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Abstract

The purpose of this paper s to introduce subclasses of Bazilevié
and non-Bazilevi¢ meromorphic multivalent functions by using new
operator and investigate various properties for functions of these
classes.
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1 Introduction

Denote by X, the class of meromorphic p—valent functions of the form:

f(z) = % + Zan_pzn_p (pe N=1{1,2,3,...}), (1)
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which are analytic in U* = {z: 2 € C and 0 < |z| < 1} = U\{0}.

Let Pr(p) be the class of functions p(z) analytic in U satisfying the prop-
erties p(0) = 1 and

27

Rp(z) —p

TR TP e <
/’ -5 do < km, (2)
0

where k£ > 2 and 0 < p < 1. This class was introduced by Padmanabhan and
Parvatham [10]. For p = 0, the class P(0) = P) introduced by Pinchuk [11].
Also, Pa(p) = P(p), where P(p) is the class of functions with real part greater
than p and Py(0) = P, is the class of functions with positive real part. From
(2), we have p(z) € Px(p) if and only if there exist p1, ps € P(p) such that

ko1 ko1
p(z) = (Z + 5) pi(z) — <Z — 5) pa(2) (2 € V). (3)
It is known that the class Py (p) is a convex set (see [7]).

The Hadamard product (or convolution) of f(z) given by (1) and g(z) given
by

9 = 5+ D b, @)
is defined by )
(F* ()= + D an ghuy2" 7 = (9% )(2) )

For a function f(z) € 3,, Frasin [3] defined the following differential operator:
Lf(z) = f(2),

RIG) = (=N +ae(e) + 22D
BRI = (=N + 2 (P + 2D,
INf(z) = (L=NI"'f(2) + X2 (Im7Hf(2) + Me+1)

zp
In a general form:

o0

I f(z) = % S A —p— D)™ an " (m € N = NU{0}; A > 0).
(©)
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For the function I3 (2) defined by:

1
let
ol (2) = I (2) = f(2)

_ 1 1 "Wy
_ZP+Z(1+)\(n—p—1)> (1)nan_pz ’ (7)

n=1

where (6),, is the Pochhammer symbol defined by

1 n=20
(9>n:{ 6@+1)...0+n—-1) neN "’

It is easily verified from (7) that

2 (L0 f(2) = pLy i f(2) = (n+p) LY f(2). (8)

Using the operator LY',, we introduce classes of meromorphic multivalent func-
tions of X, as follows:

Definition. For & > 2, A\ja,v,u > 0, 0 < p < 1, and m € Ny, a function
f(2) € ¥, is in the class MY'F(a, v, p, k) if it satisfies the condition:

[(1—7) (Z’”E’If#f(Z))aJr’v(%) (= ;@f(z))“] EPlp) ()

and is in the class NY/""(, 7, p, k) if it satisfies the condition:

1 i LS (2) 1 )
(1+7) (W) ”( £y f(2) ) (zpczfuf(z)>

Putting m = 0 and p =1 in (9) and (10), we have, respectively

Moy = {1 0= Grre) 4 (%) r] € P}

€ Pi(p). (10)

and

atonnn={-0e0 (57) - (557 (57m) | enn}
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2. Main results

Unless otherwise mentioned, we assume throughout this paper that k& >
2, a, \, v, 10>0,0<p<1andm e N

To establish our results, we need the following lemma due to Miller and Mocanu
[5].

Lemma 2.1 [5]. Let ¢(u,v) be a complex valued function ¢ : D — C, D C
C? and let u = uy +iuy, v = vy +1ive. Suppose that the function ¢(u, v) satisfies
(i) ¢(u,v) is continuous in D;

(ii) (1,0) € D and R{¢(1,0)} > 0;

(iii) for all (tup,vy) € D such that v; < —2(1+u3), R{e(iug,v1)} <O0.
Let p(2) = 1+ pp2™ + pur12™ ™ + ... be regular in U such that (p(z), 2p/(2)) €
D for all z € U. If R{¢p(p(2), 2p'(2))} > 0 for all z € U, then Rp(z) > 0.

Employing the techniques used by Owa [9] for univalent functions, Noor and
Muhammad [8] and Aouf and Seoudy [1] for multivalent functions and Mostafa
et al. [6] for meromorphic multivalent functions, we prove the following theo-
rems.

Theorem 2.1. If f(z) € M}/ (a,7,p, k), then

(27L3.f(2)" € Pr(pr), (11)
where p; is given by
2app 4 nry
<——(0<p1 < 1). 12
< 02 <) (12)

Proof. Let
(2P L3, f(2))" = (1= p1)p(2) + p1

- (5+3) a-mme - (A= D0 -pom@ 40l 03

where p;(2) is analytic in U with p;(0) = 1 for j = 1, 2. Differentiating (13)
with respect to z, and using identity (8) in the resulting equation, we get

[(1 ) (L) + <;—ff())> (= Kfmz))“]

(1= p1)zp'(2)
it}

€ Pk(p)

= [(1=p)p(2) + p] +

This implies that

1 (L — p1)2pi(2) L
rp{[(l—m)pz‘(z)+p1]—p+ o }GP(ZEU, i=1,2).
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Defining the function

6,0) = [(1 = poJu+ i) —p 4 L0
po
where u = p;(z) = u1 +iug, v = 2pj(2) = v1 + vy, we have
(i) ¢(u,v) is continuous in D = C?;
(i) (1,0) € D and R{p(1,0)} =1—p > 0;
(iii) for all (fus,v1) € D such that vy < —2(1 +u3),

R{o(iuz, v1)} = pr—p+ V(L= p)ur

uo
ny(1—p1) (1 +uj

A+ Buj

N 2C 7

where A =2 (p; — p) pa—ny(1—p1), B=—ny(1—p1), C = pa > 0. We note
that R {o(iug,v1)} < 0if A <0, B <0, this is true from (12). Therefore, by
applying Lemma 2.1, p;(z) € P (j = 1,2) and consequently (zpﬁf\’fuf(z))a €
Pr(p1) for z € U. This completes the proof of Theorem 2.1.

