0 = [0., 1., 2., · · · , 0., 1., 2.].

16. Arwhead Function (CUTE):

f(x) =
n−1∑
i=1

(4xi + 3) +
n−1∑
i=1

(x2
i + x2

n)2, x0 = [1., 1., · · · , 1., 1.].
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Abstract

The development of electronics components has generated
ineluctable reduction of all devise dimensions, especially, chan-
nel width and oxide thickness. This miniaturization induces
many electrical instabilities in the components, which disturb
their behavior. Among these components, we were interested
to a MOS (Metal-Oxide-Semiconductor) transistor. In order
to optimize the performances of this last one, we present in
this paper a study concerning the influence of a magnetic field
on its electrical characteristics. The different simulations car-
ried out with (ISE-TCAD 8.0) software showed that the pres-
ence of a constant magnetic field influences the behavior of
MOS transistor. In fact, the magnetic field leads to a dis-
placement of the operating point, an appearance of magneto-
resistance effect, and a reduction of the threshold potential
with the considered magnetic induction. It was shown in ad-
dition that the transistor is more sensitive to a perpendicular
magnetic field (along Z axis) than to a parallel one).

Keywords: Drift-Diffusion Model, Lorentz Force, Magneto-Resistance,
MOS Transistor.
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1 Introduction

The miniaturization of transistor’s dimensions, the reduction of their voltage
levels and the increase of their speed make their behavior more complex. The
influence of those parameters is then harmful and generates consequently many
perturbations such as, capacitive coupling, noise, and an electromagnetic in-
fluence. We quote for example that in some applications which are based on
the nuclear magnetic induction, a CMOS circuitry is placed and must work
under an intense magnetic field. In this paper, the influence of magnetic field
on electrical characteristics of a MOS transistor is studied. The sensitivity of
the device in the presence of the magnetic field is also studied.

2 Simulated Structure

The 2-D structure used in the simulation of the active device is shown in Fig 1.
It is an N-channel MOS with a substrate doping NA = 5.1016cm−3 , an oxide
thickness TOX = 4nm . The device with is 1µm . The separation between the
drain and source is L = 0.15µm , with gate length LG = 0.18µm

Figure 1: A view of the simulated MOS

As shown in Fig.2. The channel is doped Boron following Gaussian func-
tion. This allow to control threshold voltage of the device [1]. The drain and
source are doped Arsenic using Gaussian function. The surface concentration
is 5.1021cm−3.
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Figure 2: The Doping Profile

On Fig.3, we show the variation of the output characteristics for different
gate (Vgs = 1v, Vgs = 1.5v) voltage values. The transfert characteristic is
represented for Vds = 1.5v

Figure 3: The current-voltage I-V characteristics

3 Mathematical model

For the analysis of magnetic field effects in MOS transistors, one has to set
up and solve the transport equations governing the flow of electrons (n) and
holes (p) in the device. To this end we must introduce, to the commonly used
drift-diffusion model,the magnetic-field dependent term[2]. These laters are
added to the action of the LORENTZ force on the motion of the carriers [3].
While the continuity and Poisson’s equation remain the same as zero fields,
the current density has to be modified, to account for the LORENTZ force [4]:

~jBn,p = −σn,p~∇ϕn,p−σn,p
1

1 + (µhB)2
[µh ~B ∧ ~∇ϕn,p +µh ~B ∧ (µh ~B ∧ ~∇ϕn,p)] (1)
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Where σn,prepresent the electric conductivity of the electrons or holes,∇ϕn,p
the gradient of the electron quasi-Fermi potential,µh the hall mobility related
to the normal mobility as µh = rn,pµn,p with rn,p the Hall scattering factor, and
~B the magnetic field applied with the Poisson and continuity equations[5].A
device under magnetic field can be properly simulated under the drifft-difussion
approximation. The vector product between the current density and the mag-
netic field is computed by considering a local coordinate system and the neigh-
boring points [6,7]. The two-dimensional conductivity of the electron under a
magnetic field, applied perpendiculary to the current flow plane is described
by

{
jx = σxxEx + σxyEy
jy = −σxyEx + σxxEy

(2)

Where Ex and Ey are the components of the electric field in the (x, y) plane
Ex and σxx and σxy are the components of the conductivity tensor.

{
σxx = σ0

1+(µhB)2

σxx = σ0µhB
1+(µhB)2

(3)

In the case of the HALL bar geometry L� W , we have jy = 0. This leads
to Ex = jx

σ0
, which is independent on B. In the case of the long and narrow

devices W � L, then Ey = 0 and jx = σxxEx [8,9].

Then,

Ex = jx
1 + (µhB)2

σ0

(4)

so we can determine the new resistance between drain and source

Rds = R0(1 + (µhB)2) (5)

4 Results and discussions

This study concerns the effect of a transverse magnetic field applied in the
plane of the MOS transistor and perpendicular to the current flow.



Optimization of an intense magnetic environment effect 111

Figure 4: Cross-section view of a MOS transistor

4.1 Sensitivity

A variation of sensitivity versus a gate to source and a drain to source biases
with an external applied magnetic field B is studied. The ranges of Vgs, Vds
and ~B fields are 0v ≤ Vgs ≤ 1.6v, 0v ≤ Vds ≤ 3.2v and B = 0.6Tesla

The device sensitivity is defined as [10]:

S(B) = Ids(B 6=0−Ids(B=0)
BIds(B=0)

The study of the sensitivity variations with drain and gate voltage is effec-
tuated for a magnetic induction B=0.6 Tesla. The results are shown in Fig.5.
We note that in the case of a parallel magnetic field, the sensitivity device is
negligible. The perpendicular magnetic field however has a great influence on
the device sensitivity

Figure 5: Sensitivity variation versus Vgs and Vds

A variation of sensitivity versus a gate to source Vgs and drain to source
Vds biases and an external applied magnetic fields B is studied.
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4.2 Magneto-resistance in inversion layer

Figure 6: Variations of threshold voltage versus magnetic filed

The variations of the channel resistance Rds with the magnetic field are
shown in Fig.6 for a gate voltage Vgs = 1.5v at Vds = 1.5v. The quasi linearity
ofRds versusB2 confirms the validity of the magneto-resistance analysis carried
out in equation (5).

4.3 Threshold voltage

The application of a magnetic field displaces the inversion layer. The force is
offset by the Hall voltage developed vertically in the channel which effectively
adds another term to the threshold voltage VT :

VT = 2ϕFI + 1
COX

(4qNAεsϕFI)
1
2 + VH

Where the third term is due to the developed Hall voltage due to the
magnetic field. The Fig.7 show the variation of the threshold voltage VT versus
a magnetic field applied on the considered MOS transistor.
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Figure 7: Variations of threshold voltage versus magnetic field

5 Conclusion

A magnetic field is applied perpendicular to the carrier flow in order to generate
a vertical Hall voltage. this later induce a shift of the threshold voltage of the
considered device. The orientations of the magnetic field according to x and
y axes, have a negligible effect on the device sensitivity. This later increases
with drain voltage, and reach its maximum values for gate voltage Vgs = 0.6v.
The electrons deviations caused by the Lorentz force effect reduce the electron’s
number in the inversion layer. This induce an augmentation of the the inversion
layer resistance with B2 and a displacement of the operating point, as shown
in Fig.6. The relation between Rds and B2 is almost linear .
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Abstract

The problem of optimally controlling a one-dimensional dif-
fusion process X(t) is considered. The aim is either to mini-
mize or to maximize the time spent by X(t) in an interval. It
is shown that it is sometimes possible to obtain the optimal
control by considering the corresponding uncontrolled process.
The problem formulation generalizes that in Whittle (1982).
The same type of optimization problem is also treated for a
two-dimensional degenerate diffusion process (X(t), Y (t)) for
which the derivative of X(t) is a deterministic function of X(t)
and Y (t). This problem has applications in reliability theory.
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1 Introduction

We consider the one-dimensional controlled diffusion process {X(t), t ≥ 0}
defined by the stochastic differential equation

dX(t) = a[X(t)]dt+ b[X(t)]L[u(t)]dt+ {N [X(t)]}1/2dB(t), (1)

where {B(t), t ≥ 0} is a standard Brownian motion, u(t) is the control variable,
a(·) is a real function, b(·) 6= 0 and N(·) > 0. Moreover, L(·) is a differentiable
function such that L′(·) 6= 0.
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Assume that X(t0) = x ∈ I := (d1, d2), and define

T (x, t0) = inf{t > t0 : X(t) /∈ I | X(t0) = x}.

