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ABSTRACT. In this paper, we consider the Weinstein operator

Aa}d , we introduce new function spaces that are denoted by D”

1<p<oo, a> _71 Some properties of these spaces are studied.

We study the convolutors and the surjective Weinstein convolu-
tion operator acting on (D ,)’, 1 < p < co. In the case p = 2, we
obtain complete characterization.

1. INTRODUCTION

In [11], L. Schwartz has introduced the space Dy», 1 < p < o0, of
all C*°-functions ¢ on R such that for all n € N, D" is in L’(R) and
the map ¢ — D" from Dy, into LP(R) is continuous. These spaces
are studied by many authors (see [1], [2], [6], [10]).

In this paper we introduce for every 1 < p < oo, a > _71, function
spaces, denoted by DZ’ 4> sSimilar to Dp» but replacing the usual deriva-

tive D by the Weinstein operator Aoﬁ}d defined on R%M = R¥x]0, +o0f,
by:

d+1
0? 2 1 0 1
ot :Ad+Laaa>__7

1.1 A% =
(L.1) v i—1 8%2 Tap1 OTap 2

where Ay is the Laplacian for the d first variables and L,, is the Bessel
operator for the last variable defined on |0, +oo[ by :

d*u 200+1 Ou 1 0 ou
L,ou= = gt _—— |
ox3 Tapr Otqrr 37! Orapn T Or g

The main result of this paper consists to give a new characteriza-
tion of the dual space (D, ;)" of D, ; and a description of its bounded
subsets.

The Weinstein kernel A, 4 is the function given by :

Vx, yE Cd+17 Aa,d (.’E, y) = eii<x/7y/>ja($d+lyd+l)>
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where x = (2/,2441), *' = (21,%9,...,74) and j, is the normalized
Bessel function of index «.
The function A, 4 can be written in the form :

1

ol o] a—2
(1.2) Noa(z,y) = age =y / (1 — t2) 2 cos(txgy1Yar1)dt,
0

where a,, is the constant given by the relation :

(1.3) g = 2at+1)

Vil (a+1)
Using the Weinstein kernel A, 4, we define the Weinstein transform
fﬁl}d by :

YA € R Ful(f)(\) = F(@)Aq.a(z, N)dpg.a(z),

d+1
RY

where f € LY (R 14 4(7)) and ji4 4 is the measure on R given by:

(1.4) dpta.q(z) = C’a,dxfl‘f{ldx,

dz is the Lebesgue measure on R and C, 4 is the constant given by
1

(1.5) Coa=

(27)? 2T (a + 1)
If T e (D}, ;)', we define the Weinstein transform F(T) as following;:
Y6 € Dy (Fy (1), 0) = (T, ' (9)).

We analyze the behaviour of the Weinstein transform ]:ﬁ,’d on the spaces
Dy, ;, and (D} ;). We study the Weinstein convolutors on Dy, ;, that is,
the functional T € (Dy, ;)" such that T xy ¢ € D, ; for every ¢ € Dy, ;.
We show that the convolutors of D, ; or of D2, are the elements of
(Dg2,)" and we characterize the convolutors of D2 ;. We prove S is a
convolutor in Di}d if and only if there exists [ € N such that

(1+[I&]*) ' F(S) € L (RYH).-

On the other hand, we prove that every convolutor of D? , is also a
convolutor of Di’ 4 for every ¢ satisfying :

min{p,p'} < ¢ < max{p,p'}.
The surjectivity of the Weinstein convolution operator on Di 4 1s char-
acterized. Moreover, we show that such a surjective operator admits a
continuous linear right inverse. A partial result concerning the surjec-
tivity of the Dunkl convolution operator on DZ 4 1s also obtained.
The contents of the paper is as follows :
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In the second section, we recapitulate some results related to the
harmonic analysis associated with the Weinstein operator A%}d given
by the relation (1.1).

The section 3 is devoted to studied the space D , and its dual (D? ).
We give somes property of theme. In particulér, we prove that 7
is in (D?,) if and only if there exist » € N and ¢, € LE (R,
k=01, , r, for which

r k
T=%" (A%}d> Wy, on DY,
k=0

In the last section, we investigate the convolutors in D? ;. where their

surjectivity in D? , is descussed at is the functionals T € (D%, 2) such
that T+ ¢ € Df, ; for every ¢ € D!, .

2. Preliminaires

In this section, we shall collect some results and definitions from the
theory of the harmonic analysis associated with the Weinstein operator
A% defined on R4 by the relation (1.1).

Let us begin by the following result, which gives the eigenfunction
\Ifi’d of the Weinstein operator Af,‘[}d.