Theorem 2.2. If f(z) € M}/ (a,7,p, k), then

(L5, F(2)" € Pulpa). (14)

where ps is given by

ik \/(m)2 + (e + ny)app

oo < ] (0<p2<1). (15)
Proof. Let )
(2PL3,F(2)) = (1 = po)p(2) + o
(5310 pm@r o= (§-5) - pmE +pl. 0

where p;(z) is as in Theorem 2.1. Differentiating (16) with respect to z, and
using identity (8) in the resulting equation, we get

[(1 ) (PLR )"+ (;n—ff())> (= T,Mf(z))a]

279(1 — po) [(1 — p2)p(2) + pa] 2p'(2)
apu

= [(1=p2)p(2) + po]” + € Pr(p).
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This implies that

{0 )+l 4

1—p apl

29(1 = p2) [(1 = p2)p;(2) + p2] zp;(z)} cP
(z€U; j=1,2).

Defining the function

(1 — o) 2 29(1 — p2) [(1 = p2)u + pa]v
(o) = (1= put o~ + - ,

where u = p;(z) = uy + iuy, v = 2pj(z) = v1 + vy, we have
(i) ¥ (u,v) is continuous in D = C?;

(i) (1,0) € D and R{¢(1,0)} =1—p > 0;

(iii) for all (iup,v1) € D such that vy < —2(1 +u3),

29pa2(1 — p2)vy

R{¢(iug,v1)} = —(1—p2)’ui+ps—p+ o
n 1-— 1+ u?
< —(1—p)2+p2—p— VP2 p2)( 3)
ap
A4 Buj
= o

where A = apps—apup—nypa(1=pa), B =—(1=pa) lop(1 = po) + ynpa] , € =
ap > 0. We note that R {1 (iug,v1)} < 0if A <0, B < 0, this is true from (14)
and 0 < ps < 1. Therefore, by applying Lemma 2.1, p;(z) € P (j = 1,2) and
consequently (zpﬁf\’fu f (z))a/2 € Pr(p2) for z € U. This completes the proof of
Theorem 2.2.

Theorem 2.3. If f(z) € NY(a,7,p, k), then

1 (03
cp ’ 17
where p3 is given by
2app 4 nry
< ——— (0< p3 < 1). 18
pr < Gl T (0 < gy < ) (18)

Proof. Let N
1
(W) = (1 —p3)p(2) + p3

— (5 3)0—pam e (5= )10 - mmE +ol, (9)
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where p;(2) is as in Theorem 2.1. Differentiating (16) with respect to z, and
using identity (8) in the resulting equation, we get

1 ’ walf(z) 1 )
(1+7) (W) _7< Ly f(2) > (zpﬁ’;juf(z)> ]

Y(1 — ps)zp/(2) £ Pulp)
e S

= [(1—p3)p(2) + ps] +
This implies that

(1 — p3)zp(2)
J1%e!

L{[(l—pg)pj(Z)—l-pg]—p-i- }EP(ZEU;jzl,Q}.

IL—p
Defining the function

ofu.0) = (1= pahu+ o] = pot L2

where u = p;(2) = uy + iug, v = zp;(z) = vy + ivy.The remaning part of the
proof is as in the proof of Theorem 2.1, so, we omit it.

Theorem 2.4. If f(z) € N{'/"(a,7,p, k), then

1 o2
(W) € Pr(ps), (20)

where p4 is given by

ik \/(m)2 + 4(pa + ny)app

o1 < ST (0<pi<1). (21)

Proof. Let

1 o2
(W) = (1= pa)p(2) + pa

- (5+3)a-pme e - (A= D 0-pom@ 4 2

where p;(2) is analytic in U with p;(0) = 1 for j = 1, 2. Differentiating (22)
with respect to z, and using identity (8), we get

1 i f{fuﬂf(z) 1 a
(1+7) <W> _7< Ly f(z) ) (zpﬁg'fuf(Z)> ]

(1 - pa)p(z) + g+ 2P0 Zﬁp(@ ol ) Cp )
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This implies that

{0+ -+

29(1 = pa) [(1 = pa)p;(2) + pa] Zp;@} €P
QL |

Defining the function

1 o ol 2Y(E = p) (L= paJu+ pa]v
U(u,v) = [(1 = pa)u+pa]” —p+ o :

where u = p;(2) = uy +iup, v = 2pj(2) = vy + ivy. The remaning part of the
proof is as in the proof of Theorem 2.1, so, we omit it.

Remark. Putting m = 0 and @ = 1 in the above results we obtain the
results for the classes Mﬁ’g(a, v, p, k) and Nﬁ)(a, v, 0, k).

2 Open Problem

The authors suggest to study these classes defined by the Frasin-Darus [ 4]
operator:

1 o0
I"f(z) = 2 + Zk’"akzk(n € No =NU{0},z € U").
k=1
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