That is, T (x, t0) is the first time the controlled process X(t) leaves the interval
I. Notice that, by continuity, we can write that X[T (x, t0)] = d1 or d2.

Our aim is to find the control u∗ that minimizes the expected value of the
cost criterion

J(x, t0) :=

∫ T (x,t0)

t0

1
2
q[X(t)]C[u(t)]dt+K[T (x, t0)],

where q(·) > 0 and C(·) ≥ 0. The case where K[T (x, t0)] = λT (x, t0) has
already been treated. When the parameter λ is positive, the optimizer seeks
to minimize the time spent by {X(t), t ≥ 0} in I, taking the control costs
into account. This type of problem has been termed LQG homing by Whittle
(1982, p. 289) (see also Whittle (1990, p. 222) for a risk-sensitive formulation).
If λ is negative, the objective is to maximize the survival time in I (again,
taking the control costs into account).

The author considered LQG homing problems in a number of papers (see,
for instance, Lefebvre (2004)). Kuhn (1985) and, very recently, Makasu (2009)
treated risk-sensitive homing problems.

If L[u(t)] = u(t) and C[u(t)] = u2(t), and if the relation

αN(x) =
b2(x)

q(x)
(2)

holds for a positive constant α, then using a theorem due to Whittle (1982)
we can express the optimal control u∗ (= u∗(t0)) as follows:

u∗ =
N(x)

b(x)

Gx(x, t0)

G(x, t0)
,

where
G(x, t0;α) := E [exp{−αK[τ(x, t0)]}] . (3)

In the above equation, τ(x, t0) is the same as the random variable T (x, t0), but
for the uncontrolled process {ξ(t), t ≥ 0} defined by

dξ(t) = a[ξ(t)]dt+ {N [ξ(t)]}1/2dB(t).

That is, {ξ(t), t ≥ 0} is the diffusion process obtained by setting L[u(t)] = 0
in (1), and

τ(x, t0) = inf{t > t0 : ξ(t) /∈ I | ξ(t0) = x}.

Remarks. (i) Notice that the constant α in (2) always exists if N , b and q
are constants.
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(ii) In the present paper, we will choose the termination cost

K[T (x, t0)] = − ln[T (x, t0) + 1]/α.

Then G is simply the mathematical expectation of τ(x, t0) + 1:

G(x, t0;α) = E [exp{−α(− ln[τ(x, t0) + 1]/α)}] = 1 + E [τ(x, t0)] .

In Section 2, we will show that we can obtain the optimal control from
the mathematical expectation in (3) when we choose C[u(t)] = L2[u(t)], thus
generalizing the theorem in Whittle (1982). Next, in Section 3 the same type
of problem will be considered for a degenerate two-dimensional controlled dif-
fusion process (X(t), Y (t)) for which the derivative of X(t) is a deterministic
function ρ[X(t), Y (t)]. The results obtained in that section are useful in relia-
bility theory, when one wants to maximize the lifetime of a device (see Lefebvre
(2009)). In both sections, examples will be presented. Finally, we will give
some concluding remarks in Section 4.

2 Optimal Control in One Dimension

Let F (x, t0) be the value function defined by

F (x, t0) = inf
u
E [J(x, t0) | X(t0) = x] .

Assuming that the function F exists and is twice differentiable, we can show
that it satisfies the dynamic programming equation

0 = inf
u
{Ft0(x, t0) + a(x)Fx(x, t0) + b(x)L(u)Fx(x, t0)

+ 1
2
q(x)C(u) + 1

2
N(x)Fxx(x, t0)

}
.

It follows that the optimal control u∗ is such that

b(x)L′(u∗)Fx(x, t0) + 1
2
q(x)C ′(u∗) = 0. (4)

We make the following assumption:

H1: Eq. (4) can be solved explicitly for u∗.

Once we have found u∗ in terms of Fx(x, t0), we must solve the (generally
non-linear) partial differential equation

0 = Ft0(x, t0) + a(x)Fx(x, t0) + b(x)L(u∗)Fx(x, t0)

+ 1
2
q(x)C(u∗) + 1

2
N(x)Fxx(x, t0). (5)
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This equation is valid for x ∈ (d1, d2). The boundary conditions are

F (x, t0) = K(t0) if x = d1 or d2. (6)

Consider now the particular case where C(u) = L2(u). Then Eq. (4) be-
comes

b(x)L′(u∗)Fx(x, t0) + 1
2
q(x)2L(u∗)L′(u∗) = 0.

Since we have assumed that L′(·) 6= 0, we can write that

b(x)Fx(x, t0) + q(x)L(u∗) = 0. (7)

Hence, in this particular case, the assumption H1 is equivalent to

H∗1: the function L−1 exists.

The optimal control can thus be expressed as follows:

u∗ = L−1

(
−b(x)Fx(x, t0)

q(x)

)
.

Therefore, to obtain the value of u∗, we must find the derivative of the value
function F (x, t0) with respect to x, and determine the inverse function L−1.

Remark. If the inverse function L−1 does not exist, then the optimal control
might not be unique. For example, if L(u) = u2, then there are two values of
u that minimize the expected value of the cost criterion J(x, t0).

Next, since (from Eq. (7)) L(u∗) = −b(x)Fx(x, t0)/q(x), substituting into
Eq. (5) we find that F (x, t0) satisfies the partial differential equation

0 = Ft0(x, t0) + a(x)Fx(x, t0)− b2(x)

2q(x)
[Fx(x, t0)]2 + 1

2
N(x)Fxx(x, t0). (8)

In the case where Ft0(x, t0) = 0, this equation is a Riccati equation for Fx(x, t0).
It is sometimes possible to solve explicitly the second order non-linear dif-

ferential equation (8). However, we obtain a very interesting probabilistic
interpretation by making the same transformation as in Whittle (1982): we
assume that the relation in (2) holds, and we define

H(x, t0;α) = e−αF (x,t0).

We then find that Eq. (8) is transformed into the linear equation

0 = Ht0(x, t0;α) + a(x)Hx(x, t0;α) + 1
2
N(x)Hxx(x, t0;α). (9)

Furthermore, the boundary conditions become

H(x, t0;α) = e−αK(t0) if x = d1 or d2. (10)

Now, Eq. (9) is the differential equation satisfied by the function G(x, t0;α)
defined in (3), and the conditions in (10) are the appropriate boundary con-
ditions. Hence, we can write that H(x, t0;α) ≡ G(x, t0;α), and we obtain the
following proposition.
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Proposition 2.1 Under the above hypotheses, if C(u) = L2(u), then the op-
timal control u∗ can be obtained from the mathematical expectation G(x, t0;α)
for the uncontrolled process that corresponds to {X(t), t ≥ 0}.

Remark. We also assume that P [τ(x, t0) < ∞] = 1, so that the solution of
(9) and (10) is unique.

Particular case. Let us consider the case where {X(t), t ≥ 0} is a con-
trolled standard Brownian motion, so that a[X(t)] ≡ 0 and N [X(t)] ≡ 1.
Furthermore, let us choose b[X(t)] ≡ b0 (6= 0) and q[X(t)] ≡ q0 (> 0).
Then the positive constant α in (2) is given by b2

0/q0. Finally, assume that
K[T (x, t0)] = − ln[T (x, t0)+1]/α. Then, as mentioned in Section 1, G(x, t0;α)
becomes 1 + E [τ(x, t0)].