Proposition 1. (see [3, 4])
For all X = (A1, X,y .., Aay1) € CHL the system

Py () = —Nu(x), if 1<j<d

89:?
(2.1) Lou(x) = =N, u (),
w(0) =1, 52-(0) = 0 and ££(0) = —i);, if 1<j<d

has a unique solution \Ilff’d gien by :
(2.2) vze CH, ‘I’i’d (2) = €_i<zl’/\/>ja()\d+1zd+1)7

where z = (2, xq41), 2 = (21, 22, .-, 24) and jo 18 the normalized Bessel
function of index o, defined by :

Ve €, Jal§) =Tla+ 1)Zn!F(7(z_—|—1)o:L+ 1) (g)%’

The Weinstein kernel Agq = (N, 2) — U (2) has a unique extention
to CH1 x C*! and satisfies the following properties.

Proposition 2. (see [3, 4, 5])
i) For all \, z € CH*1 and t € R, we have

Aoa(N0)=1, Apa(N,2) =Aaa(2,A) and A g (N, t2) = Aga (TN, 2) .
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i) For allv € N**' x € RE™ and 2z € C*, we have

(2:3) DY Aaa(z, 2)| < | exp(]lz]| || Im 2]),

where DY = ——% - and |v| = v + ... + vay1. In particular
0zy .0z,

(24) vxay € R(j-+17 |Aoc,d(‘ray)| S L.

Notations. In what follows, we need the following notations:

o O,(R41), the space of continuous functions on R+ even with re-
spect to the last variable.

e O, .(R¥1) the space of continuous functions on R**! with compact
support, even with respect to the last variable.

o Y (R¥1), the space of continuous functions on R**!, even with re-
spect to the last variable and vanishing to 0 when ||z|| — 4o0.

e CP(R¥*1), the space of functions of class C? on R4, even with re-
spect to the last variable.

e &£, (R¥1) the space of C*®-functions on R**! even with respect to
the last variable.

e S.(R¥*1), the Schwartz space of rapidly decreasing functions on R4+1,
even with respect to the last variable.

e D,(R41) the space of C*™-functions on R4 which are of compact
support, even with respect to the last variable.

e [2(R%) 1 < p < 400, the space of measurable functions on R%H
such that

1
Iy = [fues 1 @) Pdiaal@)]” < +o0, if 1< p < +oc,
[Flase = ess sup |f(2)] < +ox,
xeRi+1

where i, 4 is the measure given by the relation (1.4).
e 1.(C41) the space of entire functions on C%*1, even with respect
to the last variable, rapidly decreasing and of exponential type.

Definition 1. The Weinstein transform is given for f € Li(Riﬂ) by
(25)  VAERTL F(NW = [ F@)Aaalw, Ndpa,a().

R4
where [t q 15 the measure on Rfl given by the relation (1.2).

Some basic properties of the transform ]-"{},’d are summarized in the
following results.
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Proposition 3. (see [3, 4, 5])
i) For all f € LL(RL™), we have

(2.6) 175 (s < 1F e

i) Let m € N and f € S.(R™), for ally € RE™ | we have
en  FO(aw)" 1] ) = Cor P ES ) W)

iii) For all f € S.(R™Y) and m € N, we have

@8)  WeRM, (AF)" [FN] ) = F PO,
where Pr(X) = (=1)™ [IA[I"".

Theorem 1. (see [3, 4, 5])

i) The Weinstein transform fﬁ,’d is a topological isomorphism from
S.(RI¥Y) onto idtself and from D, (R4L) onto H,.(CIH1).

ii) Let f € S.(R*¥Y). The inverse transform (f‘?‘[;d> is given by :
-1

29 VeeRPL (B (NE) = F) (—a).

iii) Let f € LL(REY). If Fp'(f) € LLREY), then we have

(2.10)  f(z) = / FR) W) Meal . 0)dpa(y). acw € R

Theorem 2. (see [3, 4, 5])

i) For all f,g € S.(R¥Y), we have the following Parseval formula :

1) [ I@a@da) = [ FOOF ) Odaa()
+ +

ii) ( Plancherel formula ).
For all f € S.(R¥1), we have :

e [ @l = [

iii) ( Plancherel Theorem ) :
The transform Fﬁ‘;d extends uniquely to an isometric isomorphism on
LZ(RT)

« + :
Proposition 4. Let f be in L?, (RT™), p € [1,2]. Then Fulf belongs
to Lgl (]Ri“), with p' the conjugate exponent of p, that is % + ;z% =1

and we have

(2.13) |7

2NN dpaa(r).

Sl ey -

Ly (ré+L)
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Proof. From the relation (2.6) and the Theorem 2 iii), we deduce that
the relation (2.13) is true in the cases p =1 and p = 2.

