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Abstract

In this paper, we have introduced some subclasses St (m,p,«, 5), St (m,p,a, f)
and SI.(m,p,a,B) consisting of analytic multivalent functions starlike with
respect to symmetric points, starlike with respect to conjugate points and
starlike with respect to symmetric conjugate points respectively and the cor-
responding subclasses with negative coefficients ST (m,p,a, ), SiT (m,p,«, )
and S:T (m,p,«, B). Here, we obtain coefficients inequality, growth and dis-
trotion theorem, extreme points for the function of these subclasses. Also,
we have obtained some other geometric properties and subordination result.
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1 Introduction

Let A(p) denote the class of analytic p-valent functions in the open unit disc U = {z :
z € C, |z| < 1}, defined by

fz) =2 + Zanﬂ,z”“’ (anip € C,p eN). (1)
n=1

We note that A(1) = A, the class of analytic univalent functions. Let T'(p) be the subclass
of A(p) consisting of functions f of the form

f(z)=2"— Z Anyp2™ P (anip > 0,p €N). (2)
n=1

We denote by S*(a) the subclass of A consisting of functions which are starlike of order
a in U and satisfies

Re{m}>a, (zelU, 0<a<l).

f(2)

Also, we denote by K (a) the subclass of A consisting of functions which are convex of
order v in U and satisfies

—Zf//(Z) (0% z «
§R{1+ f’(z)}> ) (zeU, 0<a<l).

The subclasses S*(«) and K (o) were introduced by Robertson [14], (see also [24]).
Sakagchi [16], introduced the class S* of analytic univalent functions in U which are called
starlike with respect to symmetric points and satisfies

w0
f(2) = f(=2)
EL-Ashwah and Thomas in [2], had introduced two other subclass namely S and

S* . Kharinar and Rajas [9] (see also, [6, 25]) had discussed the subclass S*T («, 8,0) of
analytic multivalent functions in U and satisfying the condition

}>0,26U.

2f' ()

‘f (2) = f (=2 o

e R

AR N s
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forsome 0 <a<1,0<f<1,0<d<pandzeUl.
For functions f(z) belonging to the class A(p), Orhan and Kiziltunc [13] defined the
following differential operator which extend the Salagean operator [17]

Dyf () = f(2),

Dyf (2) = Dpf(2) =2f () =pz" = ) (n+p) anspz"",

n—1
D;%f (2) = Dp(Dpf(2)) = p?aP — Z (n+ p)2 Antp2™ P,
n—1
Dyf(2) = Dy(Dy'f(2)) =" =D (n+p)" anspz"".
n=1

Now, form e Ny, 0 <a<1,0< < 1,0< 21(_:? < 1 and z € U, we define three

subclasses of A(p) as follows:

Definition 1.1 A function f € Si(m,p, «a, 5) is said to be p-valent starlike with respect
to symmetric points if it satisfies

DrtfGz) oDy f(2)
‘Dyfu>—zmvw—a W— 'Dyf@>—zwvx—z

Definition 1.2 A function f € S} (m,p, a, ) is said to be p-valent starlike with respect
to conjugate points if it satisfies

>+p' for peN and z e U.

for peN and zeU.
Dy f(z) + Dy f(z)

+
Drf(z)+ Dt

Dy f(2) __|< ‘ oDy f(2)

Definition 1.3 A function f € S% (m,p,«, ) is said to be p-valent starlike with re-
spect to symmetric conjugate points if it satisfies

+p| for peN and zeU.

Dylf(z) ‘< ‘ Dyt f(2)
Dprf(z) — Dy f(=2) | Drf(z) = D f(=2)
Let S{T'(m,p,a, ) = Si(m,p, o, B) N T(p), S:T (m,p,, B) = Sk (m,p,a, 3) N T(p) and
ST (m,p,a, B) = S5 (m,p, o, B) N T(p).

By specializing the parameters in the above definitions, we obtain some spacial cases,
as follows:
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For p = 1, we obtain the subclasses which introduced in ([1]);

For p = 1 and m = 1, we obtain the subclasses which introduced in [7, 8] see also
([23] with £ =1 and o = 0);

For p = 1 and m = 0, we obtain the subclasses which introduced in [3, 5] see also
([4] with £k =1 and 0 = 0 and [10] with 6 = 0);

For m = 0, we obtain the subclasses which introduced in ([9] with § = 0).

In this paper, we obtain coefficients inequality, growth and distortion theorem, ex-
treme points for the function of these subclasses. Also, we have obtained integral operator
properties, integral mean and subordination result for these subclasses.

2 Coefficients estimates

Unless otherwise mentioned, we assume in the reminder of this paper that m € Ny, p € N,
0<a<l,0<pB<1,0< 2&;? < 1 and z € U. In this section, the authors obtained
coefficients estimates.

Theorem 2.1 Let f(z) defined by (1) and satisfied the condition

an-i-p S 17 (3)

<oy [(Z2) @B+1)+(B-1) (1- (-1)"*7)]
; ( p p) Bla+ (11— (=) + (=17

then f(z) € S¥(m,p,a, B).

