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Abstract

The object of the present paper is to investigate the majorization
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Keywords: Analytic, p-valent, integral operator, majorization.
2000 Mathematical Subject Classification: 30C45.
1 Introduction

Let f and g be analytic in the open unit disc U = {z € C: |z| < 1}.
We say that f is majorized by ¢ in U (see [16]) and write

f(z) <<g(z) (2€V), (1)
if there exists a function ¢, analytic in U such that
[p(2) <1 and  f(z) = @(2)g(z) (2 € ). (2)

It may be noted that (1) is closely related to the concept of quasi-subordination
between analytic functions.



2 R. M. El-Ashwah

For f(z) and g(z) are analytic functions in U, we say that f(z) is subordi-
nate to g(z) written symbolically as follows:

f=gorf(z)<g(2),

if there exists a Schwarz function w(z), which (by definition) is analytic in
U with w(0) = 0 and |w(z)| < 1 (¢ € U), such that f(z) = g(w(z)) (¢ €
U). Further, if the function g(z) is univalent in U, then we have the following
equivalent ( see [17, p.4])

f(z) < g(z) < f(0) = g(0) and f(U) < g(U).
Let A(p) denote the class of functions of the form:
)=+ > @ (peN={12..} (3)
k=p+1

which are analytic and p-valent in U. In [6] Catas extended the multiplier
transformations and defined the operator I"(\, £) f(z) on A(p) by the following
infinite series

I\ 0 f(z) = 27 + Z {““Af p)} a2t
k=p+1 P
A>0;0>0;peNyme Ny =NU{0};z € U). (4)

We note that:

I(1,0)f(2) = f(2) and 1;(1,0)f(z):2fp(2).

By specializing the parameters A, £, p and m, we obtain the following oper-
ators studied by various authors:

(i) L (1,0) f(z) = L,(m, £) f(2) (see Kumar et al. [15] and Srivastava et al.
[26]);

(ii) ];”(1, 0)f(z) = D;”f(z) (see Aouf and Mostafa [4], Kamali and Orhan
[14] and Orhan and Kiziltunc [20]);

(iii) I7(1,0)f(2) = I;*f(2) (see Cho and Kim [7] and Cho and Srivastava
[8]):
(iv) I1"(1,0)(z) = D™ f(z) (see Salagean [24]);
(v) IT"(X\,0)(2) = D*(2) (see Al-Oboudi [1]);

i

(vi) I7"(1,1)(2) = I"™ f(2) (see Uralegaddi and Somanatha [28]);
(vii) 1,*(A,0)(2) = DY, f(2) (see El-Ashwah and Aouf [9]).
In [10] El-Ashwah and Aouf defined the integral operator J"(\, /) f(2) on

A(p) by the following infinite series
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TN O f —zp—l—Z[ p” )]makzk (meNy). (5)

From (4) and (5), we observe that J™(X, () f(z) = IJ(\, £) f(2) (m > 0), so

the operator J*(\, £) f(2) is well-defined for A > 0,£ > 0,p € Nand m € Z =
{...,—=2,-1,0,1,2,...}, and it is easy to verify that:

A f(2) = () T3 A O f(2) =€+ (1 = ] A O f (=) (m € Z,A > 0).

(6)
Also the operator J*(A,€)f(z) was studied by Srivastava et al. [26] and
Aouf et al. [5].

We note that:
(1)J(N,0)f(2) = I, f(2) (see Patel [21])

= {f(z) c A1) " f(2) =2+ i[l + Mk — )] a2, m € NO} ;
(i) JX(1,1)f(z) = I*f(z) (see Jung et al. [13]);

= {f(z)eA(l):Io‘f(z):z—i—Z(kiH) akzk;oz>0;zeU};

(i) J(1, 1)f(z) = Io‘f(z) (see Shams et al. [25]);

:{f() Alp) - IX f(= —zp+z<p+1) akzk;a>0;z€U};

k=p+1

(iv) J*(1,1)f(2) = D™ f(2) (see Patel and Sahoo [22]);

1 m
:{f(z)EA() D" f(z) =22 + Z (Zil) akzk;mGZ:{O,il,j:Q,...};zEU};
k=p+1

(v) JM(L, 1) f(2) =1™f(2) (see Flett [11]);
— {f(z) cA):I™f(z) = Z+Z (ki_i_l)makzk;m €Ny z € U} ;
(iv) J™(1,0)f(2) = I"™ f(z) (see Salagean [24])

= {f(z) e A1) : I f(2) :Z—i-ik‘makzk;mENo;ze U}.

k=2
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Also we note that:

()" (1,0)f(2) = J;"f(2)