Hence from the Riez-Thorin interpolation ( see [12] and [13]), deduce
that f{f‘v’d can be extended as a continuous mapping from LP (Riﬂ)
into L? (R{') and we have the relation (2.13). O

Definition 2. The translation operator T,, x € R‘fl, associated with
the Weinstein operator A%? is defined on C, (R, for all y € R4,
by :

(2.14)

ao [ .20
T.f(y) = 7/ / (xl + 9/, \/x?m + ?J521+1 + 22441Y441 COS 9) (sin 0)2 do,
0

where ' +y' = (x1 + y1, ..., Tq + ya) and a, is the constant given by the
relation (1.3).

Proposition 5. (see [3, 4, 5])
i) For f € C.(R¥), we have

Vo, y e RY™, Tof (y) =T, f () and Tof = f.
i) For all f € £,(R™Y) andy € R the function x +— T, f (y) belongs
to E,(RITL).
iii) We have
(2.15) Vo e R A% o T, = T, 0 ALY
w) Let f € L2(RT), 1 < p < +oo and v € RE. Then T, f belongs
to L2 (RT™) and we have
(2.16) ITe fllap < 1 llop-

v) The function Ay q (., ), X € CH1) satisfies on RE the following
product formula:

(2.17) Vy € R, Mg (2, 0) Aaa (4, A) = T [Aaa (-, N)] (1)

vi) Let f € L2(RT™), p=1 or 2 and x € R, we have
(2.18) vy € RY, FRt (Tof) (y) = Do (2,9) F (F) ().

vii) The space S,(R*™) is invariant under the operators Ty, v € R
Definition 3. The Weinstein convolution product of f,g € LL(RE™)
s given by :

(2.19) Vo € RY, faw g(2) = / Tof () 9 (y) dita,a(y)-

d+1
R+
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Proposition 6. (see [3, 4, 5])

i) Let p,q,r € [1, +00| such that i + % —-1=1

Then for all f € LE(REY) and g € LL(REM), the function f *w g
belongs to L (R and we have

(2.20) 1 *w gllar < [ fllapllgllag

ii) For all f,g € LL(RI™), (resp. Si(R¥Y)), fxw g € LL(RTM)
(resp. S.(R¥)) and we have

(2.21) F'(F «w 9) = B (HF (9):
3. THE SPACES Df, ; AND (Dy )’

In this section, we introduce new function spaces that are denoted
by ng, 1<p<o0 a> _71 Some properties of these spaces are
studied. We study the convolutors and the surjective Weinstein con-
volution operator acting on the dual space of Df, ; denoted by (D, ,)".
In the case p = 2, we obtain complete characterization.

Now, we define the new spaces D, ;, 1 < p < oc.

Definition 4. i) The space D}, ;, 1 < p < oo is the set of all C*-
functions ¢ in R such that, for alln € N, (Aﬁl}d> @ is in L2 (R
which is equipped with the topology generated by the countable norms

(31 vmeN ud @) = (S I(2%) el gen)
n=0

ii) A function u € E(RYL) is in B3, when for each m € N,
fong (u) < 0o, where

(3:2) i) = o1 (A%) " elligemer)

n=0
iii) We denote by Dy, the subspace of By, that consists of all those
Junctions u € By, for which ~lim (Af,‘[’,d>m u(z) = 0 for eachm € N.

llz]|—=+o0

The space B, is endowed with the topology generated by the system
{/ﬁ;n,:ioo}mEN-

In the following results, we give some topological properties of the
spaces D7, ;.

Proposition 7. i) For every 1 < p < oo, Df;d 1s a Fréchet space.
ii) Let 1 < p < 2 < q < oo. Then the space Did 15 continuously
contained in D}, ;.
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iit) If 1 < p < oo then D’;d s a reflexive space.
w) B, is the strong bidual of DYy
v) For every 1 < p < oo, the space D(RT™) is dense in Dy 4

Proof. i) Let 1 < p < 0o and (¢n)nen be a Cauchy sequence in D ,.
Since L2(R%™) is a Banach space, then there exists v, € LP(R%™)

such that for each m € N, (A%}d> On = Y, a8 N — 00, in L’L’Y(Riﬂ).
On the other hand, it is easy to see that

¥m € N, (A‘;Vvd)m;po -

Hence this implies that (¢, )nen converge to 1y in D, ;.

ii) Let 1 < p <2 < g < oo, p the conjugate exponent of p, that is,
I%—l—}% =1land f € D. ;. For alln € N, the function A — A2 FSFY(N)
belongs to the space LZ (RE™). By applying Holder’s inequality it fol-
lows that this last function belongs to the space L% (R%1) where ¢’ the
conjugate exponent of g. On the other hand, for all x € R‘fl, we have

(85) " @) = [ X F DN Aaale N ala)

= (7)) ) @)

and this implies that for all n € N, the function A';‘[’,d f belongs to the

space L (RT) .

iii) To see iii) it is sufficient to argue like in [11].

iv) See [11].

v) If 1 < p < oo, it sufficient to observe that D(R%™) is dense in

LP (REY .