Proof. Let the condition (3) is true. Then, we have

Dy £(2) = pDy () + D f(=2)| = B |aDy ™ £(=) + pDy f(2) = pDy (=)

00
pm-‘rlzp + Z(n + p)m+1an+pzn+p

n=1

—p (pmzp + ) (4 p) "2 — (1) = > (=) (n+ p)manﬂaznﬂ’) ‘

n=1 n=1
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—B lap™t 2P + o Z(n + )" a2
n=1
" <pmzp £ 31+ D)y — (1 — S (< 1)+ p>m> |
n=1 n=1
< D> [n+p)(@B+1)+(B—1) 1= (=1)"")p] (n+p)" ansp
n=1

oo+ (- o)) s
Hence, by the maximum modulus theorem, we have f € S¥ (m,p,«, ).

Theorem 2.2 The function f(z) given by (2) is in the subclass ST (m,p, a, ) if and
only if

An+p <1l (4)

5 (nry [(52) @8+ 1+ (- (1= (1))
—\ p Bla+ (1= (=1 + (1)

Proof. We only need to prove the only if part of Theorem 2.1. For function
f(z) € T(p), we can write

Dy f(2) _
DpiG) Dpis P
aD 1 f(2)
Dy Dpf(= TP

(=Dppmtizp =57 ((n4p)™ [(n4p) —p+ (=1)""Pp| ayy 2" P
(a+1—(=1)p)pmtize =377 (n+p)™[(n+p)a+p— (=1)"Pp] @y, ,2"tP
< B,

since R(z) < |z| for all z, we have

{ —(=1)Ppm P + 37 (n+p)™ [(n+p) — p+ (=1)"Pp] anip2" P } ~5
(@ TP =S (e p = Gt

)

Choose values of z on the real axis so that Dmfl()gigf}(,z) isreal and D) f(2) =D} f(—2) #
p P

0 for z # 0. Upon clearing the denominator in (5) and letting z — 1~ through real values,

we obtain.

L S ) [0+ 9) — p ot (—1) ] any

n=1

(a+1—(=1)")p™" =) (n+p)"((n+pla+p-— (—1)"+”p)an+p]

n=1

—f

< 0

This gives the required condition (4).
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Corollary 2.3 If f € ST (m,p,a, ) if and only if

. p \" B(a+(1—(—1) )+ (= 1)”
s (n +p) (=2) (@B+ 1)+ (8- 1) (1= (-1)""7) o

The equality in (6) is attained for the function f(z) given by

" Bla+(1-(=1")+ (1"
flz) =2 — (L o, (7)
<”+p) (22) (aB+ 1)+ (B-1) (1= (1))

Theorem 2.4 Let f(z) defined by (1) and satisfied the condition

i(n+p)m [(%10) (aﬁ+1)+2(5—1)} <1, .

D fla+2)—1

n=1
then f(2) € S:(m.p, . B).

Proof. Let the condition (8) is true. Then, we have

D+ (=) = Dy §(2) + 9D f(B)| = 8Dy () + 0Dy (=) ~pD T ()

pm TP 4 Z n+p) " a, 2" —p <p 2P + Z n A4 p) " apypz" P — p" 2P

n=1

n=1

Z(n + p)man+pzn+p> — Blap™ T +a Z(” + )" angp T
n=1 n=1
+p ( Z n+p) a2 P —pTat — Z(n + p)man+pz”+p>
=1 n=1

<Yl +p) @B+ 1) +2(8 = 1)p] (0 +p)" sy — [B(a+2) + 1"+ <0,
n=1

Hence, by the maximum modulus theorem, we have f € S* (m,p,«, 3).

Theorem 2.5 The function f(z) given by (2) is in the subclass S¥T(m,p, «, B) if and
only if

< nsov [(22) @B+ 1) +2(5 - 1)
Z( ;p) & >ﬁ(a+2)—1 ey < 1 ®)

n=1
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Proof. We only need to prove the only if part of Theorem 2.5. For function f(z) € T'(p),
we can write
Dyt P
Dp f(2)+Dp f(Z)
aDp M f(2)
Dy ()i P

prP =37 (n+p)™ [(n 4 p) = 2p] angp2" P

< B,
(o4 2)pmHize — 370 (n+ p)™ [(n + p)o + 2p] Gy p2™ P

since R(z) < |z| for all z, we have

"+ 30 (n A p)" (04 p) — 2p] a2
{ (a4 2)pmtize — 37" (n+p)™ ((n +p)a+ 2p)an+pzn+p} <B. (10)

: 'f(2) m Dm£(z)
Choose values of z on the real axis so that Dmf( Ty is real and D" f(2) — D f(Z) # 0

for z # 0. Upon clearing the denominator in (10) and letting z — 1~ through real values,
we obtain

—p" Y ()™ [(n+ p) = 2p] angpy—B (@ +2)p™ T =D (n+p)"((n+ p)a+ 2p) | dnip < 0.
n=1 n=1
This gives the required condition (9).
Corollary 2.6 If f € S¥T (m,p,a, 3) then
i 2)—1
ntr)(m2) (ap+1)+2(8-1)
The equality in (11) is attained for the function f(z) given by
2)—1
flat?) 2, (12)

_Zp_ p "
fz) = (n+p) (2) (ap+1)+2(8-1)

Using the method of Theorem 2.1 and Theorem 2.2, we can prove the following theorems

Theorem 2.7 Let f(z) defined by (1) and satisfied the condition
> () (52) @B+ +B-1 (1= (1))
o Blo+ (1= (=1)")]+ (1)
then f(z) € Si.(m,p, a, B).
Theorem 2.8 A function f € S2.T (m,p,, ) if and only if

< e\ [(B2) @8+ 1)+ (B-1) (1= (1))
> () Blat - )+ (17

n=1

An+p < 17 (13)

Qpip S 1.