Now, as is well known (see, for instance, Lefebvre (2007, p. 220)), in this
case the function m(x, t0) := E [τ(x, t0)] satisfies the second-order ordinary
differential equation

1
2
mxx(x, t0) = −1,

subject to the boundary conditions

m(x, t0) = t0 if x = d1 or d2.

We easily find that

m(x, t0) = −x2 + (d1 + d2)x+ t0 − d1d2.

It follows that the function G(x, t0;α) is given by

G(x, t0;α) = −x2 + (d1 + d2)x+ t0 − d1d2 + 1,

so that Gx(x, t0;α) = −2x+ (d1 + d2), and the optimal control is

u∗ = L−1

{
−2x+ d1 + d2

b0 [−x2 + (d1 + d2)x+ t0 − d1d2 + 1]

}
.

In the special case where d1 = −d, d2 = d, t0 = 0, and L(u) = u3, we obtain
that

u∗ =

{
−2x

b0 (d2 − x2 + 1)

}1/3

.

Remarks. (i) Because the constant α is positive, the termination cost function
K[T (x, t0)] = − ln[T (x, t0) + 1]/α is negative. That is, a reward is given for
survival in the continuation region I := (d1, d2). Hence, the optimizer wants
to maximize the time spent by the controlled process in I.
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(ii) The function F (x, t0) is given by

F (x, t0) = − ln[G(x, t0;α)]/α = −q0

b2
0

ln
[
−x2 + (d1 + d2)x+ t0 − d1d2 + 1

]
.

We can check that this function satisfies both the partial differential equation
(8) and the boundary conditions (6) (with K(t0) = − ln(t0 + 1)/α).

In the next section, we will consider an optimal control problem in two
dimensions.

3 Optimal Control in Two Dimensions

Let (X(t), Y (t)) be the two-dimensional degenerate diffusion process defined
by the system of stochastic differential equations

dX(t) = − X−d(t)

d0 [Y (t)− c]
dt,

dY (t) = a[X(t), Y (t)]dt+ b[X(t), Y (t)]L[u(t)]dt+ {N [X(t), Y (t)]}1/2dB(t),

where d0 > 0 and d > −1. This system is a particular case of the controlled
stochastic processes proposed by Rishel (1991) to model the wear of machines.

Define the first passage time T (x, y, t0) as follows:

T (x, y, t0) = inf{t > t0 : {X(t) = 0} ∪ {Y (t) = c} | X(t0) = x, Y (t0) = y},

where x > 0 and y > c. The random variable X(t) denotes the remaining
lifetime of the machine, whereas Y (t) is a random variable that is closely
correlated with the lifetime of this machine. We assume that production must
be stopped (and the machine repaired) if Y (t) decreases to c before X(t)
reaches the origin.

We want to find the control u∗ that minimizes the expected value of

J(x, y, t0) :=

∫ T (x,y,t0)

t0

1
2
q[X(t), Y (t)]C[u(t)]dt+K[T (x, y, t0)],

where q(·, ·) > 0 and C(·) ≥ 0.
Next, we define the value function F (x, y, t0) by

F (x, y, t0) = inf
u
E [J(x, y, t0) | X(t0) = x, Y (t0) = y] .

Proceeding as in the previous section (assuming in particular that the inverse
function L−1 exists), we find that the optimal control can be expressed as
follows:

u∗ = L−1

(
−b(x, y)Fy(x, y, t0)

q(x, y)

)
.



Optimizing the Time Spent by Diffusion Processes 121

Moreover, if the relation

αN(x, y) =
b2(x, y)

q(x, y)
(11)

is valid for a positive constant α, then the function F (x, y, t0) can be obtained
from the formula

e−αF (x,y,t0) = E [exp{−αK[τ(x, y, t0)]}] ,

where τ(x, y, t0) is the random variable that corresponds to T (x, y, t0) for the
uncontrolled process (ξ(t), η(t)) defined by

dξ(t) = − ξ−d(t)

d0 [η(t)− c]
dt,

dη(t) = a[ξ(t), η(t)]dt+ {N [ξ(t), η(t)]}1/2dB(t).

Furthermore, we assume that P [τ(x, y, t0) <∞] = 1.

Particular case. We consider the case where a[X(t), Y (t)] ≡ 0, N [X(t), Y (t)]
≡ 1, b[X(t), Y (t)] ≡ b0 ( 6= 0) and q[X(t), Y (t)] ≡ q0 (> 0). It follows that the
constant α defined in (11) is again given by b2

0/q0. Moreover, we choose

K[T (x, y, t0)] = − ln[T (x, y, t0) + 1]/α,

so that

E [exp{−αK[τ(x, y, t0)]}] = 1 + E [τ(x, y, t0)] .

Thus, the stochastic optimal control problem is reduced to the calculation of
the expected value of the first passage time τ(x, y, t0).

Now, the value of m(x, y, t0 = 0) := E [τ(x, y, t0 = 0)] has been computed
explicitly by Lefebvre and Ait Aoudia (2010), by making use of the method of
similarity solutions to solve the appropriate differential equation. They found
that

m(x, y, t0 = 0) =
d0x

d+1

d+ 1
(y − c).

This result can be generalized to

m(x, y, t0) =
d0x

d+1

d+ 1
(y − c) + t0.

Therefore, we can write that

e−αF (x,y,t0) =
d0x

d+1

d+ 1
(y − c) + t0 + 1.
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Hence, the optimal control is given by

u∗ = L−1

(
1

b0

d0 xd+1

d+1

d0 xd+1

d+1
(y − c) + t0 + 1

)
.

With c = d = t0 = 0 and d0 = b0 = 1, the optimal control reduces to

u∗ = L−1

(
x

xy + 1

)
.

This control enables the optimizer to maximize the expected remaining lifetime
of the machine, or the expected time until the machine must be repaired (taking
the control costs into account).

4 Conclusion

We have generalized a theorem due to Whittle which enables us, under cer-
tain assumptions, to optimally control a diffusion process by considering the
corresponding uncontrolled process. Here, we have replaced the linear control
in the plant equation by a function L(u), and the quadratic control in the cost
criterion by C(u). We have obtained a result similar to that of Whittle for the
case where C(u) = L2(u). We could now consider other cases, for example the
one where C(u) = L1/2(u) (assuming that L(u) ≥ 0).

In the particular cases presented in Sections 2 and 3, we have chosen a
termination cost function that leads to the computation of the expected value
of the first passage time for the uncontrolled process. This case is important
for the applications. Indeed, as we have seen in Section 3, it is a natural
problem to try to maximize the (expected) lifetime of a device.

Finally, it would be interesting to generalize even further Whittle’s theorem
by obtaining an expression for the optimal control in terms of a mathematical
expectation for an uncontrolled process, but in the case where the relation in
(2) or in (11) is not necessarily satisfied.
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nabla isoperimetric problems of the calculus of variations.
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1 Introduction

Isoperimetric problems consist in maximizing or minimizing a cost functional
subject to integral constraints. They have found a broad class of important
applications throughout the centuries. Areas of application include astronomy,
geometry, algebra, and analysis [4]. The study of isoperimetric problems is
nowadays done, in an elegant and rigorously way, by means of the theory of the
calculus of variations [18], and concrete isoperimetric problems in engineering
have been investigated by a number of authors [9]. For recent developments on
isoperimetric problems we refer the reader to [2, 1, 11] and references therein.

A new delta-nabla calculus of variations has recently been introduced by the
authors in [14]. The new calculus of variations allow us to unify and extend the
two standard approaches of the calculus of variations on time scales [10, 16, 17],
and is motivated by applications in economics [8].

The delta-nabla variational theory is still in the very beginning, and much
remains to be done. In this note we develop further the theory by introducing
the isoperimetric problem in the delta-nabla setting and proving respective
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necessary optimality conditions. Section 2 reviews the Euler-Lagrange equa-
tions of the delta-nabla calculus of variations [14] and recalls the results of the
literature needed in the sequel. Our contribution is given in Section 3, where
the delta-nabla isoperimetric problem is formulated and necessary optimality
conditions for both normal and abnormal extremizers are proved (see Theo-
rems 3.3 and 3.5). We proceed with Section 4, illustrating the applicability
of our results with an example. Finally, we present the conclusion (Section 5)
and some open problems (Section 6).