On the other hand, if p = oo, the result follows immediately from

the definition of D, and the fact that the space D(R{) is dense in

CYo(RHY). O
As usual, by (D7, ;)" we represent the dual space of D, ;.

In the following proposition, we give a representation for the ele-
ments of D? ..

Proposition 8. Let T be a functional on Dg’d, 1<p<ooandyp the
conjugate of p. Then T is in (D}, ;)" if and only if, there evist 1 € N
and Yy, € Lg(R‘f’l), k=0,1,...,r, for which

(3.3) T = Z (Af;vvd)k Wy, on DL,

k=0
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Proof. Suppose that T' € (D, ;)". Then there exist an integer  and a
positive constant C' such that

(3.4 Vo € DL, (T, )| < Cmax i (6).
We put Ertt = L2(RT) x .71 x LB (R, we define the mappings

J.Dh, — Bt
k
o — (A% s

and
L: JDZ,d — C

(25 Ohca +— (T.0).

Note that, since J is one to one, the mapping L is well defined. On the
other hand, according to (3.4), L is a continuous linear mapping when
in JDZ, 4 We consider the topology induced by E;“. Then by invoking
Hahn-Banach theorem, we can extended L continuously to E;“ as an
clement of (E;*')". Then, there exists u, € LY (REY), k=0,...,r such
that (3.3) holds.

Conversely, if T takes the form (3.3), for some u;, € L? (RT™) where

k= 10,..,r and r € N, using the Holder’s inequality, we deduce that
Te (D). O

Definition 5. If T is in (D}, )", we define the Weinstein transform
FoUT) as following :

(3.5) Vo € D2, (F(T), ¢) = (T, F;y(¢)).

Now we analyze the behaviour of the Weinstein transform Fﬁ,’d on
the spaces Dy, ; and (DY, ;)".

Proposition 9. i) If u € ngd with 1 < p < 2, then for every polyno-
mial P, we have P(||€]]*)Fy(u) € L2 (R,

i) If T € (D, ), with 2 < p < oo, then FolT) = P(|E|P)F, where
P is a polynomial and F € L2 (R%).

Proof. i) Let u € D

oy With 1 < p < 2. Then from the relation (2.13),
it follows that

k /
vk € N, ]—"5{,’(1(<A‘3[’,d> u) € L (REY)
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where p’ the conjugate exponent of p.
On the other hand, from relation (2.7), we have

ve e ri | (85) ] © = CUF IR )

This gives the result.
ii) Let T € (D, )", with 2 < p < co. From Proposition ?? there exist
r € N and u, belongs to L¥ (]Ri“), k=0,...,r, such that

" k
T=%" (A%’,d> "
k=0
Hence, from the relation (2.7), we obtain :

Ftm) = F(05) w) = (L 16P) Fw)

k=0
where the function F' defined by :

= (D[N F () (€)
FO=2 e

It is clear that F' € L2(RLM). O

In the following we give a necessary and sufficient condition for
that a distribution 7" belongs to (D2 ;).

Proposition 10. Let T € S'(RT™). Then T € (D2,), if and only
if, there exist a polynomial P and a function F in Li(Rfl) such that
F'(T) = P(€]*)F-

Proof. Assume that FY(T) = P(||¢]|*)F, where P is a polynomial and

F € L2(RT™). Then according to the relation (2.9),

1= (F) (PUERP)E) = P (F) ()

~1
Since (]:S}d> (F) € L2(R%™), from Proposition 8, we deduce that
T e (D2,).

The conversely is immediately from Proposition 9 ii). U
Proposition 11. Let 1 < p < oo , S € (D! ) and ¢ € D (R{™) be
given. Then S*y o € L¥ (]Ri“), where p' is the conjugate exponent of
.
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Proof. Firstly we take 1 < p < oo. Let S € (D} ;). According to
Proposition 8, there exist 7 € N and vy, € L? (R%™) k=0,1,...,r, for

which )
s=%" (A;‘Vvd)k Ui
k=0

For every ¢ € D (RT™), we put $(z) = p(—z). For all 2 € R{, we
have

T T

§ o ol@) = (5.1.8) = 3 (25 v T3) = Yt (25) 1)
k=0 k=0
k A~

=Yt (259) 1) = Y -0M T (25) B

_ §<_1)%k - ((A;“[’,d>k&> .

k
Since for each ¢ € D (RY™) | (A%’,d> ¢ € D(RI) c LL(RYH), then
from the relation (2.20), we deduce that S #p ¢ belongs to LZ (R).