Corollary 2.9 If f € S:T (m,p,a, 3) then

n—+p

any < () o Llat 0= (D) + (=1
( ) <”+p>

The equality in (14) is attained for the function f(z) given by

(@B+1)+(B—1) (1—(—1)""7)

2P,

f(z) =2 - ( P Blat (1= (=1)") + (-1

Remark 2.10

n +p) (=2) (@B+1)+ (8= 1) (1 - (-1)"*)

R. M. El-Ashwah, A. Y. Lashin and A. E. El-Shirbiny

(14)

e Putting m = 0 in the above theorems , we obtain the result obtained in ([9] with

5 =0);

e Putting p = 1 in the above theorems, we obtain the result obtained in [1];

e Putting p = 1 and m = 0 in the above theorems, we obtain the result obtained in

[3, 5] see also ([4] with £ =1 and ¢ = 0 and [10] with § = 0);

e Putting p = 1 and m = 1 in the above theorems, we obtain the result obtained in

[7, 8] see also ([23] with k =1 and ¢ = 0).

3 Growth and Distortion Theorems

In this section, we give results concerning the growth and extreme points of the three

subclasses ST (m,p, o, 8), SiT (m,p,a,B), ST (m,p,a, B).

Theorem 3.1 Let the function f be defined by (2) and belong to the subclass SIT

Then for {z:0 < |z| =7 < 1},

L+p Ba+1)+(B—1)(1— (1))

”‘( ; )m(w)ﬁ(&m_(_l) i 1) < f(2)]

o\ ﬁ(a+(1—(—1)>>+(1)”
- +<1+P) (52) (Ba+ 1)+ (8- 1) (1= (-1)"")

Proof. Let f(z) defined by (2). From Theorem 2.2, we have

(1+p)m( ) (Bt 1)+ (8- 1;< (1))

p

(=) @B+ 1)+ (B-1) (1= (-1)"7)]

7,1+P_

T ) E Sy A DL

: i<n;p) Flat(i- <(1>>> 1y

(m, p,a, B).
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That is

L+p (Ba+1)+(8-1) (1—(~1)")

n=1

Sty < ( p ) <ﬂ)5(a+(1—(—1) )+ (=1) ' (16)
Using (2) and (16), we have
FEI < 2P+ angy 2™

[e.@]
< 2P+ 12T ansy

n=1

< W (H5) @ G oo o
A S
= () @y oone
Similarly,
HEE |z|p—§an+p|z|”+p
S Y
> (p 5<a+<1—<—1>?>+<—1>p

1 +p> <%> (Ba+1)+(8—1) (1 _ (_1>1+p)
o ( p >’” Bla+ (1= (=1)P) + (=1 .
()

I+p (Ba+1)+(B—1) (1 - (~=1)'"7)

This gives the proof of Theorem 3.1.
We note that result in Theorem 3.1 is sharp for the following function. Next, we state
similar results for functions belongs to S*T (m,p, «, 5) and SET (m,p,a, ).

e (2" Blat (= (D)) + (=1
f(z) (1—|—p> <%>(Ba+1)+(ﬁ—1)(1—(—1)1+p)

2P at 2=+

Theorem 3.2 Let the function f(z) be defined by (2) and belong to the subclass SIT (m, p, a, B).
Then for {z:0 < |z] =r < 1},

- p \" fla+2)—1 L4p .
' (Hp) <1+P)(a5+1)+2(5—1) =7E)




10

R. M. El-Ashwah, A. Y. Lashin and A. E. El-Shirbiny

STPJF( p )m pla+2) -1 4
L+p/) () @B+ 1)+2(8-1)

The result is the sharp for

_ (P " flat2) -1 2P
f(z)= <1+p) (1+p>(a5+ H+2(B-1)

, at z = 4.

Theorem 3.3 Let the function f(z) be defined by (2) and belong to the subclass ST (m,p, «, ).

Then for {z:0 < |z| =r < 1},

f(Z)Zzp—( F

rp—( ; >m<1+p>/3(a+<1_(_1)p))+(_1)p <1 ()

I+p (@B+1)+(8—1) (1 —(~1)"*7)

s (P N\ Blasl- ()R,
SH(HP) (22) @B+ 1)+ (-1 (1-(=D"7)

The result sharp for

Bla+ (1 - (=D)")]+ (= 1)” 14p

z7 at z = =£r.