:{f(z)GA() ) f(z —zp—l—Z() akzk;meNo;zeU};

k=p+1

(i) (1, 0)f(2) = J"(0) f (2)
m — (PO,
= {f(z) € A(p) : J)'(0) f(z) = 2" + Z (—) agz”sm € No; 0 > 052 € U};
(iii) Jy" (X, 0)f(2) = i, (2)

_{f(z)eA() S f(z) =2+ Z <p+/\ )> akzk;mENo;)\ZO;zeU}.

k=p+1
Definition 1.1 Let -1 < B < A<1l,pe NmeZ,jeNyA>0/2>
0,7 € <c* = C\{0},[7(A—B)+ (&) B| < (&) and f € A(p). Then

fes’ M (7; A, B) the class of p-valent functions of complex order v in U if
and only if

m (G+1)
{1+%<Z(Jp (A0 f(2)) | _pjﬁ,)}{l—l—Az' 7

(T 0 (=) L+ B2

Clearly, we have the following relationships:

(i) S;n)\je (v;1,-1) = S;nAje ()

(ii) S;nljo (v;1,-1) = Sm ]( );

()50 (73 1, ~1) = S5 ()

(iv) 5380 (v;1,—1) = S () (see Nasr and Aouf [18] and Wiatrowski [29]);
(

(

(

~—

v) S, ! 5 (v;1,=1) = KJ(7) (see Altintas and Srivastava [2]);
V1)Sl_118 (v;1,—1) = K(v) (see Nasr and.Aouf [18] and Wiatrowski [29]);

vii) 100( —a;1,—-1) = 5" (a) (0 < a < 1)(see Robertson [23]).
We shall need the following lemma.

Lemma 1.2 [2]. Let v € C* and f € KJ(v). Then f € Si(37), that is,
Ky(v) c55(57) (reC). (8)

An majorization problem for the class S() has recently been investi-
gated by Altintas et al. [2]. Also, majorization problem for the class S* =
S*(0) has been investigated by MaCGregor [14]. In this paper we investigate
majorization problem for the class S /\ (1A, B) .
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2 Main Results

Unless otherwise mentioned we shall assume throughout the paper that —1 <
B<A<1l,7veC*"X>0,/>0,m¢€Z and p € N.

Theorem 2.1 Let the function f € A(p) and suppose that g € S;}/’\{E(fy; A, B).

If (J;”(/\,E)f(z))(j) is magorized by (J;”()\,ﬁ)g(z))(j) in U, then

(o0 5(2)”

< | 0 09(2) Y

(2] <o), (9)

where rog = 1o(p, v, A\, £, A, B) is the smallest positive root of the equation

s my+ () sl foim e (2] -

oiha o () o oe (M) 0 o

Since g € S ,\e(A B;~) we find from (7) that

where w is analytic in U with w(0) = 0 and |w(z)| < 1 (¢ € U). From (11),
we have

P00 o)+ hA-B) +p-DBluE)
(Jm()\,ﬁ)g(z))(j) 1+Bw(z) )

From (6), we have

2 (S 0g(2) Y = (p;£> (Jm1 (A, 0)g(2)) Kpif) b } (7O 0)g(2))?

0 < j<ppeN;A>0;z€U).

Also from (12) and (13), we have

(54) (1+|B]|2]) ‘
[(55)] = (A= B)+ () B| ||

(09| < (57 009"

(14)



6 R. M. El-Ashwah

Next, since (J;@()\,ﬁ)f(z))(j) is majorized by (J]T()\,f)g(z))(j) in U, from (2),
we have

m (4 m i)
(T 0F ()Y = 0(2) (77 (A 09(2) (15)
Differentiating (15) with respect to z and multiplying by z, we have

(TN OFE) Y = 20 (2) (170 09(2))Y + 20(2) (J;%A,@g(z))“*;ié)

using (13) in (16), we have

(0 52) Y = 228 (0, 0g(2) P+ 0(2) (777 (0, 09(2) .

(%)
)
(17)
Thus, by noting that ¢(z) satisfies the inequality (see [19]),
: 1— 2
o] <« L (e, (18)

L— |
and making use of (14) and (18) in (17), we have

(T N 0 £ ()Y

. 1— |o(2)]? (14 |B]|z]) 7]
(|90( )|+ e '(%)_|7(A_B)+(’#)B\|z|>

<

(I (A 09(2)) Y
(19)

Y

which upon setting
[zl =r and |p(z)|=p (0<p<1),

leads us to the inequality

(O, 0£(2)

<

¥(p)

m—1 Nalz ()
= (B - B+ @D a1 15 09

Y

where

wp) = <4152+ =) | () - b=+ () 8l

+r(1+|B|r), (20)
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takes its maximum value at p = 1, with 7o = ro(p, v, \, £, A, B), where ro(p, v, A\, £, A, B) is
given by (10), then the function ®(p) defined by

o) = ~o+iBlo)+1-o) () - a5+ (150) Blo]
to(1+|Blo)

(21)

is an increasing function on the interval 0 < p <1, so that

o) < o) =-o () —\7<A—B>+ () 8]
0<p<1;0<0<ro(p, 7, ML, A B)). (22)

Hence upon setting p = 1 in (21), we conclude that (9) holds true for |z| <
ro = ro(p, v, A\, £, A, B), where rq(p, v, A\, £, A, B), is the smallest positive root
of (10). This completes the proof of Theorem 2.1.