2 Preliminaries

We assume the reader to be familiar with the theory of time scales. For an
introduction to the calculus on time scales we refer to the books [6, 7, 13].

Let T be a given time scale with jump operators σ and ρ, and differential
operators ∆ and ∇. Let a, b ∈ T, a < b, and (T \ {a, b}) ∩ [a, b] 6= ∅; and
L∆(·, ·, ·) and L∇(·, ·, ·) be two given smooth functions from T × R2 to R.
The results here discussed are trivially generalized for admissible functions
y : T → Rn but for simplicity of presentation we restrict ourselves to the
scalar case n = 1. Throughout the text we use the operators [y] and {y}
defined by

[y](t) :=
(
t, yσ(t), y∆(t)

)
, {y}(t) :=

(
t, yρ(t), y∇(t)

)
.

In [14] the problem of extremizing a delta-nabla variational functional sub-
ject to given boundary conditions y(a) = α and y(b) = β is posed and studied:

J (y) =

(∫ b

a

L∆[y](t)∆t

)(∫ b

a

L∇{y}(t)∇t
)
−→ extr

y ∈ C1
� ([a, b],R)

y(a) = α , y(b) = β ,

(1)

where C1
� ([a, b],R) denote the class of functions y : [a, b]→ R with y∆ contin-

uous on [a, b]κ and y∇ continuous on [a, b]κ.

Definition 2.1 We say that ŷ ∈ C1
�([a, b],R) is a weak local minimizer

(respectively weak local maximizer) for problem (1) if there exists δ > 0 such
that J (ŷ) ≤ J (y) (respectively J (ŷ) ≥ J (y)) for all y ∈ C1

�([a, b],R) satisfying
the boundary conditions y(a) = α and y(b) = β, and ||y − ŷ||1,∞ < δ, where
||y||1,∞ := ||yσ||∞ + ||yρ||∞ + ||y∆||∞ + ||y∇||∞ and ||y||∞ := supt∈[a,b]κκ

|y(t)|.

The main result of [14] gives two different forms for the Euler–Lagrange
equation on time scales associated with the variational problem (1).
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Theorem 2.2 (The general Euler-Lagrange equations on time scales [14])
If ŷ ∈ C1

� is a weak local extremizer of problem (1), then ŷ satisfies the following
delta-nabla integral equations:

J∇(ŷ)

(
∂3L∆[ŷ](ρ(t))−

∫ ρ(t)

a

∂2L∆[ŷ](τ)∆τ

)

+ J∆(ŷ)

(
∂3L∇{ŷ}(t)−

∫ t

a

∂2L∇{ŷ}(τ)∇τ
)

= const ∀t ∈ [a, b]κ ; (2)

J∇(ŷ)

(
∂3L∆[ŷ](t)−

∫ t

a

∂2L∆[ŷ](τ)∆τ

)
+ J∆(ŷ)

(
∂3L∇{ŷ}(σ(t))−

∫ σ(t)

a

∂2L∇{ŷ}(τ)∇τ

)
= const ∀t ∈ [a, b]κ .

(3)

Remark 2.3 In the classical context (i.e., when T = R) the necessary con-
ditions (2) and (3) coincide with the Euler–Lagrange equations recently ob-
tained in [8].

Our main goal is to generalize Theorem 2.2 by covering variational problems
subject to isoperimetric constraints. In order to do it (cf. proof of Theorem 3.3)
we use some relationships of [3] between the delta and nabla derivatives, and
some relationships of [12] between the delta and nabla integrals.

Proposition 2.1 (Theorems 2.5 and 2.6 of [3]) (i) If f : T → R is delta
differentiable on Tκ and f∆ is continuous on Tκ, then f is nabla differentiable
on Tκ and

f∇(t) =
(
f∆
)ρ

(t) for all t ∈ Tκ . (4)

(ii) If f : T → R is nabla differentiable on Tκ and f∇ is continuous on Tκ,
then f is delta differentiable on Tκ and

f∆(t) =
(
f∇
)σ

(t) for all t ∈ Tκ . (5)

Proposition 2.2 (Proposition 7 of [12]) If function f : T → R is contin-
uous, then for all a, b ∈ T with a < b we have∫ b

a

f(t)∆t =

∫ b

a

fρ(t)∇t , (6)∫ b

a

f(t)∇t =

∫ b

a

fσ(t)∆t . (7)
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We also use the nabla Dubois–Reymond lemma of [16].

Lemma 2.4 (Lemma 14 of [16]) Let f ∈ Cld([a, b],R). If∫ b

a

f(t)η∇(t)∇t = 0 for all η ∈ C1
ld([a, b],R) with η(a) = η(b) = 0 ,

then f(t) = c on t ∈ [a, b]κ for some constant c.

3 Main Results

We consider delta-nabla isoperimetric problems on time scales. The problem
consists of extremizing

L(y) =

(∫ b

a

L∆[y](t)∆t

)(∫ b

a

L∇{y}(t)∇t
)
−→ extr (8)

in the class of functions y ∈ C1
�([a, b],R) satisfying the boundary conditions

y(a) = α , y(b) = β , (9)

and the constraint

K(y) =

(∫ b

a

K∆[y](t)∆t

)(∫ b

a

K∇{y}(t)∇t
)

= k, (10)

where α, β, k are given real numbers.

Definition 3.1 We say that ŷ ∈ C1
�([a, b],R) is a weak local minimizer

(respectively weak local maximizer) for (8)–(10) if there exists δ > 0 such that

L(ŷ) ≤ L(y) (respectively L(ŷ) ≥ L(y))

for all y ∈ C1
�([a, b],R) satisfying the boundary conditions (9), the isoperimetric

constraint (10), and ||y − ŷ||1,∞ < δ.

Definition 3.2 We say that ŷ ∈ C1
� is an extremal for K if ŷ satisfies the

delta-nabla integral equations (2) and (3) for K, i.e.,

K∇(ŷ)

(
∂3K∆[ŷ](ρ(t))−

∫ ρ(t)

a

∂2K∆[ŷ](τ)∆τ

)

+K∆(ŷ)

(
∂3K∇{ŷ}(t)−

∫ t

a

∂2K∇{ŷ}(τ)∇τ
)

= const ∀t ∈ [a, b]κ ; (11)
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K∇(ŷ)

(
∂3K∆[ŷ](t)−

∫ t

a

∂2K∆[ŷ](τ)∆τ

)
+K∆(ŷ)

(
∂3K∇{ŷ}(σ(t))−

∫ σ(t)

a

∂2K∇{ŷ}(τ)∇τ

)
= const ∀t ∈ [a, b]κ .

(12)

An extremizer (i.e., a weak local minimizer or a weak local maximizer) for
the problem (8)–(10) that is not an extremal for K is said to be a normal
extremizer; otherwise (i.e., if it is an extremal for K), the extremizer is said
to be abnormal.

Theorem 3.3 If ŷ ∈ C1
� ([a, b],R) is a normal extremizer for the isoperi-

metric problem (8)–(10), then there exists λ ∈ R such that ŷ satisfies the
following delta-nabla integral equations:

L∇(ŷ)

(
∂3L∆[ŷ](ρ(t))−

∫ ρ(t)

a

∂2L∆[ŷ](τ)∆τ

)

+ L∆(ŷ)

(
∂3L∇{ŷ}(t)−

∫ t

a

∂2L∇{ŷ}(τ)∇τ
)

− λ

{
K∇(ŷ)

(
∂3K∆[ŷ](ρ(t))−

∫ ρ(t)

a

∂2K∆[ŷ](τ)∆τ

)

+K∆(ŷ)

(
∂3K∇{ŷ}(t)−

∫ t

a

∂2K∇{ŷ}(τ)∇τ
)}

= const ∀t ∈ [a, b]κ ; (13)

L∇(ŷ)

(
∂3L∆[ŷ](t)−

∫ t

a

∂2L∆[ŷ](τ)∆τ

)
+ L∆(ŷ)

(
∂3L∇{ŷ}(σ(t))−

∫ σ(t)

a

∂2L∇{ŷ}(τ)∇τ

)

− λ
{
K∇(ŷ)

(
∂3K∆[ŷ](t)−

∫ t

a

∂2K∆[ŷ](τ)∆τ

)
+ K∆(ŷ)

(
∂3K∇{ŷ}(σ(t))−

∫ σ(t)

a

∂2K∇{ŷ}(τ)∇τ

)}
= const ∀t ∈ [a, b]κ .