Suppose now that p = oo and for every x € R‘fl, we have Sy ¢(x) €
R . We define two open sets U, and U_ as follows:

U, = {x € R vy po(x) > O}

and
U_= {x € R vy o) < 0}.

If K # () is a compact subset of U, we choose ¢ € D(R%™) such that
p=1on K,0<¢ <1and suppp C Uy. Then

18 s elodsata) < [ (5w @)oo ate)

< Ctim 1 (PPN Lo sy

Hence S xy ¢ € LL(U,).
In a similar way, we show that S *y ¢ € LL(U_). Then S sy ¢ €

LL(RH)
a\"+ :

In the general case it is sufficient to consider the real and imaginary

part of S *p ¢ to conclude. O

Proposition 12. For every p € N and € > 0, there exist mg € N such
that for any m € N, m > myg, we can find two functions v, € D (Riﬂ)
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and T, € D*(B (o0,¢)) such that
(3.6) §=(I—A%N™T 0 + Ym
where § is the Dirac distribution and

B(o,e) = {z e R*™, ||z|| <e}.

Proof. The proposition can be proved in the same way of Proposition
3.6 in [9]( see also [8]) O

Proposition 13. Let 1 < p < q < oo ,the space Dg’d s continuously
contained in D, ;.

Proof. Using the relations (3.6), (2.15) and (2.20), we deduce the result.
U

Proposition 14. Let 1 < p < 0o and S € D'(RT™) be given. Suppose
that S xw ¢ € L2(RT™) for every ¢ € D(RE™). Then, there evist
m €N and f,g € LE(REY) for which S = (I — ASH™f 4 g,

Proof. Let 1 < p < o0, S € D’(]Rff“l) and V,, be the unit ball of
LE (RY).
Assume that ¢ € V,, (| D(R%). We have

o € DR, [(S*w 3, 0)| = (S +w ¢, ¢)].
On the other hand, using the Holder inequality, we obtain
(37) 1(Sw 6,0} < 15w Sy sy 191y sy < 1w 0l s
Thus the set

is bounded in D’(R%") when we consider in D'(RT™) the weak topol-
ogy, and hence, equicontinuous on D’ (Rﬁlfl). Therefore, if K; = B (0,2) =
{z € R*™, ||lz|| <2}, we can find m € N such that

¥ € D(K1) and ¢ € Vi [ DRE™), [(S #w &, 6)| < Cll6]lx1m
where

k
18llcom = sup | (A7) o(@)]
Tz e Ky
kE<m

Hence, for every ¢ € D(K;) and ¢ € D(RT™), we have

(55) 4 5w 380 < Clldllicml [l )
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Now we want to prove that, if we take K» = B (0,1) = {z € R*"!, |lz|| < 1},
then
Vo € D*™(Ky), Sxw ¢ € LL(REM).

Let ¢ € D(K5) such that 0 < <1 and / Y()dpaa(x) = 1.

B(o,1)
Let 0 < e < 1, we put :

_ —2a-d-2, (T
Vo € R o (z) =2 w(s)'

For ¢ € D*™(K3), ¢ *xw . € D(K;) and ¢ *y . — ¢, as ¢ — 0T,
in D™(K;). Consequently, S #p (¢ *w ¢.) € L2(RT™) and we deduce
from (3.8) that

(3.9) IS #w (¢ *w )l @erry < Clld*w Yellym < Cllol]rrm-

Observe that we also get from (3.9) that S sy (¢ *w ?.) is a Cauchy
net in L2 (R%), thus convergent. Since S € D'(R), there exist [ € N
and C > 0 such that

Vip € D(Ky), [(S,¢)] < Cllel ki

Then S can be continuously extended to D'(K,). Hence, if m large
enough, we conclude that for all x € Rffrl, we have

|(Sxw (Pxwie) (2)=Sxw o) (z) | < Cllgrwibe—9|k,0 < Clloxw e —| |k, m.-
Thus S *y (¢ *w ¥e) — S *w ¢, as € — 0, in Cp(REY).
From (3.9), we deduce that S #y ¢ € LE(RE™).
According to Proposition 12, we can write
5= (I — ASY™ 0 + Yoms

where v,, € D(K3) and T',,, € D*"(K).
Then, we obtain :

S= 5w d=5*w ((I—A‘J&d)mFm+vm> = (I - ASH™f +g
where f =S *y [, and g = S *w Y- 0

Now we can establish the following property, where we present as
a necessary and sufficient condition in order that a distribution belongs
to (Dg.a)"

Theorem 3. Let 1 < p < oo and S € D’(Ri“). The following asser-
tions are equivalent:

i) S € (Di,d)'~

i) S *w ¢ € LY ((REY) for every ¢ € D(REY).