1+p> <1+p> (@B +1)+ (5 — (1 )1+p)
Theorem 3.4 Let f € S¥T (m,p,a, 8) then for {z:0 < |z| < 1}

ol < p )m (( +p){flat+ (- (=D + (=D}

< |f(2)]
Ltp/ (H2) (Ba+1)+ (B -1) (1 - (-1)*7)

e (" R {Blat A= () (),
- +(1+p) (52) Ba+ 1)+ (8- (1= (-1)™)

Theorem 3.5 Let f € S¥T (m,p,a,8) then for {z:0 < |z| < 1}

mp_l_( p )’"( (1+p)[Bla+2) - 1]

1 < If ()
L) (af + 1) +2(8-1)

<ot (2 )m< (+pBa+2-1

L+p %) (@B+1)+2(8—1)
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Theorem 3.6 Let f € SET (m,p,«, 3) then for {z:0 < |z| < 1}

1 p \" 4+ {Bla+ (1 -C=DN+EDS Ly
Pl — < |f(2)]
' ( ) (%) (Ba+1)+(B—1)(1—(=1)""7)

rP.

1 (1+ ){5 [a+ (1 - (=DM + (=1}
<prP7 4+ ( ) (1 ) 1) (1- (_1)1+p>

Remark 3.7

e Putting m = 0 in the above theorems , we obtain the result obtained in ([9] with
6 =0);

e Putting p = 1 in the above theorems, we obtain the result obtained in ([1] with
i=1);

e Putting p = 1 and m = 0 in the above theorems, we obtain the result obtained in

[3, 5] see also ([4] with £ =1 and ¢ = 0 and [10] with § = 0);

Putting p = 1 and m = 1 in the above theorems, we obtain the result obtained in

18].

4 Closure theorems

All three subclasses discussed here are closed under convex linear combinations In this
section, We obtained the closure theorems for the subclasses S*T' (m, p, a, B) , SET (m,p, , 5)
and S?.T (m,p,a, f). We consider the functions f;(z) defined as

=Y 2" (an; =0, j=1,2,.,1). (17)

Theorem 4.1 Let the function f;j(z) be in the subclass SIT (m,p,«, ), then g(z)

defined as
!

9(z) = chfj(z), ch =1,

j=1

also belongs to the subclass SET (m,p,a, ) .

Proof. Since f;(z) are in the subclass S¥T (m, p, «, 3), it follows from Theorem 2.2 that

< e\ [(B2) @8+ 1)+ (8- 1) (1= (-1))]
> (%)

Bla+ 1= (=1)")]+ (=1)

Unip; <1, (5=1,2,..,1).

n=1
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)m (=) @B+ 1)+ (8-1) (1= (-1)"*)]

n=1 j=1 Bla+ (1 — (=1 + (=1)° Cjln-tp,j
Ll (ntp\" [(",#) (@B +1)+(B—1) 1—(—1)n+p)]
) =1 [; ( p p) Bla+ (1= (=1)P)] + (=1 Untpj | Ci
< l ;=1

From Theorem 2.2, it follows that g(z) € ST (m,p,a, ). This completes the proof of
Theorem 4.1.

Corollary 4.2 Let the function f;(z) be in the subclass SiT (m,p,a, ), then g(z)
defined as

also belongs to the subclass S¥T (m,p,a, ).

Corollary 4.3 Let the function f;(z) be in the subclass St T (m,p,a,B), then g(z)
defined as

also belongs to the subclass SET (m,p, a, ) .

Corollary 4.4 Let f;(z) (j = 1,2) defined by (17) be in the subclass ST (m,p,c, B) ,
then
hi(z2) = Afi(2) + (1 =N fa(2) (0< A< 1),

belongs to S¥T (m,p,a, ).

5 Extrem points

In this section, we determine the extreme points of the subclasses ST (m, p, a, B) , S¥T (m, p, a, 5)
and S*.T (m,p,a, ).

Theorem 5.1 Let f,(z) = 2P and

e (2N Bl AN
o)== (755) () @srn+G-na-y™) T

p
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then f € S¥T (m,p,a, B) if and only if it can be expressed as follows

z) = Z AntpSrtp (2)
n=0

where A\pip > 0, Z Aip=1,peN

Proof. Let
f(z) = Z)‘nerfner (Z)
n=0

IR G S € V10 e G Ve
Z(”“?) (”“”) (@B+1)+(F—1)1—(-)~?)

n=1

Now, since f(z) € ST (m,p,«, 5)

(Hp)m (=2) @B+ +(B-1) (1= (=1)")
~\ " Bla+ (= 10+ (-1

( )’" flat -+
nEp) (H2) (@+1)+(B-1) (1- (-1)"7)

S

an+p_1—xpg1, peN.

n=1

Conversely, suppose that f(z) € S¥T (m,p,a, 8). Then

S( p )m( )ma+<1—<—1>p>J+<—1>” ..

n+p (@B +1)+(B—1) (1— (—1)"*7)

Set

- (n +p>m (22) (@B + 1)+ (5-1) (1 = (-1)"™)

p Bla+ (1 — (=1 + (- 1)1’ Unip, N =1,peEN,

and A\, =1 — > A\qp then f(2) = D7 Agpfasp(2). This completes the proof of Theorem
n=1 n=0
5.1.