(14)

Proof Consider a variation of ŷ, say ȳ = ŷ + ε1η1 + ε2η2, where for each
i ∈ {1, 2}, ηi ∈ C1

�([a, b],R) and ηi(a) = ηi(b) = 0, and εi is a sufficiently small
parameter (ε1 and ε2 must be such that ||ȳ− ŷ||1,∞ < δ for some δ > 0). Here,
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η1 is an arbitrary fixed function and η2 is a fixed function that will be chosen
later. Define the real function

K̄(ε1, ε2) = K(ȳ) =

(∫ b

a

K∆[ȳ](t)∆t

)(∫ b

a

K∇{ȳ}(t)∇t
)
− k.

We have

∂K̄

∂ε2

∣∣∣∣
(0,0)

= K∇(ŷ)

∫ b

a

(
∂2K∆[ŷ](t)ησ2 (t) + ∂3K∆[ŷ](t)η∆

2 (t)
)

∆t

+K∆(ŷ)

∫ b

a

(
∂2K∇{ŷ}(t)ηρ2(t) + ∂3K∇{ŷ}(t)η∇2 (t)

)
∇t = 0 .

We now make use of the following formulas of integration by parts [6]: if
functions f, g : T → R are delta and nabla differentiable with continuous
derivatives, then∫ b

a

fσ(t)g∆(t)∆t = (fg)(t)|t=bt=a −
∫ b

a

f∆(t)g(t)∆t ,∫ b

a

fρ(t)g∇(t)∇t = (fg)(t)|t=bt=a −
∫ b

a

f∇(t)g(t)∇t .

Having in mind that η2(a) = η2(b) = 0, we obtain:∫ b

a

∂2K∆[ŷ](t)ησ2 (t)∆t =

∫ t

a

∂2K∆[ŷ](τ)∆τη2(t)|t=bt=a

−
∫ b

a

(∫ t

a

∂2K∆[ŷ](τ)∆τ

)
η∆

2 (t)∆t = −
∫ b

a

(∫ t

a

∂2K∆[ŷ](τ)∆τ

)
η∆

2 (t)∆t

and∫ b

a

∂2K∇{ŷ}(t)ηρ2(t)∇t =

∫ t

a

∂2K∇{ŷ}(τ)∇τη2(t)|t=bt=a

−
∫ b

a

(∫ t

a

∂2K∇{ŷ}(τ)∇τ
)
η∇2 (t)∇t = −

∫ b

a

(∫ t

a

∂2K∇{ŷ}(τ)∇τ
)
η∇2 (t)∇t.

Therefore,

∂K̄

∂ε2

∣∣∣∣
(0,0)

= K∇(ŷ)

∫ b

a

(
∂3K∆[ŷ](t)−

∫ t

a

∂2K∆[ŷ](τ)∆τ

)
η∆

2 (t)∆t

+K∆(ŷ)

∫ b

a

(
∂3K∇{ŷ}(t)−

∫ t

a

∂2K∇{ŷ}(τ)∇τ
)
η∇2 (t)∇t. (15)
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Let

f(t) = K∇(ŷ)

(
∂3K∆[ŷ](t)−

∫ t

a

∂2K∆[ŷ](τ)∆τ

)
and

g(t) = K∆(ŷ)

(
∂3K∇{ŷ}(t)−

∫ t

a

∂2K∇{ŷ}(τ)∇τ
)
.

We can then write equation (15) in the form

∂K̄

∂ε2

∣∣∣∣
(0,0)

=

∫ b

a

f(t)η∆
2 (t)∆t+

∫ b

a

g(t)η∇2 (t)∇t. (16)

Transforming the delta integral in (16) to a nabla integral by means of (6) we
obtain

∂K̄

∂ε2

∣∣∣∣
(0,0)

=

∫ b

a

fρ(t)(η∆
2 )ρ(t)∇t+

∫ b

a

g(t)η∇2 (t)∇t

and by (4)
∂K̄

∂ε2

∣∣∣∣
(0,0)

=

∫ b

a

(fρ(t) + g(t)) η∇2 (t)∇t.

As ŷ is a normal extremizer we conclude, by Lemma 2.4 and equation (12),

that there exists η2 such that ∂K̄
∂ε2

∣∣∣
(0,0)
6= 0. Since K̄(0, 0) = 0, by the implicit

function theorem we conclude that there exists a function ε2 defined in the
neighborhood of zero, such that K̄(ε1, ε2(ε1)) = 0, i.e., we may choose a subset
of variations ȳ satisfying the isoperimetric constraint.

Let us now consider the real function

L̄(ε1, ε2) = L(ȳ) =

(∫ b

a

L∆[ȳ](t)∆t

)(∫ b

a

L∇{ȳ}(t)∇t
)
.

By hypothesis, (0, 0) is an extremal of L̄ subject to the constraint K̄ = 0 and
∇K̄(0, 0) 6= 0. By the Lagrange multiplier rule, there exists some real λ such
that ∇(L̄(0, 0) − λK̄(0, 0)) = 0. Having in mind that η1(a) = η1(b) = 0, we
can write

∂L̄

∂ε1

∣∣∣∣
(0,0)

= L∇(ŷ)

∫ b

a

(
∂3L∆[ŷ](t)−

∫ t

a

∂2L∆[ŷ](τ)∆τ

)
η∆

1 (t)∆t

+ L∆(ŷ)

∫ b

a

(
∂3L∇{ŷ}(t)−

∫ t

a

∂2L∇{ŷ}(τ)∇τ
)
η∇1 (t)∇t (17)

and

∂K̄

∂ε1

∣∣∣∣
(0,0)

= K∇(ŷ)

∫ b

a

(
∂3K∆[ŷ](t)−

∫ t

a

∂2K∆[ŷ](τ)∆τ

)
η∆

1 (t)∆t

+K∆(ŷ)

∫ b

a

(
∂3K∇{ŷ}(t)−

∫ t

a

∂2K∇{ŷ}(τ)∇τ
)
η∇1 (t)∇t. (18)
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Let

m(t) = L∇(ŷ)

(
∂3L∆[ŷ](t)−

∫ t

a

∂2L∆[ŷ](τ)∆τ

)
and

n(t) = L∆(ŷ)

(
∂3L∇{ŷ}(t)−

∫ t

a

∂2L∇{ŷ}(τ)∇τ
)
.

Then equations (17) and (18) can be written in the form

∂L̄

∂ε1

∣∣∣∣
(0,0)

=

∫ b

a

m(t)η∆
1 (t)∆t+

∫ b

a

n(t)η∇1 (t)∇t

and
∂K̄

∂ε1

∣∣∣∣
(0,0)

=

∫ b

a

f(t)η∆
1 (t)∆t+

∫ b

a

g(t)η∇1 (t)∇t.

Transforming the delta integrals in the above equalities to nabla integrals by
means of (6) and using (4) we obtain

∂L̄

∂ε1

∣∣∣∣
(0,0)

=

∫ b

a

(mρ(t) + n(t)) η∇1 (t)∇t

and
∂K̄

∂ε1

∣∣∣∣
(0,0)

=

∫ b

a

(fρ(t) + g(t)) η∇1 (t)∇t.