52 HASSEN BEN MOHAMED

iii) There exist m € N and f,, € LZ (REY) such that
S=(I— A% .

Proof. The results follow directly from Proposition 14. O

We give now an allternative description of the space Dg g that
will be useful in the sequel.

Proposition 15. Let 1 < p < oo . The family of seminorms
= {qa’j7 . mE€ N}

where for allm € N and ¢ € Df, ,

(3.10) Gt (0) = 11 = A% ™8l 1y gy

generates the topology of Dp Moreover, every continuous seminorm

uaf 1s dominated by some qa Perl.

Proof. 1t is clear that the family I' defines on DZ 4 & topology weaker
than the one associated with {MZ’,d}neN- Let n € N. There exist a
positive constant C' and a bounded subset B of (D, ;) for which

Vo € DL 4 tya(e) < Csup (S, ).
SeB

From Theorem 3 there exists m € N and a positive constant C' such
that, for every S € B, we can find fg € LE (R4), satisfying

S = (1= 85" fs, IIfsll,y e < C
On the other hand, for all ¢ € Da 4 We have

(5.0 < | [ Fsta)(T = D5 ola)dpnata)
a,d\m
< Cl[(I = Ay )™ SOHLP(R"Z“)
Thus there exists m € N such that
a,d\m
Vo € Dad? ﬂad( ) SOl = Ay SDHLI;(RTI)'
Then we conclude that I" generates the topology of DZ’ 4 0

From the previous proposition we deduce an interesting charac-
terization of the functions in DZ 4 as follows :

Proposition 16. i) Let 1 < p < co. A function ¢ € LE(RE™) is in
Dy, ; if and only if

Vm €N, (I — AyH™p € L2 (R
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it) A function ¢ € LZ(RY) is in B, if and only if

Vm €N, (I — AyHmp € L (RE).

4. CONVOLUTORS IN D? |

In this section we study the convolutors in D ,, 1 < p < oo,
where their surjectivity in D? , is descussed at is the functionals

T e (D’;d)/ such that T sy ¢ € DY, , for every ¢ € Dy, .

Definition 6. The generalized convolution of S € (D, ,;)’, 1 < p < 00
and p € DY, ; is given by :

(4.1) Vo € R Sxy o () = (S, T.p)

where ¢ (x) = p(—x).
The functionnel S € (ng)’ 15 called convolutor in ng if for every
¢ € D7 4 we have S xw ¢ € D! .

Remark 1. Using the fact that for all x € ]Rffrl and p € D? . we have

a,d?

T.p € Dg’d, we deduce that the Definition 6 is meaningful.

Proposition 17. Let S € (D}, ;)', 1 < p < oo, be a convolutor in D, ;.
Then the mapping Fs defined by :

Vo € D 4, Fs(p) = Sw o
s continuous from ng into itself.

Proof. Let (¢n)nen be a sequence in D’;d such that ¢, — ¢, asn — oo,
and Fs(¢,) — ¢, as n — oo, in D, ;, for certain ¢, ¢ € D}, ;. Since,
for every x € Rf’l, the mapping ¢ — T, is continuous from DQ 4 into
Dy, 4, then for every z € R we have S #y @, (r) — S #w @(z) as
n — 00, . Then Fs(¢) = ¢ and the closed graph theorem implies that
Fg is continuous. 0

Now, using Definition 6 and the proposition 17, the following defini-
tion have a sense.

Definition 7. Let S € (D, ,;),1 < p < o0 and T € (Did)’ where
p’' the conjugate of p. Then the Weinstein convolution S xw T is the
functional given by :

(42) VQO € Dg,d? <S *w T7 ()0> = <S7T *W ()0>7
where (T, o) = (T, ).
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Proposition 18. i) Let S € (D ,)', 1 <p < oo and T € (DZ:d)’,
where p' the conjugate of p, that S xyw T =T %y S.

i) Let S, T € (D3,)', then S*w T € (D).

iii) Let S € (D) and T € (D, ), then S*w T € (D, ).

w) For every T € By, and S € (DY), we have S *w T € By, .

v) Let T € (D, ;)" and ¢ € D, 4, then T xw ¢ € B,

Proof. 1) By a standard argument, it is easy to see i)
ii) We deduce this result by Theorem 3 and i)
iii) The proof is similar to that of part ii).
iv) Since B, is contained in (D} ,)’, then from Theorem 3 and
Proposition 17 we get the conclusion.
v) The proof is similar to that of part iv). O

As a consequence of Theorem 3, we characterize (D) as the
space of convolutors in D! , and in DX,.