Corollary 5.2 The extreme points of the subclass S*T (m,p,«, ) are the functions
fntp(2) given by Theorem 5.1.
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Method of proving next Theorems are similarly to that of Theorem 5.1 and extreme
points for functions belonging to ST (m, p, a, f) and ST (m, p, a, B) are obtained.

Theorem 5.3 Let f,(z) = 27,

_ b _ b " 5(0[+2)—1 n+p N > 1
Frap(2) = 2 <n+p> (n+p>(aﬁ+1)+2(ﬂ—1)z e

p
then f € S¥T (m,p,a, B) if and only if it can be expressed as follows
f (Z) - Z >\n+pfn+p (Z) )
n=0
where App >0, > App =1, pe N

n=0

Corollary 5.4 The extreme points of the subclass S:T (m,p,«, ) are the functions
fntp(2) given by Theorem 5.3.

Theorem 5.5 Let f,(z) = 27,

Blo+ (1= (=D + (=" ntp

= P _ p " _ z n
et (555) () @+ - - P

then f € SXT (m,p,a, ) if and only if it can be expressed as follows
f(z) = Z Antp St (2)
n=0
where Apip >0, > Apip =1, pe N

n=0

Corollary 5.6 The extreme points of the subclass SET (m,p, a, B) are the functions
fnip(2) given by Theorem 5.5.

6 Radii of close to convexity, starlikeness and con-
vexity

In this section, radii of close to convexity, starlikeness and convexity for functions belong-
ing to the subclass S¥T (m,p, «, 5) are obtained.
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Theorem 6.1 Let the function f (z) defined by (2) be in the subclass S¥T (m,p, o, B)
then f (z) is close to convex of order § in |z| < ry, where

ry = inf (p_5) (n+p)m <nTTp)<a6+1)+(ﬁ—1) 1—(—=1)"") g

nz1 | \n+p p Bla+ (1 —(=D")]+ (-1) wo(18)
0<di<l,n>1.

The result is sharp with the extremal function given by (7).

Proof. For close to convexity, it is sufficient to show that % — p‘ <p-—90for |z| <,

we have
f'(2)

zp—1

—p\ <3 (0t p) 2]

n=1

Thus,

#—plﬁp—éif

p—1

> (”f §> iy 2" < 1. (19)

n=1 p

According to Theorem 2.2, we have

= e\ (M) @B+ 1)+ (8- 1) (1- (-1)"7)
Z( pp) Blat (1= (D7) + (-1

n=1

Hence (19) will be true if

Qp4p S 1.

n+ n_ [+ m(%ﬁ”)(aﬁﬂ)ﬂﬁ—l) 1—(=1)"7)
<p—§) || S( pp> /B[Oz—l—(l_(_l)p)]—{_(_l)p

or, if

|2 < (p_5> (n+p)m (nTﬂ R le. (20)

n+p p Bla+ (1= (=1)")]+(=1)"

The result follows easily from (20). This completes the proof of Theorem 6.1.

Theorem 6.2 Let the function f (z) define by (2) be in the subclass ST (m,p,a, ().
Then f(z) is starlike in |z| < ry, where

=

< p—206 )<n+p>m<n%p>(aﬁ+1)+(5_1) - (—1)™))”

n+p-—20 P Bla+ (1— (=17 + (=1)° ,0<d<1,n>1.

9 = inf
n>1

(21)
The result is sharp with the extremal function given by (7).
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Proof. To find the required result, it is sufficient to prove that

2f' ()
f(z)

where 75 is given by (21). Now

_p‘gp_(sa |Z’§T27

e}

n
na z
ZICP P2 Ml

L, . |
/) 1= 3 ey |2

n=1

The above expression is less then p — 9, if

> (LH) Gy 2] < 1. (22)

n=1 p_5

Using the fact f(z) € S¥T (m,p, «, ) if and only if

Qp4p S 1.

nap\" (52) @B+ 1)+ (8 -1) (1= (1))
( p ) Bla+ (= 1+ (-1

Hence (22) will be true if

nApP—=0\ n_(nt m(”Tfp>(O‘5+1)+(ﬁ—1) 1—(-1)""7)
( pﬁ(s )|z| S( pp) FIr N .

Or, equivalently,

3=

(23)

p—5 N\ (nap\" (52) @B+ 1)+ (B-1) (1 (-1
( )( p ) Bla+ 1= (1 + (-1

The result follows easily from (23). This completes the proof of Theorem 6.2.

Theorem 6.3 Let the function f (z) defined by (2) be in the subclass S¥T (m,p,a, ),
then f(z) is conver in |z| < rs, where

nz1 p Blot+ (1= (=1)")]+ (=1) (n+p)(n+p—9)
(24)

ry = inf <"—+p)m (=) (@B +1)+ (8-1) (1= (-1 ( ) ) :

The result is sharp with the extremal function given by (7).
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Proof. It is sufficient to prove that

21" (2)
f'(2)
where r3 given by (24). Indeed, we find that

+1—p‘§p—5, 2] < 1,

Yo n(n+p)an, |2
+1—p‘ < n:loo )
p= 3 (14 D) sy |21

n=1

2f" (2)
f'(2)

Thus Zf,(()) +1 —p‘ <p-—4¢,if

i n+p)(n+p-— 5)an+p|z]<1 (25)

p(p—9)
Using Theorem 2.2 then (25) will be true if

n=1

(n+p)(n+p—5)| "< (n+p)m (”“’) (@B+1)+(B—1)(1—(=1)"*7)
po=8 T T\ S -+ 7

Or, equivalent

npy™ ((B2) @B+1)+(B=1) (1- (-1)"*) (p—9)
<1 () sera—crrey ) (e r=s)

(n>1).
(26)

The theorem follows easily from (26).