Therefore, ∫ b

a

η∆
1 (t) {mρ(t) + n(t)− λ (fρ(t) + g(t))}∇t = 0. (19)

Since (19) holds for any η1, by Lemma 2.4 we have

mρ(t) + n(t)− λ (fρ(t) + g(t)) = c

for some c ∈ R and all t ∈ [a, b]κ. Hence, condition (13) holds. In a similar
way we can obtain equation (14). In that case we use relationships (5) and
(7), and [5, Lemma 4.1].

In the particular case L∇ ≡ 1
b−a we get from Theorem 3.3 the main result

of [11]:

Corollary 3.4 (Theorem 3.4 of [11]) Suppose that

J(y) =

∫ b

a

L(t, yσ(t), y∆(t))∆t
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has a local minimum at y∗ subject to the boundary conditions y(a) = ya and
y(b) = yb and the isoperimetric constraint

I(y) =

∫ b

a

g(t, yσ(t), y∆(t))∆t = k .

Assume that y∗ is not an extremal for the functional I. Then, there exists a
Lagrange multiplier constant λ such that y∗ satisfies the following equation:

∂3F
∆(t, yσ∗ (t), y

∆
∗ (t))− ∂2F (t, yσ∗ (t), y

∆
∗ (t)) = 0 for all t ∈ [a, b]κ

2

,

where F = L− λg and ∂3F
∆ denotes the delta derivative of a composition.

One can easily cover abnormal extremizers within our result by introducing
an extra multiplier λ0.

Theorem 3.5 If ŷ ∈ C1
� is an extremizer for the isoperimetric problem

(8)–(10), then there exist two constants λ0 and λ, not both zero, such that ŷ
satisfies the following delta-nabla integral equations:

λ0

{
L∇(ŷ)

(
∂3L∆[ŷ](ρ(t))−

∫ ρ(t)

a

∂2L∆[ŷ](τ)∆τ

)

+ L∆(ŷ)

(
∂3L∇{ŷ}(t)−

∫ t

a

∂2L∇{ŷ}(τ)∇τ
)}

− λ

{
K∇(ŷ)

(
∂3K∆[ŷ](ρ(t))−

∫ ρ(t)

a

∂2K∆[ŷ](τ)∆τ

)

+K∆(ŷ)

(
∂3K∇{ŷ}(t)−

∫ t

a

∂2K∇{ŷ}(τ)∇τ
)}

= const ∀t ∈ [a, b]κ ; (20)

λ0

{
L∇(ŷ)

(
∂3L∆[ŷ](t)−

∫ t

a

∂2L∆[ŷ](τ)∆τ

)
+ L∆(ŷ)

(
∂3L∇{ŷ}(σ(t))−

∫ σ(t)

a

∂2L∇{ŷ}(τ)∇τ

)}

− λ
{
K∇(ŷ)

(
∂3K∆[ŷ](t)−

∫ t

a

∂2K∆[ŷ](τ)∆τ

)
+ K∆(ŷ)

(
∂3K∇{ŷ}(σ(t))−

∫ σ(t)

a

∂2K∇{ŷ}(τ)∇τ

)}
= const ∀t ∈ [a, b]κ .

(21)



Delta-Nabla Isoperimetric Problems 133

Proof Following the proof of Theorem 3.3, since (0, 0) is an extremal of L̄
subject to the constraint K̄ = 0, the extended Lagrange multiplier rule (see
for instance [18, Theorem 4.1.3]) asserts the existence of reals λ0 and λ, not
both zero, such that ∇(λ0L̄(0, 0)− λK̄(0, 0)) = 0. Therefore,∫ b

a

η∆
1 (t) {λ0 (mρ(t) + n(t))− λ (fρ(t) + g(t))}∇t = 0. (22)

Since (22) holds for any η1, by Lemma 2.4, we have

λ0 (mρ(t) + n(t))− λ (fρ(t) + g(t)) = c

for some c ∈ R and all t ∈ [a, b]κ. This establishes equation (20). Equation
(21) can be shown using a similar technique.

Remark 3.6 If ŷ ∈ C1
� is an extremizer for the isoperimetric problem (8)–

(10), then we can choose λ0 = 1 in Theorem 3.5 and obtain Theorem 3.3. For
abnormal extremizers, Theorem 3.5 holds with λ0 = 0. The condition (λ0, λ) 6=
0 guarantees that Theorem 3.5 is a useful necessary optimality condition.

In the particular case L∆ ≡ 1
b−a we get from Theorem 3.5 the main result

of [2]:

Corollary 3.7 (Theorem 2 of [2]) If y is a local minimizer or maximizer
for

I[y] =

∫ b

a

f(t, yρ(t), y∇(t))∇t

subject to the boundary conditions y(a) = α and y(b) = β and the nabla-integral
constraint

J [y] =

∫ b

a

g(t, yρ(t), y∇(t))∇t = Λ ,

then there exist two constants λ0 and λ, not both zero, such that

∂3K
∇ (t, yρ(t), y∇(t)

)
− ∂2K

(
t, yρ(t), y∇(t)

)
= 0

for all t ∈ [a, b]κ, where K = λ0f − λg.

4 An Example

Let T = {1, 2, 3, . . . ,M}, where M ∈ N and M ≥ 2. Consider the problem

minimize L(y) =

(∫ M

0

(y∆(t))2∆t

)(∫ M

0

(
y∇(t))2 + y∇(t)

)
∇t
)

y(0) = 0, y(M) = M,

(23)
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subject to the constraint

K(y) =

∫ M

0

ty∆(t)∆t = 1. (24)

Since

L∆ = (y∆)2, L∇ = (y∇)2 + y∇, K∆ = ty∆, K∇ =
1

M

we have

∂2L∆ = 0, ∂3L∆ = 2y∆, ∂2L∇ = 0, ∂3L∇ = 2y∇ + 1,

and

∂2K∆ = 0, ∂3K∆ = t, ∂2K∇ = 0, ∂3K∇ = 0.

As

K∇(ŷ)

(
∂3K∆[ŷ](t)−

∫ t

a

∂2K∆[ŷ](τ)∆τ

)
+K∆(ŷ)

(
∂3K∇{ŷ}(σ(t))−

∫ σ(t)

a

∂2K∇{ŷ}(τ)∇τ

)
= t

there are no abnormal extremals for the problem (23)–(24). Applying equation
(14) of Theorem 3.3 we get the following delta-nabla differential equation:

2Ay∆(t) +B + 2By∇(σ(t))− λt = C, (25)

where C ∈ R and A, B are the values of functionals L∇ and L∆ in a solution
of (23)–(24), respectively. Since y∇(σ(t)) = y∆(t) (5), we can write equation
(25) in the form

2Ay∆(t) +B + 2By∆ − λt = C. (26)

Observe that B 6= 0 and A > 2. Hence, solving equation (26) subject to the
boundary conditions y(0) = 0 and y(M) = M we get

y(t) =

[
1− λ (M − t)

4(A+B)

]
t . (27)

Substituting (27) into (24) we obtain λ = − (A+B)(M−2)
12M(M−1)

. Hence,

y(t) =
(4M2 − 7M − 3M t+ 6 t) t

M (M − 1)

is an extremal for the problem (23)–(24).
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5 Conclusion

Minimization of functionals given by the product of two integrals were con-
sidered by Euler himself, and are now receiving an increase of interest due to
their nonlocal properties and applications to economics [8, 14]. In this paper
we obtained general necessary optimality conditions for isoperimetric problems
of the calculus of variations on time scales. Our results extend the ones with
delta derivatives proved in [11] and analogous nabla results [2] to more general
variational problems described by the product of delta and nabla integrals.

6 Open Problems

The results here obtained can be generalized in different ways: (i) to varia-
tional problems involving higher-order delta and nabla derivatives, unifying
and extending the higher-order results on time scales of [10] and [16]; (ii) to
problems of the calculus of variations with a functional which is the composi-
tion of a certain scalar function H with the delta integral of a vector valued
field f∆ and a nabla integral of a vector field f∇, i.e., of the form

H

(∫ b

a

f∆(t, yσ(t), y∆(t))∆t ,

∫ b

a

f∇(t, yρ(t), y∇(t))∇t
)
.