Putting A =1 and B = —1 in Theorem 1, we obtain the following result.

Corollary 2.2 Let the function f € A(p) and suppose that g € S;'?j\{g('y). If
(J;l(/\,é)f(z))(j) is magorized by (J;"()\,E)g(z))(j) in U, then

(00 0£(2) (121 < 7o),

< | (7 0g(=)

where o = 1ro(p, v, A, £) is given by

b=y — a2 - ()] ()
7”0:7"0(177%)\76): 2|2,}/_ (ﬂ)’
A

where (k =2+ (B) + 2y — (B)|,A >0, > 0,p € N,y € C).

Putting A=1, B=—-1,A=1,£ =0 and m = 0 in Theorem 2.1, we obtain
the following result.

Corollary 2.3 [2, Theorem 1]. Let the function f € A(p) and suppose that
g € Si(v). If f9(2) is majorized by g (z) in U, then

[ < (g V)] (2l <o),
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where ro = 1o(p, J,7y) is given by

k= k2 =42y —(p— ) (p—J)
22y — ( J)I ’

where (k=24 (p—j) + 2y —(p—J)|.p € N,y € C¥).

rozro(p,j,v)

By using Lemma 2.1 and Corollary 2.2, we obtain the following result.

Corollary 2.4 [2, Theorem 2]. Let the function f € A(p) and suppose that
geK)(v). If Y (2) is majorized by g (2) in U, then

U (2)] < (g9 (2)] (lz] <o),
where o = ro(p,7,J) is given by

k— k2 —4(p—j) v — (p—))]
2!7 (p—17)|

To = TO(p7 77])

Y

where (k:2+(p_j)+|’y_(p_])|7p€NajENU?VGC*)

Putting A=1, B=—-1,p=1,7=0,A=1,£=0and m = 0 in Theorem 2.1,
we obtain the following result.

Corollary 2.5 [3,12]. Let the function f € A and suppose that g € S(7).
If f(z) is majorized by g(z) in U, then

1) < 1g'(2)] (2] <o),

where ro = ro(7y) is given by

k—\/k?—4]2y —1]
2(2y — 1] ’

ro = 10(7) =

where (k=34 |2y —1],v € C*).
Putting v = 1 in Corollary 2.4, we obtain the following result.

Corollary 2.6 [16,12]. Let the function f € A and suppose that g € S*. If
f(2) is majorized by g(z) in U, then

()] < 1g' ()] (2] <o),

where 1y is given by

TOZQ—\/g.

Corollary Putting A = 1 and ¢ = 0 in Corollary 2.1, we obtain the following
result.
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Corollary 2.7 . Let the function f € A(p) and suppose that g € S;(y).
If (Jmf( )) G s majorized by (J;lg(z))(” in U, then

< ‘ (J;nflg(z))(j)

where o = 1ro(p,7y) is given by

()Y

(‘Z| < 7“0),

k— /K2 —4p 2y — p|
2(2y — p|

ro =ro(p,7) =
where (k=24+p+ |2y —p|,p € N,y € C*).
Putting m = 1 in Corollary 2.6, we obtain the following result.

Corollary 2.8 . Let the function f € A(p) and suppose that g € Sy7 ().
If (J;f(z))(]) is magorized by (J;g(z))(]) in U, then

[fO()| < gV(2))| (2] <o),

where o = ro(p,7y) is given by

k—+/k? —4p 2y — p|
212y — p|

7’0:7"0(]77”7) =

where (k=24+p+ |2y —p|,p € N,y € C*).

Remark 2.9

(1) Putting X =1 in Corollary 2.1, we obtain the corresponding result for the
operator J'(€) f(2);

(ii) Putting ¢ = 0 in Corollary 2.1, we obtain the corresponding result for the
operator J* f(z).

3 Open Problem

The author suggest to solve the majorization problem for the meromorphic
p-valent functions f(z) = Zip + > 7 a,z"P using the analogues operator

Cp ()‘ E + Z (£+ )\n) apz"?

n=1

A>00>0meZ,zeU,).
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