7 Integral Mean inequalities

In this section, integral means for functions belonging to the subclass S¥T (m,p,«a, ) are
obtained. In [18] Silverman found that the function f3(z) = z — 7 is often extremal over
the family T'. He applied this function to resolve his integral means inequality, conjectured
n [19] and settled in [20]. In this section, we prove Silverman’s conjecture for functions

in the subclass ST (m, p, a, B).

Lemma 7.1 [11] let f,g € A if f < g, then for z = re®® (0 <r < 1) and § > 0, we

have
27

J1s e an< [ o e as
0

0

n
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Theorem 7.2 Suppose f € S¥T (m,p,a,3),d >0 and 0 <r <1 then

2 2
/|f<z> 1 do s/!pr ()P d6 (0<r<1,6>0). (27)
0 0

where

(= (2" Bla+ (- (=D))]+ (1) P (98
fra®) (1+p) (1p >(a6+1) B-1)(1- (-1 .

Proof. For function f (z) given by (2) the inequality (27) is equivalent to
2T o
/ 1-— Z Apgp?”
0 n=1

by Lemma 7.1, it suffices to show that

S (2 N\ Blet (- (Y
1 Zn+p <1 (1+p> <1+p>(a5+1) (B—1) 1—(—1)1+P).

0

b\ ma+<1—<—1>>1+<1>p i
(1+p> (1 >(aﬁ+1) (B—1)(1—(-1)"*) v

2

s
< [li-

0

n=1

Thus, by setting

" Bla+ (11— (=D")]+(=1)"
Za"“"z (Hp) (1+p) (af+1)+(8-1) 1—(—1)””)w<z>’

and use Theorem 2.2

>

n=1

lw(2)] = <1 —i-p) (Tp> (af+1)+(B-1)(1— (_1)1+p)

Aot -+ (cp

= g\ (52) @B+ +(B-1) (1 - (-1)"™)
= "Z( p ) Blat - (- + (07

< 7.

This completes the proof of Theorem 7.2.

8 A family of integral operator

Saitoh et al.[15] defined the integral operator J., by

Jo = 2 [ 0an ()€ Sie> —ppeN)

C
z 0

= c+p 4
= Zp+ —an Zn p-
nz_:lc+p+n P
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In this section, a family of integral operators for functions belonging to the subclass
S¥T (m,p, a, B) are discussed.

Theorem 8.1 Let f(z) defined by (2) be in the subclass SIT (m,p,a, B) and ¢ be a
real number such that ¢ > —p. Then the function F (z) defined by

c+p

F(z)= —C/tc_lf(t) dt, (29)

z
0
also belongs to the subclass ST (m,p,a, () .

Proof. From the representation of F'(z), it follows that

oo ctp
n+
Z) = 2P — E bn+pz p7 bn+p = Qpyp

ctn—+p
Therefore

Z(”Zp)m (”;p) @B+ 1)+ (B—1) (1 (=17 | by

n=1 |
B ) n-+p m n—+p o n+p_ C—l-—p
- Z( (e )aﬁﬂ SN (= )| e
< 2 [
< 5l a+(1—-(-1)")]+

since f (z) € ST (m,p,a, ). By Theorem 2.2, F (z) € ST (m,p,a, f3) .

Theorem 8.2 Let ¢ be a real number such that ¢ > —p. If F (z) € ST (m,p,«a, ),
then the function F (z) define by (29) is p-valent in |z| < r*, where

Bl

r* = inf
n>1 | (n+p)(c+n+p)

(c+p) (n+p)m (n+p) (aB+1)+(B8—1) 1_(_1)7’L+p)
p Bla+ (1 —(=1)P)] + (=1)?
The result is sharp.

Proof. Let F(z) given by (2). It follows from (29) that

Z1-e = ctn+p

[@) = FFEI =2 =) ——=

n—+p
A+ pZ ,C > —p.

n=1
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In order to obtain the required result, it suffices to show that % — p’ < lin |z] < 7%

Now / o
J; p(_zl) - p‘ _ nz::l (n+ p()c(i;)n +p) -
Thus % —p’ < 1, if
niojl (n+ p()c(j_—;)n ~r) Antp?" < 1. (30)

Hence, by using (3) and (30) will be satisfied if

(n+p)(c+n+p) L < <n+p)m <nTpr> (a@B+ 1)+ (B—1)(1—(=1)""P)

(C +p) p I5; [a + (1 _ (_1)10)] + (_1)27

ie., if
< (i )(nw)m(’%”) (@F+1)+(3-1 (1= (-1)")"
(n+p)etn+p)) A p Blat - (D7) + (17 |