It remains to prove Euler-Lagrange equations and natural boundary conditions
for such problems on time scales, with or without constraints.

Sufficient optimality conditions for delta-nabla problems of the calculus of
variations is a completely open question. It would be also interesting to study
direct optimization methods, extending the results of [15] to the more general
delta-nabla setting.
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Abstract

In the present work, we apply the potential methods to the
Laplacian with the nonlinear boundary conditions in a bounded
domain with smooth boundary. A nonlinear boundary inte-
gral equation is obtained. We will interpret that as pseudo-
differential operators, and via the symbolic computation of
these operators, we can give the properties of these operators
which allow us to used the fixed point theorem of Krasnosel’skii
for establish the existence of the solution.

Keywords: Boundary Integral equations methods, Fixed point theorems,
Nonlinear Hammerstein equations, Pseudodifferential operator.

1 Introduction

The resolution of boundary value problem for partial differential operators
with nonlinear boundary conditions bay the method of integral equations, in
recent years much attention has been paid to this problem in many directions
( we quote, for instance, the works for example in Ruotssalainen and Wendland
[7] and in Kendall E. Atkinson [1] ).
In various applications, however, the problems involve nonlinearities. Also
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some electromagnetic problems contain nonlinearities in the boundary condi-
tion, for instance problems, where the electrical conductivity of the boundary
is variable. Further applications arise in heat transfer and potential problems
[1, 2].
Motivated by the above applications we study here a nonlinear integral equa-
tion associated to the Laplacian equation with nonlinear data of the form:

(P )

{
∆u = 0 , x ∈ Ω
∂u(x)
∂n

= g (x, [u(x)]) , x ∈ Γ
(1.1)

Where Ω is an open bounded region in R2 with a smooth boundary Γ = ∂Ω
and g (x, [u(x)]) is a measurable function. If the solution of problem (1.1)
is represented by a potential of double layer, we obtain a nonlinear integral
equation on the boundary of the form

Tw = Ngw (1.2)

with w = [u(x)] = u|inter − u|exter.
Where T is linear hyper singular integral operator and Ng is a Nemytskii
operator.

Unfortunately, the integral operator T−1 is not continuous. To surmount
this difficulty, we will transform (1.2) to in the form:

w = Aw +Bw (1.3)

where A is compact linear operator and B is a strict contraction nonlinear
operator. The existence result will be a consequence of the Krasnosel’skii
fixed point theorem [1, 2].

2 Definitions and notations

In what follows, we denote by F [.] the Fourier transform.

Definition 2.1

1. Let m ∈ N, we denote by Hm(Ω) the Sobolev space:

Hm(Ω) = {u ∈ L2(Ω);Dαu ∈ L2(Ω), |α| ≤ m}

2. Let s ∈ R , we denote by Hs(Rn) the Sobolev space:

Hs(Rn) =
{
u ∈ L2(Rn); (1 + |ξ|2)

s
2 |F [u]| ∈ L2(Rn)

}
.

and the associated norm:

‖u‖Hs =

(∫
Rn

(1 + |ξ|2)s|F [u]|2dξ
) 1

2

.
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3. Let Ω ⊂ Rn a bounded domain and Γ := ∂Ω, we define

Hs(Ω) = {u|Ω : u ∈ Hs(Rn)}, s ∈ R

Hs(Γ) =

 {u|Γ : u ∈ Hs+ 1
2 (Rn)}, s > 0

L2(Γ), s = 0
(H−s(Γ))

′
( dual space), s < 0

3 The Integral equation at the boundary

3.1 Representative formula and boundary operator

We need the fundamental solution E (x) of operator ∆ : ∆E = δ, defined by:

E (x) =
1

2π
log |x| (2.1)

We note: E (x, y) = E (x− y)

We know that the solution of problem (P) can be represented by different
way (see [1,2,3,5]):

1. Representation by potential of double layer is obtained if we extend the
solution ∂u

∂n
of our problem continuously to R2:

g (x,w(x)) = −
∫
Γ

w (y) .∂nx∂nyE (x, y) dsy

with w(x) = u|intΓ − u|extΓ

2. Representation by potential of single layer is obtained if we extend u
continuously to R2:

g (x,w(x)) =
[∂u
∂n

]

2
+

∫
Γ

[
∂u

∂n
].∂nyE (x, y) dsy

with [∂u
∂n

] = ∂u
∂n
|intΓ − ∂u

∂n
|extΓ

In this paper we are concerned to the first case.

Definition 3.1 Let u ∈ C∞ (Γ). We define the following operator:

DΩu (x) =

∫
Γ

u (y) .∂nyE (x, y) dsy , x ∈ Ω (2.2)
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This definition will yield for an arbitrary distribution u on Γ since for x /∈ Γ,
the kernel of the operator (2.2) are C∞ function onΓ.
The operator in (2.2) gives the following representative formula:

Lemma 3.2 For u ∈ H1 (Ω) with w ∈ H 1
2 (Γ) and for x ∈ Ω we have:

∂nu (x) = ∂nDΩw (x) (2.3)

Proof If the solution of the problem (P) is represented by the potential
of the double layer (convolution of the elementary solution with a double
layer(−∂nwδΓ) with δ (the Dirac measure), by differential we obtain the rep-
resentative formula of w = [u] .
In present time, in order to formulate the integral equation, we define the
following operator at the boundary:

Definition 3.3 For x ∈ Γ let u ∈ C∞ (Γ). We define the operator:

Tu (x) = −
∫
Γ

u (y) ∂nx∂nyE (x, y) dsy (2.4)

The extension to distribution has a meaning since the defined operator
above is a pseudo-differential operator.

Lemma 3.4 The operator Tu defined by (2.4) is an pseudo-differential op-
erator of order: 1 and it is continuous:

T : H
1
2 (Γ) −→ H

−1
2 (Γ) (2.5)

Proof We have: Γ is a curve which can be given by a regular parametric
representation:{

x = (x1 (t) , x2 (t)) = (r. sin(t/r), r. cos(t/r))
y = (y1 (t) , y2 (t)) = (r. sin(t/r), r. cos(t/r))

with r = |x− y|.
According to the Taylor formula, we can write, with{

τ = t0 − t
ẋ2

1 + ẋ2
2 = 1

So,

∂nx∂ny log |x(t)− y(t0)| = −τ−2 − (
2

r2
+

1

2r2
)τ + · · ·+R1(t, τ)
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Let χ (|τ |) = 1 in neighborhood of zero. Then,

Tu (t) = − 1

π

∫
Γ

χ |τ | (− |τ |−2)u (t0) dt0 +Ru (t)

where Ru (t) is a C∞ kernel operator, which means of order (−∞) .
Now, let the inverse Fourier transform of u (t0) :

u (t0) =
1

π

+∞∫
−∞

exp (it0ξ)F [u (ξ)]dξ

let’s replace this representation of u (t0) in Tu (t) we obtain:

Tu (t) =
1

π

+∞∫
−∞

PT (t, ξ) exp (it0ξ)F [u (ξ)]dξ +Ru (t)

where

PT (t, ξ) = − 1

π

+∞∫
−∞

exp (it0ξ)χ (|τ |) |τ |−2 dτ.

In addition we have:

χ (|τ |) = χ (0) + τχ
′
(0) +

τ 2

2!
χ
′′

(0) + ◦ (τn) .

Thus, the main symbol will be the fourier transform of χ (0) |τ |−2

σT (t, ξ) = − 1

π
F [
(
χ (0) |τ |−2)] = |ξ|

then Tu (t) is a pseudo-differential operator of order (+1) on Γ.
We know that a pseudo-differential operator is continuous from [11]:

Hs (Γ) −→ Hs−2α (Γ)

or from
Hs+α (Γ) −→ Hs−α (Γ)

for all s ∈ R. 2α is the order of the operator which gives (2.5).