Proposition 19. Let S € (D) ,)'. Then S € (DY) if and only if
S*y € D;,d for every ¢ € D}Ld. Moreover, for each 1 < p < 0o, we
have S *w ¢ € D), ; whenever S € (D,)' and ¢ € Dy, ;.

In the following result, we characterize the Weinstein convolution
in D?L 4 Via the Weinstein transform.

Proposition 20. i) Let S be a convolutor in Di,d and ¢ € Di,w Then
we have

(4.3) Fi' (S #w ) = F ($)F ().
it) Let S,T € (D2 ,). Then Fol(S)FyUT) e S (RYHY). If moreover,

S is a convolutor in D7, ; then
(44) Fi' (8w T) = Fy (S) F(T).

Proof. 1) The results follow immediatly from the relations (4.1) and
(2.18).
ii) Using the relations (4.2) and (4.3), we get the relation (4.4) O

Theorem 4. Let S € (D2 ,)'. We have S is a convolutor in D7, ; if and
only if there ewists | € N such that (1 +||¢]|?) ' Fy(S) € Le (REH).

Proof. From Theorem 3, there exist f € L2 (R{™") and [ € N such that
S = (I-AWMf. Then Fh(S) = (1+|€]]2) Fr(f). Assume that S is

a convolutor in D7, ,, that is for each ¢ € D2 ;, we have S*y ¢ € D2 ;.
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Then, according to the relations (4.3), (2.13) and Proposition 15 for all
¢ € D2 ;, we can write
(4.5)

a,d a,d a,d
|| Fw () Fw (90)||L3(Ri+1) = HS*W@HLg(Riﬂ) < COl|l(I-Ay >I<PHL3(R1+1)

where C' > 0.
Let now g € L2(R%™), it is not hard to see that there exists a sequence

(Vn)nen In D(]R‘fl) such that (1 + H§||2)l.7:§,’d(g0n) — g, as n — 00, in

LZ(RT).
From (4.5), we deduce that
F'(S)g
Hm”Lg(Riﬂ) < CHg‘|L3(Ri+1).

Hence, for certain C' > 0 and [ € N, we have
e € RY, [F(S)(O)] < C(L+ [l

Conversely assume now that (14 [|€]|*) ' F4(S) € L (RE?) for some
leN. Let m € N, for all p € Di’d, we have

17— 25™(S o llga ey = 10+ NEND " F () P () e
<Cll(1+ ||§||2)l+mf3v’d(90)(§)||L3(Ri+1)-

Hence, we obtain

Vo € Diy, ||(I—A%d)m(S*WSO)HLg(RiH) < C||(I—Ag&d)mHSOHLg(Ri“)'

Then we conclude that S is a convolutor in D2 ;. O]

Proposition 21. Let 1 < p < oo. Assume that S € (Dﬁﬁd)’ is a
convolutor in ngd. Then for every min{p,p'} < ¢ < max{p,p'}, S is
a convolutor of D}, ;.

Proof. The cases p =1 and p = oo are proved in Proposition 19.

We first prove that S is a convolutor in (DZ: 2

Since for every ¢ € D(Rf}), S sy p € LE(RHY), then from Theorem
3, we deduce that S € (D, ;)"

We now take T' € (Did)’ and we show that Sy T € (Diid)’.

Since T'is a convolutor in Df, ; and S *y ¢ € DY, ;, we deduce that for
all p € D(RT™), we have

(4.6) (Ssw T) *w @ =T s (S *w @) € LL(RE).
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Then the Theorem 3 implies that Sy T € (DZ/, 4)- Thus we have seen
that the mapping Fs defined by :

VT € (D%,), Fs(T) =Ty S

maps (Df; ;) into itself. Moreover, Fg has a sequentially closed graph.
We apply the closed graph theorem ( see [7] ) to conclude that Fyg is
continuous.

By Proposition 7, the mapping F&, transposed of F is continuous from

(Di 2) into itself. On the other hand, it follows from Definition 7 that
Vo € DR, Fi(p) = S *w o

Hence, for every m € N, there exist C' > 0 and n € N such that

(4.7) Vo € DRT™), 1, (S *w ) < Cul, ().

Since D(R%™) is a dense subspace of Di:d, (4.7) implies that S and

hence S is a convolutor in Di -
To finish the proof of this proposition, we will assume that p > 2 and
we will prove that

VS eDl, TwSe (D,

Let f,g € LY (R¥Y) and m € N such that T = (I — A% f.