Therefore F'(z) in p-valent in |z| < r*. Sharpness follows, if we take

_ o ((nEp)(ctntp) r\" Bla+(1— (1)) + (1) i
f(z)= ( c+p )(n—l—p) <n+p> @B+ 1)+ (B—1) (1 - (—1)™7) :

p

9 Partial sums

Silvia [22] studies the partial sums of convex functions of order a (0 < av < 1) . Later on,
Silverman [21] and several researchers studied and generalized the results on partial sums
for various subclasses of analytic functions. In this section, inequalities involving partial
sums of f (z) € A(p) have discussed Let non zero partial sums of f (z) € A(p) of the form
(1) define as follows.

k
fp(2)=2" fr(z)=2"+ Zan+pz"+p, k>1.

n=1

Theorem 9.1 Let f (z) € SE(m,p, a, 5) be given by (1) and satisfies the condition (3)

and
{ 1, n=12 ..k

>
Cntr Chaptr N=k+1k+2, ..,
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where
mepy [ e v 0o 0 )
‘( p ) Bla+ =0+ (=17
Then
%{2((?)}>1_6k+1p+1 (z€eU;neN)
and

%{fk (2)} > _ Ckptl

f(z) L+ Cripia

Proof. For the coefficients ¢, given by (31), it is not difficult to verify that

Cn4p+1 > Cn+4p > 1.

Therefore, we have

Z |@ntp| + Crapr1 Z |@ntp| < ch—irp |@nip| < 1.

n=k+1

91(2) = Crrpn { ((Zz)) (1 - Ck+1p+1>}

Chtptl D Gntp?"
n=k+1

Set

= 1+ - ,
L4+ D> appz™
n=1
and applying (34), we find that
(2) -1 Cn+p+1 > |an+p|
gl(>+1‘§ . n=k-+1 <1,
g1 (% e
2=2% |anipl = Chipr1r D2 antp]
n=1 n=k+1
if - .
Z |@ntp| + Chipra Z |@ngp| < 1.
n=1 n=k+1

From the condition (4), it is sufficient to show that

Z |@ntp| + Chipr1 Z |np| < Z Cretp | Antpl

n=k+1

21

(31)

(32)

(33)
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which is equivalent to

oo

Z (Cntp — 1) [anp| + Z (Cntp = Crapt1) [ansp| = 0,

k
=1 n=k+1

n

which readily yields the assertion (32) of Theorem 9.1. In order to see that

Sh+p+l
flz) =2"+ (35)
Ck+p+1
gives sharp result, we observe that for z = rerH1 that ffk (8) =1+ Ciil — 11— Ck: o
P P
z — 17. Similarly, if we take
i (2) Cl+p+1 }
g2 (z) = (1+cg { —
2 (%) ( +r+1) f(z) 1+ chipn
(1 + Ck-i—p-‘rl) ( Z an—i—pzn)
- 1_ n=k+1
]. 4 z an+pZn
n=1
and making use of (34), we find that
(L4 Chpr1) D2 |ansp|
g2 (2) —1 < n=k+1
g2 (2)+ 1]~ k 0
2-2 Zl |antpl — (1 = Chipt1) ; , |@ntp]
n= n=~k+

which leads us immediately to the assertion (33) of Theorem 9.1.

Theorem 9.2 Let f(z) € Si(m,p,a, ) be given by (1) and satisfies the condition

(3). Then
! k 1
{f/(z)}zl_i (36)
i (2) Ck+p+1
and )
(LG, _awn (37
f (Z) k+p+1+Ck+p+1
where cpypdefined by (31) and satisfies the condition
{ ntp n=12..kpeN;
Cntp Z Ck+p+1 n+ _
(ﬁp) (Tp) n—k+1k+2, ..

The results are sharp with the function f(z) given by (35).
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Proof. Set
g(z) = Sl {f’(Z) B <1_ k+p+ 1>}
k—l—p—i—l fé(Z) Chtp+1
00 k
L 5 (a4 3 (a0,
n=~k+ n=

Y

k
L B

then, we find that

[e.e]
B Y (M2 [yl

‘9(2)—1‘ < e S <1
g (Z) + ]' N k n c — n -
22 30 (50 Jag| — i 3 (252 o
n=1 n=k+1
if
e n—+p Chyptl i n-+p
D () langy| + ( ) |anp| < 1. (38)
n=1 p k +p + 1 n=k+1 p

Since the left side of (38) is bounded above by > cyip |anp| if
n=1

k

n+p S Chpt1 (N +D
Z(C”+p_( D ))‘anﬂo‘""n;l <0n+p_k+;+1( D ))‘anﬂo‘zo

n=1

and the proof of (36) is completed.
To prove the result (37), we define the function A(z) by

hiz) = E+p+1+crypn {J;;% ((3 _ Chtp+1 }

k+p+1 k+p+1+0k+p+1

o0
(1) 2 (P
n=k+1

Y

1 + Zl(nTTp)axn_i_pZn

then, we find that

(1+528) > (2,

‘h(z)_l‘ < - n=htl <1,
M oy ) - (14 5228) 3 () ol
n=1 P Sk ktptl n=k+1 P S

which leads us to the assertion (37) of Theorem 9.2.
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10 Subordination Result

In this section we obtain subordination theorem for the subclass S* (m, p, a, 8). To prove
our result we need the following definitions and lemma.