Now, let’s come back to lemma 2.1 and let’s cite the following second
representative formula:

Lemma 3.5 Let w ∈ H+ 1
2 (Γ) . Then we have:

∂nu (x) = Tw (x) , x ∈ Γ (2.6)
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Proof To show (2.6) we consider the boundary process in (2.3) in which
x approaches from the interior in the domain Ω, an arbitrary point x on the
boundary Γ and with the continuity of the normal derivative of double layer
potential ∂nDΩ . We can write the integral equation on the boundary Γ (2.6).

3.2 Representation of the problem (P ) as integral equa-
tion at the boundary (Γ) .

We consider u ∈ H1 (Ω) satisfying the boundary condition of the problem (P )

where g(., .) ∈ H− 1
2 (Γ). Now if we introduce in (2.6) the boundary condition

on Γ and the unknown functions on Γ such that:{
∂nu (x) |Γ = g (x,w(x))
[u(x)] = w(x)

, x ∈ Γ (2.7)

we have on the boundary Γ then the nonlinear integral equation

− 1

2π

∫
Γ

w (y) ∂nx∂ny log |x− y|dsy = g (x,w(x)) , x ∈ Γ (2.8)

under the equivalent form:

Tw (x) = g (x,w(x)) , x ∈ Γ (2.9)

Also introduce the nonlinear operator (Nemytskii operator)

Ngw (x) = g (x,w(x)) , x ∈ Γ (2.10)

Remark 3.6 Note that the nonlinear integral equation (2.9) may be written
in the form:

Aw(x) +Bw(x) = w(x) , w(x) ∈ H1/2 (Γ) (2.11)

Where A and B are nonlinear operators.

In some special cases a useful tool for solving problems in the form (2.11)
is the following fixed point theorem due to Krasnosel’skii[7,8, 10]].

Theorem 3.7 (Krasnosel’skii[7])
Let D be a nonempty closed convex subset of a Banach space X and A and B
be two maps from D into X such that:

1. A is compact and continuous,

2. B is a strict contraction mapping,
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3. AD +BD ⊂ D.

Then A+B has at least one fixed point in D.

The Krasnosel’skii proof combines both the Banach contraction mapping prin-
ciple and the Schauder fixed point theorem. In fact, under the hypothe-
ses of Theorem , the problem may be transformed into the following one:
(I −B)−1Aw = w which may be solved via the Schauder fixed point theorem
since (I −B)−1A is a continuous compact map on D.
There are various problems arising in mathematical physics and population
dynamics which may be written in the form Aw(x) + Bw(x) = w(x) but, in
general, A and B do not satisfy the hypotheses of The Krasnosel’skii theorem.

Lemma 3.8 The hyper singular linear integral operator in (2.9) may be
written in the form

Tw(x) = T0w(x)− T1w(x) , w(x) ∈ H1/2 (Γ) (2.12)

Where T0 is a positive definite operator and T1 is compact.

Proof We use on the boundaries Γ the Fourier transform F [.]. We deduce
the situation in the case Γ = R. According to Parseval formula [11] we have:

〈Tw,w〉L2(R) =

∫
|ξ|+1 |F [w]|2 dξ

Let T0 a pseudo-differential operator of main symbol:

σT0 (x, ξ) =
(

1 + |ξ|
1
2

)2

.

Then we have,

T = T0 − T0 + T = T0 − T1

with T1 is 0 order operator. Hence it is compact from H
1
2 (Γ) in H−

1
2 (Γ) .

Let’s show that T0 is a positive definite operator: there exists a constant c > 0
such that

c
(
1 + |ξ|2

) 1
2 ≤

(
1 + |ξ|

1
2

)2

which means

〈T0w,w〉L2(R) =

∫ (
1 + |ξ|

1
2

)2

|F [w]|2 dξ ≥ c

∫ (
1 + |ξ|2

) 1
2 |F [w]|2 dξ

≥ c‖w‖2

H
1
2 (Γ)
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According to the Garding inequality we have

〈Tw,w〉L2(Γ) ≥ c ‖w‖2

H
1
2 (Γ)
− 〈T1w,w〉L2(Γ) .

The nonlinear integral equation (2.9) can now be written symbolically as:

Aw +Bw = w ,w ∈ H1/2 (Γ) (2.13)

where

A = T−1
0 T1 and B = T−1

0 Ng

First, we write precisely our hypotheses on A and B:

3.3 Hypotheses

(H1) The function g(., .) : Γ×H 1
2 (Γ) −→ H−

1
2 (Γ)

satisfies the condition with a constant

0 < α <
1− ‖T−1

0 ‖.‖T1‖
‖T−1

0 ‖

with respect to the second variable

‖g(x, ω)− g(x, µ)‖
H−

1
2 (Γ)
≤ α‖ω − µ‖

H
1
2 (Γ)

for all x ∈ Γ and ω, µ ∈ H 1
2 (Γ)

Remark 3.9 Using the hypothesis (H1) we get

‖g(x, ω)‖
H−

1
2 (Γ)
≤ a(x) + α‖ω‖

H
1
2 (Γ)

where a(x) = ‖g(x, 0)‖
H−

1
2 (Γ)

Remark 3.10 Using the hypothesis (H1) on α we get

0 < α.‖T−1
0 ‖ < 1

and

1− α‖T−1
0 ‖ − ‖T−1

0 ‖.‖T1‖ > 0
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4 Main result

Now we are in a position to state our main result:

Theorem 4.1 The problem (2.9) with the conditions (H1), has at least

one solution in H
1
2 (Γ).

Proof The proof is based to the theorem 2.1:

1. first we show that A = T−1
0 T1 is continuous:

we have T1 is compact from H
1
2 (Γ) in H−

1
2 (Γ) (lemma 2.4).

And T−1
0 is continuous from H−

1
2 (Γ) in H

1
2 (Γ) :

‖T0w‖2

H−
1
2 (Γ)

=

∫
R

(1 + |ξ|2)−
1
2 |F [T0w]|2dξ

=

∫
R

(1 + |ξ|2)−
1
2

(
(1 + |ξ|

1
2 )2|F [w]|

)2

dξ

≥ c2

∫
R

(1 + |ξ|2)−
1
2

(
(1 + |ξ|2)

1
2

)2

|F [w]|2dξ

≥ c2

∫
R

(1 + |ξ|2)
1
2 |F [w]|2dξ

≥ c2‖w‖2

H
1
2 (Γ)

.

2. In the second we show that B = T−1
0 Ng is a strict contraction mapping.

Let ω, µ ∈ H 1
2 (Γ) it follows from the assumption (H1) that:

‖Bω −Bµ‖
H

1
2 (Γ)

= ‖T−1
0 Ngω − T−1

0 Ngµ‖H 1
2 (Γ)

= ‖T−1
0 ‖.‖Ngω −Ngµ‖H− 1

2 (Γ)

≤ α‖T−1
0 ‖.‖ω − µ‖H 1

2 (Γ)

so, B is a strict contraction mapping on H
1
2 (Γ).

3. Finally we have:

‖Aω +Bµ‖
H

1
2 (Γ)

= ‖T−1
0 T1ω + T−1

0 Ngµ‖H 1
2 (Γ)

≤ ‖T−1
0 ‖

(
‖T1‖‖ω‖H 1

2 (Γ)
+ ‖a‖+ α‖µ‖

H
1
2 (Γ)

)
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letting r0 be a real number defined by

r0 =
‖a‖.‖T−1

0 ‖
1− α‖T−1

0 ‖ − ‖T−1
0 ‖.‖T1‖

the hypothesis (H1) ensure that r0 > 0. Clearly, the last estimate guar-

antees that for all ω, µ in Br (the closed boll in H
1
2 (Γ) centered at 0 with

radius r ) we have
‖Aω +Bµ‖

H
1
2 (Γ)
≤ r

provided that r ≥ r0.
Accordingly, for r ≥ r0 we have

ABr +BBr ⊆ Br.

Now the result follows from theorem 2.1.
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