We now observe that for every ¢ € D(R¥Y), we have Sy (I—A%) ™o
is a convolutor in LZ (R4*). In fact, for every g € LE(R%H), we have
(I — ALY sy g € Dy, ; and

g *w (S Xy (I_ Aa}d)mgp) _ S*W (([_ A%}d)m@ - g) c Lg(RiJrl)

Then S sy (I — A%") ™y is a convolutor in L (R,

By applying the Riesz-Thorin interpolation theorem, we deduce that
Sy (I — A%H™g is a convolutor in L (REH).

Finally, for every ¢ € D(R%™), we obtain

(T #w S) #w o = fw (S*w (I — AFH™p) € LT (R
and T xy S € (D] ;). O

Remark 2. A consequence immediate of Proposition 21 is the follow-
mg:

if S € (ng)’ is a convolutor in ng for some 1 < p < oo, then S is a
conwolutor in D2 ,.
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Corollary 1. Let 1 < p < oo. If T € (D, )" is a convolutor of Dy, ,
then there exists m € N such that

(1+ [El[*) ™ Fp(T) € L (REH).

Proof. The result follows directly from Proposition 21 and Theorem
4. O

Now, we study the convolutors and the surjective Weinstein con-
volution operator acting on (D? ), 1 < p < co. In the case p = 2, we
obtain complete characterization.

Theorem 5. Let S € (D2,) be a convolutor in D2 ,. The following
assertions are equivalent: 7 7

i) S*w D2 4 =D2,.

ii) S xw (Dag)' = (Daa)-

iti) There exists a convolutor R in D3 ; such that S +w R =4,

iv) There exist M >0 and | € N such that

[FRS)OI = MA+ )7, ae £ e RE

Proof. i) = ii) ? Firstly it is not hard to see that F?(S)(€) # 0, a.e.
¢ € RIH

Assume now S sy ¢ = 0, where ¢ € D2 ;. Then Fi(S)F() = 0
and ¢ = 0. Thus the Weinstein convolution operator defined by S
is one-to-one on Did. It easily follows that the Weinstein convolution

operator defined by S is an automorphism of D ;. Then we obtain
Ssw (Dgq) = (Do)

i) = iii) ? From the hypothesis ii), we deduce that there exists
R € (D2 ,) such that S *y R = 6. Let now ¢ € D2, We choose
xS Di,d such that ¢ = S %y ¢. Then

Rxw ¢ = R¥w (S *w ¢) = (R*w S) *w ¢ = d ¥ ¢ = ¢.

Thus R is a convolutor in D7 ; and iii) is established.
i) = iv) 7 Let R € (D3,)' be a convolutor in D ; such that
S s R=40. Then F*(S)Fy?(R) = 1. By using now Theorem 4, we
conclude that there exist M > 0 and [ € N for which

F ()€ = ML+ €))7 ae. € € RE
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a,d
}ZVT(@, If iv) holds then ¢
Fw (S)

is a measurable function and for all m € N, we have
m a,d a,d\m
1+ )™l g mesy < CHFRT = AF)™ )| g ey
a,d\m
< Cll(I = Ay) HT/’HLg(Ri“) < 0.

iv) = 1)? Let p € D2 ;. We define ¢ =

Then using the Theorem 2 and Corollary 1, we deduce that the function
-1
= (Fo is in D? , and S *y ¢ = ¢. Thus the proof of i) is
w a,d
completed. O

Proposition 22. Let 1 < p < 2. Assume that S € (D, ;)" is a convo-
lutor in ng. We consider the following assertions :

i) Sxw Dy, =Dp 4

ii) The Weinstein convolution operator defined by S is an automor-
phism of DY, ;.

ii) There exists a convolutor R in D, ; such that S *w R = 9.

iv) There exist M > 0 and | € N such that

()€ = ML+ I€]1) 7, ae & € RE
Then, we have i) < ii) < i) = v).
Proof. The proof of this results is in the same spirit with Theorem5. [

Proposition 23. Let 2 < p < co. Assume that S € (D’;’d)’ 1S a con-
volutor in Dz,d. We consider the following assertions :

i) Sxw (Dgq) = (Dga)

i1) The Weinstein convolution operator defined by S is an automor-
phism of D, ;,

ii) There exists a convolutor R in D%, ; such that S *w R = 0.

iv) There exist M >0 and | € N such that

IF ()] = M1+ IE]1))7, ae & eRE
Then, we have i) < ii) < iii) = v).

Proof. The proof of this results is in the same spirit with Theorem5. [J
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