Definition 10.1 [12] For f,g € A, we say that the function f is subordinate to g,
if there exists a Schwarz function w, with w(0) = 0 and |w(z)| < 1,z € U, such that
f(z) = g(w(z)) for all z € U. This subordination is usually denoted by f(z) < g(z). It
is well-known that, if the function g is univalent in U, then f(z) < g(z) is equivalent to

f(0) = g(0) and f(U) C g(U).

Definition 10.2 [26] A sequence {b,} ", of complex numbers is said to be a subordi-
nating factor sequence, if for each function f of the form f(z) = > - " is analytic,

nq A Z
univalent and convez in U, we have the subordination given by

ananz" < f(2) (z€eU,a; =1).
n=1

Lemma 10.3 [26] The sequence {b,},_ is a subordinating factor sequence if and only
of
%(1+2anz"> >0 (zel). (39)
n=1
Theorem 10.4 Let f € S¥(m,p,a, ) and g € K then
(22)" [(22) @B+ 1)+ (B-1) (1= (-1)"7) p]
2{ (%) [(%2) @B+ D)+ (8- 1) (L= (1)) p| + Bla+ (1= (—17)] + (-1}

M8 < 90, e, (40
and

%(J;p(_zl)) (41)
> ) (5 @s 0+ B (1= (0] 4 Blat (1= (1) + (-1}

(52)" [(52) @+ 1+ (8- (1= (1))
The constant factor
(52)" [(32) @B+ D+ (-1 (1 - (-)™)]
2{(%2)" [(%2) @B+ 1)+ (B-1) (1= (1)) |+ Bla+ (1 = (-] + (-1}

cannot be replaced by a larger number.
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Proof. Let a function f of the form (1) belong to the subclass S¥ (m, p, a, 5) and suppose
that a function g of the form

:chz” (n=12z€U),
n=1
belongs to the subclass K. Then

(22)" [(32) @B+ 1)+ (B-1) (1= (-1)**7)]
2{(22) " [(22) (@8 + 1)+ (B-1) (1= (-)")] + Bla+ (1= (-1))] + (-1)"}

(2109 = S

n=1
where
(5" [(52) @4 +e-D (1)) —_—
b, = A{(52)7 (5 21 aB+1)+(B—1) (1= (=1)"P) [+ Bla+(1—(—1)P)+(-1)* } =1
' ) K””)WHHW H(1-(CDHT)] a ifn>1
2{(22)"[(E2) (aB+1)+(8—1) (1= (—1) 77 [+ Bla+ (1—(—1)7)+(-1)7 P H ‘

Thus, by Definition the subordination result (39) holds true if {b,,} -, is the subordinating
factor sequence. Since

(” ﬂ?)m K” “’) (aB+1)+(8-1) (1~ (—1)””)} Gty

> (é)m[(lé) (0B +1)+(6-1) <1—<—1>”p>} tnep (1> 1mEN).

we have

()" [(22) (s + 1)+ (8- 1) (L (~)")] (8- 1) (1 - (~1)**)

> T (@) e s 600 (0] s 0 (I (7]
. ()" [(5) s+ ]
() [(B2) @B+ 1)+ (B-1) (1= (-)"™)| + Bla+ (1= (-] + (-1}
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Thus, by using Theorem 2.1 we obtain

(%)m [(%) (@B+1)+(B—1)(1— (_1)1+p)]
Z 1 - ™m r
{(42)" () @+ 0+ -1 (1= (-0")] +8la+ (- (-17)) + (-17]
m Blo+ (1= (=1 + (-1 .
{(22)" [(22) @B+ 1)+ (8= 1) (1= (") + Bla+ (1= (=1))] + (-1}
= 1-r>0 (Jz]=r<1).

This evidently proves the inequality (39) and hence the subordination result inequality
(40). Inequality (41) follows from (40) by taking

:Zz" (zeU)

Next, we observe that the function

N, [P " Bla+ (1= (=) + (- 1)? e .
f(2) (n —l—p) <1+p> (aB+1)+ (8- (1 )1+p) (z€U)

clearly f(z) belongs to the subclass S¥ (m, p, «, ) for this function (40) becomes
() () wrnsn-crm] gy
2{(22) " [(22) @B+ 1)+ (B-1) (1= (-1"7)| + Bla+ (1= (1)) + (-1} = L=

it is easily verified that

min {2 (1 () 53)p =

aB+1 (1=(=1)™*P) [+Blat+-(1—(=1)")+(~1)? } zp—1

and the constant
(22)" [(32) @B+ 1)+ (8-1) (1= (-1)"*")]
2 { (%)m [(Hp) (@B+1)+(B—1)(1— (—1)”*”)} +Bla+(1—(=1)")] + (—1)p}

can not be replaced by any larger one.

11 Open Problem

Discuss all the classes properties using integral operator.
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